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ABSTRACT

In this paper we study some soliton types on a quasi-Sasakian 3-manifold with respect to the
Schouten-van Kampen connection.
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1. Introduction

One of the important classes of almost contact metric manifolds is the class consisting of those which are
normal. However, the curvature nature of such manifolds is not known in general, except for Sasakian or
cosymplectic manifolds. If the almost contact metric structure of an almost contact metric manifold is normal
and the fundamental 2-form is closed then the manifold is said to be quasi-Sasakian manifold. Quasi-Sasakian
structures can be considered as unifying Sasakian and cosymplectic structures and first examples were given
by Blair [4]. Some characterizations related to quasi-Sasakian manifolds were given by Tanno [34] (see also [14],
[20, 21], [26]). Kim proved that fibred Riemannian spaces endowed with invariant fibres normal to the structure
vector field do not admit neither nearly Sasakian nor contact structure but such spaces admit a quasi-Sasakian
or a cosymplectic structure [19]. Recently, due to the significant applications to physics, in particular to super
gravity and magnetic theory, and the applications in the mathematical analysis of string theory, quasi-Sasakian
manifolds have been studying intensively.

Olszak defined the structure function S on a quasi-Sasakian 3-manifold and obtained the necessary and
sufficent conditions for such manifolds to be conformally flat via structure function. Also, he proved that if the
manifold is additionally conformally flat with 5 = constant, then (a) the manifold is locally a product of R and
a two-dimensional Kaehlerien space of constant Gauss curvature (the cosymplectic case), oz, (b) the manifold
is of constant positive curvature (the non-cosympletic case, here the quasi-Sasakian structure is homothetic to
a Sasakian structure) [24].

The Schouten-van Kampen connection is one of the most natural connections adapted to a pair of
complementary distributions on a differentiable manifold endowed with an affine connection [5, 16, 28].
Solov’ev has investigated hyperdistributions in Riemannian manifolds using the Schouten-van Kampen
connection [30, 31, 32, 33]. Olszak studied the Schouten-van Kampen connection to adapted to an almost
contact metric structure in [25]. He also characterized some classes of almost contact metric manifolds endowed
with the Schouten-van Kampen connection by giving certain curvature properties of this connection on such
manifolds.

As a generalization of Einstein metrics, a Riemannian metric g on a Riemannian manifold is called a Ricci
soliton [15] if there exists a smooth vector field v on the manifold satisfying

L,g+ 2Ric+ 2pg =0, (1.1)
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where L is the Lie derivative, Ric is the Ricci tensor, and p is a real constant. A Ricci soliton is said to be
shrinking, steady and expanding according as p is negative, zero and positive, respectively. Compact Ricci
solitons are the fixed points of the Ricci flow 2 g = —2Ric projected from the space of metrics onto its quotient
modulo diffeomorphisms and scalings, and often arise as blow-up limits for the Ricci flow on compact
manifolds. . Also Cho and Kimura introduced the notion of 7-Ricci soliton [8]. A Riemannian manifold (M, g)
is called an almost 7-Ricci soliton if there exist a smooth vector field v such that the Ricci tensor satisfies the
following equation

Lyg+2Ric+2pg +20n®@n =0, (1.2)

where p and . are real constants. If the vector field v is the gradient of a potential function —k, then g is called
a gradient Ricci soliton and equation (1.1) assumes the form

VVk = Ric+ pg. (1.3)

In dimension 2 and in dimension 3, a Ricci soliton on a compact manifold has constant curvature [15, 17]. For
details we refer to Chow and Knopf [9] and Derdzinski [12]. We also recall that a Ricci soliton on a compact
manifold is a gradient Ricci soliton [27].

In order to obtain self-similar solutions for Yamabe problem which seem to be as singularity models, the
notion of Yamabe flow was firstly defined by Hamilton [15]. Yamabe solitons have been studied intensively
and for further reading we refer [1, 6, 7, 13, 22]. If there exists a vector field v on a Riemannian manifold (M, g)
satisfying [1]

1

2
where scal is the scalar curvature of M, ¢ is a real constant, v is a soliton field and L is the Lie-derivative,
then the manifold is said to be a Yamabe soliton and we denote a Yamabe soliton by (M, v, §). Also, a Yamabe
soliton is said to be steady, expanding or shrinking, if § =0, § < 0 or § > 0, respectively. If ¢ is a constant, then
an almost Yamabe soliton becomes a Yamabe soliton. Note that, if (M, g) is of constant scalar curvature scal
then the Riemannian metric g is called a Yamabe metric.

This paper has been organized as follows: After preliminaries in section 3, we have introduced quasi-
Sasakian 3-manifolds endowed with the Schouten-van Kampen connection. In section 4, we have studied
Ricci solitons, n-Ricci solitons, gradient Ricci solitons and Yamabe solitons in a quasi-Sasakian 3-manifold with
respect to the Schouten-van Kampen connection. In section 5, we have reconstructed examples of a quasi-
Sasakian 3-manifold endowed with the Schouten-van Kampen connection.

(Lug) = (scal — d)g, (1.4)

2. Preliminaries

A connected differentiable manifold M of dimension (2n + 1) is called an almost contact metric manifold, if
there exist tensor fields ¢, £, on M of types (1,1), (1,0), (0, 1), respectively, such that [2, 3, 35]

P =-T+n®¢ nE) =1, (2.1)
g(pU, V) = g(U, V) =nU)n(V), UV eTM, (2.2)

where T'M is the Lie algebra of vector fields of the manifold M. In this case we have ¢ =0, no ¢ =0 and
n(U) = g(U,&). The fundamental 2-form ® of M is defined by

®(U, V) =g(U,pV) UV €TM.

An almost contact metric manifold (M, ¢, ¢, n) is said to be quasi-Sasakian manifold [4] if the almost contact
structure is normal and the fundamental 2-form is closed, that is, for every U,V € g@ntl)

[(Pa @](U’ V) +dn(U,V)§ =0,

dd =0, U, V)=g(UpV),

where ¢(?"*1) denotes the module of vector fields on M. There exist different types of quasi-Sasakian structures
ranging from the cosymplectic case, dn = O(rankn = 1), to the Sasakian case, n A (dn)" # 0 (rankn = 2n + 1,
® = dn). The 1-form n has rank r = 2p if dn? # 0 and n A (dn)? =0, and has rank » =2p + 1 if dn? =0 and
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n A (dn)? # 0, where r is called the rank of the quasi-Sasakian structure. Blair also proved that there is no
quasi-Sasakian manifold of even rank [4].

Now we consider a quasi-Sasakian 3-manifold (i.e, a quasi-Sasakian manifold of dimension 3). An almost
contact metric manifold M is a quasi-Sasakian 3-manifold if and only if [23]

Vyé = —BoU, UeTM, 2.3)

for a certain function 8 on M, such that {3 = 0 and V being the operator of the covariant differentiation with
respect to the Riemannian connection of M. Clearly, such a quasi-Sasakian manifold is cosymplectic if and only
if = 0[18]. As a consequence of (2.3), we have [23]

(Vup)V = B(g(U, V)E —n(V)U), (2.4)

(Vum)V = =Bg(eU. V). (2.5)
Using (2.3) and (2.4), we find

Vu(Vve) = -UBleV — B{g(U, V)¢ = n(V)U} = BV V,
which implies that

R(U,V)§ = ~UBlV + V[BlpU + 8*{n(V)U —n(U)V}. (2.6)

Moreover (2.3) and (2.4) give the following relations:
R(U,&)¢ = B*{U —n(U)¢} 2.7)
R(U, OV = —~U[BlpV — B*{g(U, V)& = n(V)U}. (2.8)

It is well known that in a Riemannian 3-manifold, we always have

RU VYW = g(V.W)QU — g(U W)QV + Ric(V,W)U — Ric(U W)V
scal

77{9(‘/7 W)U - g(Ua W)V}a (29)

where (@ is the Ricci operator, that is, Ric(U, V) = g(QU, V') and scal is the scalar curvature of the manifold.
The Ricci tensor Ric of a quasi-Sasakian 3-manifold M is given by

scal scal

Rie(V,W) = (== = B*)g(V,W) + (36% — == )n(V)n(W)
—n(V)dB(eW) —n(W)dB(¢V), (2.10)
where scal is the scalar curvature of M. As a consequence of (2.10), for the Ricci operator ), one can write
Qu = (e - e
+n(U)(pgrad B) — dB(eU)E, (2.11)
where d3(U) = g(grad 8,U). From (2.10), we also have
Ric(U,€&) = 2°n(U) — dB(¢U). (212

On the other hand we have two naturally defined distribution in the tangent bundle 7'M of M as follows:
H =kern, H =span{¢}.
Then we have TM = H® H, HN H = {0} and H | H. This decomposition allows one to define the Schouten-

* *
van Kampen connection V over an almost contact metric structure. The Schouten-van Kampen connection V

on an almost contact metric manifold with respect to Levi-Civita connection V is defined by [30]

VoV = VoV - g(V) Vit + (Vom)(V)E. (2.13)

Thus with the help of the Schouten-van Kampen connection (2.13), many properties of some geometric objects
connected with the distributions H, V' can be characterized [30, 31, 32]. For example g, { and 7 are parallel with

* * * * * *
respect to V, thatis, V§ = 0, Vg = 0, Vip = 0. Also the torsion T of V is defined by

;“(U» V) =nU)VvE —n(V)Vu + 2dn(U, V)§. (2.14)
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3. Quasi-Sasakian 3-manifolds with respect to the Schouten-van Kampen connection

In a quasi-Sasakian 3-manifold using (2.4) and (2.5) in (2.13), we have
*
VuV =VyV +8n(V)eU + Bg(U, pV)E. (3.1)

*
Let R and R be the curvature tensors of the Levi-Civita connection V and the Schouten-van Kampen connection
*
Vv,
* *x *x *
R(U,V)=[Vu,Vv]=Vyv, RUV)=[Vy,Vv] =V
If we substitute equation (2.13) in the definition of the Riemannian curvature tensor

* * * * * *
RU V)W =VyVyW = VyVyW — Vg yW. (3.2)

Using (3.1) in (3.2), we have

ROV = Su(VoW + Br(W)eV + Bg(V, o W)e)
v (Ve W+ B(W)eU + Bg(U, oW)e) (33)
_(V[U7V]W + BU(W)QO[U’ V] + /Bg([U’ V]v eW)E.

*
Using (2.4) and (2.5) in (3.3), we obtain the following formula connecting R and R on M

RUVIW = RUVIW + UB{g(V, gW)E +n(W)eV'}
~VI[Bl{g(U, oW )& +n(W)pU}
+8*{g(U, W)n(V)§ — g(V,W)n(U)§ +nU)n(W)V (3.4)
—n(V)nW)U + g(U, W)V — g(V,oW)pU}.

Now taking the inner product in (3.4) with a vector field W, we have

g(E(U,V)W,Z) = g(R(U,V)WZ)
+U[BHg(V, oW)n(Z) + g(¢V, Z)n

(W)}
VIBHg(U, @W)U(Z) 9(eU, Z)n(W)} (3.5)
+62{9(U Win(Vn(Z) — g(V,W)n(U)n(Z)
+9(V, Z)n(U)n(W) — g(U, )()77( )
+9(U, oW)g(eV, Z) — g(V,oW)g(eU, Z)}.

If we do summation over ¢ by choosing U = Z = e; in (3.5), {i = 1,2, 3}, where ¢; is an orthonormal basis of the
tangent space at each point of the manifold, we get

1%0(‘/7 W) = Ric(V,W) + (V) [Bln(W) — 28°n(V)n(W), (3.6)

* *
where Ric and Ric denote the Ricci tensor of the connections V and V, respectively. As a consequence of (3.6),
*
we get for the Ricci operator Q

DV = QV + (V) [8lé — 28n(V)E.

Also if we take summation over i, where V. =W = ¢, in (3.6), we get
*
scal = scal — 232, (3.7)

* *
where scal and scal denote the scalar curvatures of the connections V and V, respectively.
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4. Soliton types on quasi-Sasakian 3-manifolds with respect to the Schouten-van Kampen
connection

In this section we study Ricci solitons, 7-Ricci solitons and Yamabe solitons on a quasi-Sasakian 3-manifolds
with respect to the Schouten-van Kampen connection. In a quasi-Sasakian 3-manifold endowed with the

* *
Schouten-van Kampen connection, since Vg = 0 and 7' # 0, by using (3.1), we get

Tog)UV) = o(Vir 0, V) + 9(U, Vo v) = (Log) (U, V), (“.1)

forany U,V € TM.

Now we consider a non-cosymplectic quasi-Sasakian 3-manifold M bearing a Ricci soliton defined by (1.1)
with respect to the Schouten-van Kampen connection. Let v be a pointwise collinear vector field with the
structure vector field &, thatis v = f§, where f is a function on M. From (1.1) and (4.1) we write

*
9(Vu f§,V) +9(U, Vv f§) + 2Ric(U, V) + 2pg(U, V) = 0. (4.2)

Then by using (2.3), we have

ULfIn(V) + VIfIn(U) + 2Rie(U. V) + 209(0. V) =0, (4.3)
which implies
ULfIn(V) + VIFIn() + 2Rie(U, V) + 2060 [8n(V) — 4800 (V) + 2p9(U, V) = 0, (4.4)

by virtue of (3.6). By putting V' = ¢ in (4.4) and using (2.12) we obtain

Ulf1+ €nU) +2om(U) = 0. (4.5)
Taking U = £ in (4.5) gives
§&f=—p. (4.6)
If we replace (4.6) in (4.5), we get
Ulfl = —pn(U),
which yields
df =—pn. (4.7)

Applying d on both sides of the last equation, we have
pdn = 0.
In a non-cosymplectic quasi-Sasakian 3-manifold, since dn # 0, then we have
p=0, (4.8)

which implies
df = 0,thatis f = constant,

by virtue of (4.7). Thus using constancy of f in (4.4), we obtain

]%C(U,V) = —pg(U,V), 4.9)

forany U,V € TM.
Hence we have the following:

Theorem 4.1. Let M be a non-cosymplectic quasi-Sasakian 3-manifold. If M admits a Ricci soliton (v, p, g) with respect
to the Schouten-van Kampen connection and v is pointwise collinear with the structure vector field &, then v is a constant
multiple of the structure vector field, M is an Einstein manifold with respect to the Schouten-van Kampen connection
and the Ricci soliton is steady.
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Let us assume the converse, that is, let M be an Einstein quasi-Sasakian 3-manifoldwith respect to the
Schouten-van Kampen connection and v = £. Then we can write

*
Ric(U,V) = og(U, V), (4.10)
*
where o is a scalar and U,V € TM. From (2.3) and (4.1) we have (L¢ g) (U, V) = 0,which implies that

(’EE g) (U, V) + 2R70(U, V) +2p9(U, V) =2(c + p)g(U, V). 4.11)
From the previous equation it is obvious that M admits a Ricci soliton (¢, p, g) if
o+p=0.
Thus we get the following:

Theorem 4.2. Let M be a non-cosymplectic quasi-Sasakian 3-manifold. If M is an Einstein manifold with equation

]%;c = og, then the manifold admits a Ricci soliton (£, —o, g) with respect to the Schouten-van Kampen connection.
Now using (3.6) in (4.9), we get
Ric(U, V) + (2U)[B]n(V) = 28°n(U)n(V) + pg(U, V) = 0. (4.12)
Using (2.10) in (4.12), we obtain

scal scal

(=5 =B+ p)g(U V) + (82 = == m(U)n(V) = (V) [BIn(U) = 0. (4.13)

Taking U = £ in (4.13), since p = 0, we get (¢V)[f] = 0. Now putting V' = ¢V, then we have

that is 3 is a constant. Then we state the following:

Theorem 4.3. A quasi-Sasakian 3-manifold bearing a Ricci soliton (&, p, g) with respect to the Schouten-van Kampen
connection is a 3-Sasakian manifold.

From (3.7), we also state the following;:

Theorem 4.4. A quasi-Sasakian 3-manifold bearing a Ricci soliton (&, p, g) with respect to the Schouten-van Kampen
connection is of constant scalar curvature scal = 2/3°.

Now we consider 7-Ricci soliton on a quasi-Sasakian 3-manifold with respect to the Schouten-van Kampen
connection. Then we have

* *
(Lvg + 2Ric+2pg + 20n @ n)(U,V) =0,
that is
*
g(Vyv, V) + g(U, Vyv) + 2Ric(U, V) + 2pg(U, V) + 20n(U)n(V) = 0. (4.14)

Putting v = £ in (4.14), we obtain
*x

Hence we state the following:

Theorem 4.5. A quasi-Sasakian 3-manifold bearing an n-Ricci soliton is an n-Einstein manifold with respect to the
Schouten-van Kampen connection.
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Taking V' = ¢ in (4.15), we get p + o = 0. Also using (3.6) in (4.15), we have
Ric(U, V) + (pU)[B]n(V) = 28*0(U)n(V) + pg(U. V) + an(U)n(V) = 0. (4.16)
Using (2.10) in (4.16), we obtain

scal

= B2+ p)g(U V) + (8 = == + o)n(U)n(V) = (¢V)[Bn(U) = 0. (4.17)

scal

5

Taking U = ¢ in (4.17), since p 4+ 0 = 0, we get (¢V)[5] = 0. Now replacing V' by ¢V and using &[] = 0 gives
V(g =o.
Thefore we can state:

Theorem 4.6. A quasi-Sasakian 3-manifold bearing an n-Ricci soliton (&, p, o, g) with respect to the Schouten-van
Kampen connection is a $-Sasakian manifold with p + o = 0.

If the vector field v is the gradient of a potential function —k, then g is called a gradient Ricci soliton that is
v = —grad k. In this case equation (1.3) becomes

Vgradk = Ric+ pg,

where V is the Levi-Civita connection. Now assume that M is a quasi-Sasakian 3-manifold bearing a gradient
Ricci soliton with respect to the Schouten-van Kampen connection. If we take v = —grad k in (4.1), we write

*
(Lgrad kg>(U7 V) = (Lgradkg)(U7 V) = g(ngradkv V) + g(U’ varad k)
We can easily see that
9(Vuygradk,V) = g(U,Vygradk),

which implies that

* *
Lyradrkg + 2Ric+ 2pg = 0,

is equal to
9(Vugradk,V) = }%Az"c(U, V)4 pg(U, V).
This reduces to
Vugradk = 5U + pU.
Now we will compute R(U,V)gradk = (VyQ)V — (Vv Q)U. Then we get

scal scal

VoV = Vul(—- - AU + (3% - 5 )nU)E +n(U)(pgrad 5) — pU[BJE}

- %mwm—mWWMﬁH%UW—%WwMMWK

scal

=~ — BV + (357 -

) (V) + 9V, Vo))e + (V) V)

+ ( l(VUV) +9(V,Vu€)) pgrad f +n(V)Vy egrad
=U((¢V) [B])¢ — ¢V [B]VUE,
and

Qvov = vy + 382 - v ve

+n(VUV)<p9mdﬁ dB(eVuV)E.
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Then we have

(VoQ)V = VyQV -QVyV
= (GUlscal] = 2BUIB)V + (68U(8) — 5Uscal}n(V)¢
38— 22 (o(V, Vo )e + (V) V)

+(n (VUV) +9(V,Vu€)) pgrad  +n(V)Vy egrad
=U((eV) 8§ — ¢V I[BIVUE
—n(VuV)pgrad 8+ dB(eVyV)E.

which is equal to

(VuQ)V = VyQV -QVyV
= (3Ulseal] ~ 2BUB)V + (65U15] — SUlscall)n(V)¢

scal

—B(3% = =) (9(V, pU)E + n(V)eU)
—Bg(V, @U)wgmdﬁ +n(V)Vu egrad 3
—9(Vugrad 8,oV)E+ B (V) [BleU — dB(Vue) V)E.

Putting U = ¢ in (4.18), we have

(VeQ)V = %ﬁ[scal] (V =n(V)§) +n(V)Vepgrad 8 — g(Vegrad 8, oV)€ — dB((Vep) V)E.

Similarly, if we take V' = £ in (4.18), we also have

scal

(VuQ)E = 38U(B)¢ — B(38° — 5 )¢U + Vu pgrad B.
Using (4.19) and (4.20), we obtain
9(VuQ)§ = (VeQ)U, &) = 3BU(B) + g(Vegrad 5, oU) + dB((Vep) U).

Thus we can write
g(R(&, U)gradk,§) = 3BU(B) + g(Vegrad 8,9U) + dB((Vep) U).
Now we have
R(U,&)gradk = —U|[Ble (gradk) — 8*{g(U, grad k)§ — n(grad k)U'}

which implies that
9(R(§,U)gradk,€) = f*{g(U, grad k) — g(¢, grad k)n(U)}.
From (4.21) and (4.22), we obtain

3BU[B] + g(Vegrad 8, oU) + dB((Vep) U) = B*{g(U, grad k) — g(&, grad k)n(U)}.

*
If f is a constant, then we have grad k = £[k]¢. Using g(Vv gradk,U) = Ric(U, V) + pg(U, V), we get

]%;c(U,V)—&-pg(U»V) g(VvE(k)E,U)

V(ER)N(U) + (Ek)g(U, V) = (ER)n(U)n(V).

Putting U = ¢ in (4.24), we obtain
V(&k) = pn(V).
Now using (4.25) in (4.24), we get
*
Ric(U,V) = (=p+ (k) (U, V) + (p = (§K)) n(V)n(U).

Hence we give the following;:

(4.18)

(4.19)

(4.20)

4.21)

(4.22)

(4.23)

(4.24)

(4.25)
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Theorem 4.7. A quasi-Sasakian 3-manifold bearing a gradient Ricci soliton with respect to the Schouten-van Kampen
connection is an n-Einstein manifold provided 3 is a constant.

In the last of this section, we consider a non-cosymplectic 3-dimensional quasi-Sasakian manifold M bearing
a Yamabe soliton defined by (1.4). Let v be a pointwise collinear vector field with the structure vector field ¢,
thatis v = f¢, where f is a function on M. From (1.1) and (4.1) we write

9(Vu FEV) + g(U, Vv £) = 2seal — 8)g(U, V). (4.26)
Using (2.3) in (4.26), we have

*
UHNV) + (VnU) = 2(scal = 6)g(U, V), (4.27)
by virtue of (3.6). By putting V' = ¢ in (4.27), we obtain

US + (EPm(W) = 2seal — (D). @.28)

Taking U = ¢ in (4.28), we have
&f = s:al — 4. (4.29)
If we replace (4.29) in (4.28), we get
Uf = (seal — O)n(O).
which yields
df = (s:az —&)m.

Applying d on both sides of the last equation, we have

*
(scal — d)dn = 0. (4.30)
In a non-cosymplectic quasi-Sasakian 3-manifold, since dn # 0 then we have

*
6 = scal,

which implies
df =0, thatis f = constant,

by virtue of (4.7).
Hence we state the followings:

Theorem 4.8. Let M be a quasi-Sasakian 3-manifold bearing a Yamabe soliton (v, §, g) with respect to the Schouten-van
Kampen connection. If v is pointwise collinear with the structure vector field &, then v is a constant multiple of £ and M
is of constant scalar curvature with respect to the Schouten-van Kampen connection.

Corollary 4.1. A -Sasakian 3-manifold bearing a Yamabe soliton (£, 0, g) with respect to the Schouten-van Kampen
connection is a manifold of constant scalar curvature with respect to the Levi-Civita connection.

5. Examples

In this section, we reconstruct examples of quasi-Sasakian 3-manifolds with respect to the Schouten-van
Kampen connection.

Example 5.1. We consider the 3-manifold M = {(z,y,2) € R®, (z,y,2) # 0} where (z,y,z) are standard
coordinate of R3. The vector fields

0 0 0 0

€1= -~ Yo, €2= o—, €3= o~
or 70z’ ’
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are linearly independent at each point of M. Let g be the Riemannian metric defined by
gler,e1) = glez,e2) = gles,e3) =1,
gler,ea) = gler,e3) = glea,e3) =0.

Assume that 7 is a 1-form given by n(Z) = g(Z, X3), for any Z € x(M), and ¢ is a (1, 1) tensor field defined by
pler) = —e2,  plea) =e1,  plez) =0.

Then one can easily show that the quadruple (¢, £, 7, ¢g) is an almost contact metric structure on M by choosing
§ = e3. Also, the Riemannian connection V of the metric g is given by

29(VxY,2) = Xg(Y,Z2)+Yyg(X,Z) - Zg(X,Y) (6.1)
7g(X’ [Y7 Z]) - g(Y7 [Xv Z]) +g([Xv YLZ)

By direct calculations, we see that the non-zero components of the V on M are

1 1 1
v€1€3 = _5627 veleQ = 5637 ve2€3 = 561,
1
Vezel = —563, v53€2 = 5617 Veg,@l — —562.

We see that the structure (¢, &, 7, g) satisfies the formula Vx¢ = —8¢X for 3 = —3. Hence the manifold is a
quasi-Sasakian 3-manifold with the constant structure function 3 [11]. Now with help of (3.1), we get the

*
non-zero components of the V on M are

* 1 * * 1
Ve, e3 = —(5 + B)ea, Ve ea = (5 +pPes, Ve,e3 = (5 + B)ei,
* 1 * 1 * 1

Ve,e1 = —(5 + B)es, Veyea = 561 Ve,e1 = —ge

*
Using above equations, we can calculate the non-zero components of the curvature tensor R with respect to
the Schouten-van Kampen connection

- 1 * 1
R(el’ 62)61 = 5627 R(el, 62)62 = 75(317
* 1 * 1

*
Using (5.2), we see that the non-zero components of the Ricci tensor Ric with respect to the Schouten-van
Kampen connection as follows:

* *
)7 R(e27€2) = (

: B 1 B 1
Rlc(el,el) = (5 — Z 5 — Z) (53)
For any X,Y € x(M), we write
X = aie; +agez + ases,
Y = b161 + b2€2 + 6363.
Then from (5.3), we have
* B 1
(Leg)(X, ¥) + 2Ric(X,Y) +209(X,Y) + 200(X)n(Y) = (5~ 7 +p)arhy
1
+5 1+ pashs
+(p + U)a3b3

If p= i — g and o = g — i, then M admits an n-Ricci soliton (¢, p, o, g)with respect to the Schouten-van

Kampen connection.
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Example 5.2. Let P be an open finite interval. Choose contants «, b, ¢, d such that
b#0,y>a,d+2cy > 1°,

forany y € P. Let
M=RxPxRcR3

and suppose that (z,y, 2) are coordinates on M adapted from the Cartesian coordinates of R3. Define g to be
the Riemannian metric on M given by

g = (d+42cy)dr @dx + y(dzx ® dz + dz ® dx)
+b2(y —a) N d +2cy — y?) rdy @ dy + dz @ dz.
Let {e1, €2, e3} be linearly independent global frame on M given by

o 0 12 0 9

= 2 — 2 71/2 _— — — = — 1/2 — 2 - = .
er=(d+2ey —y7) (oo —yz-), e2=bly—a)(d+2ey —y7) 9 ©= o (5.4)
The Poisson brackets of these vector fields are of the form
[e1,e2] = —aer +2Be3, [e1,e3] =0, [ea,e3] =0,
where «, 3 are the functions on M given by
a = bly—c)y—a)/*(d+2ey —y*) 2,
B = g(y —a)'/%.
Let n be the 1-form defined by
n(X) = g(X, es3) (5.5)
forany U € TM and ¢ be the (1,1) tensor field defined by
Pe1L = €2, Pez = —€1, Pe3z = 0. (56)

Then using the linearity of ¢ and g, we have
n(es) =1, @*U=—U+n(U)es

and
g(eX,9Y) =g(X,Y) = n(X)n(Y), X, Y e€TM.

Using the above formula for Riemannian metric g, we can show that the non-zero components of the V on M
are

Vees3 = —fea, V,e3 = e, (5.7)
V&gel = 75627 v81€2 = —aer + Bel% V6261 = 7ﬁ€3a
Ve,eo = fer, Ve, 1 = aes.

Hence from (2.3), the manifold M is a 3-dimensional quasi-Sasakian manifold with g = 1 [24].With help of

*
(3.1), we get the non-zero components of the V on M are

*

Ve,e2 = Per, Ve e = aey,

* *

V53€1 = —fea, Vel €2 = —aeq, (5-8)

Using (5.8), we can calculate the non-zero components of its curvature tensor with respect to the Schouten-van
Kampen connection as follows:

* 2 2 * 2 2
R(er,ea)er = (a” +25%)es, R(er,ex)es = —(a” +25%)eq, (5.9)
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From (5.9), we see that the non-zero components of the Ricci tensor with respect to the Schouten-van Kampen

connection as follows:
*

*
Ric(e1,e1) = —(a® +2B8%), Ric(ea,e2) = —(a® +25%).
For any X,Y € x(M), we write

X = aie; +azez + ases,
Y = b1€1 + b262 + b363.
Then we have
* 2 2
(Leg)(X,Y) + 2Ric(X,Y) + 2p9(X,Y) +20n(X)n(Y) = —(a”+28° + paibs
+(—a? = 28% = p)asbs
+(p —+ 0)(131)3.

If p = —a? — 2% and o0 = a? + 22, then M admits an n-Ricci soliton (¢, p, o, g)with respect to the Schouten-van
Kampen connection.
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