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APPROXIMATION BY SAMPLING TYPE DISCRETE
OPERATORS

İSMAIL ASLAN

Abstract. In this paper, we deal with discrete operators of sampling type.
It is known that this type of operators are related to generalized sampling
series and they have important applications. In this work, using bounded
and uniformly continuous functions we get general estimations under usual
supremum norm with the help of summability method. We also study the
degree of approximation with respect to suitable Lipschitz class of continuous
functions. Finally, we give specific kernels which verify our kernel assumptions.

1. Introduction

Sampling type discrete operators have significant applications in speech process-
ing, medicine, economic forecasting, geophysics and etc. (see [2, 11, 12, 13, 14, 15,
16, 25]). In this paper, we mainly inspired from the paper [1], where Angeloni and
Vinti had some convergence results using discrete operators. The authors utilized
from convergence in ϕ-variation to get some convergence results in that work. Now,
our aim is to get some approximations under usual supremum norm by generalizing
them using Bell-type summability method. In this process, we use bounded and
uniformly continuous functions on R. Furthermore, we study the rate of approx-
imation for our main theorem using suitable Lipschitz class. Then, taking some
appropriate kernels we also get more general case of generalized sampling series.
Finally, we illustrate the kernels lk,w which satisfy our kernel assumptions.
Some notations and definitions are given below.

• ‖·‖l1 denotes the l1 norm, i.e., for a given uk : Z→ R, ‖uk‖l1 =
∑
k∈Z |uk| .

• By ‖·‖ , we mean the usual supremum norm on R.
• The space of bounded and uniformly continuous functions on R is shown
by BUC (R).

• Let A = {Aυ}υ∈N = {[aυnw]}υ∈N (n,w ∈ N) be a family of infinite matrices
of real or complex numbers. Then, for a given sequence x = (xk) the
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following double sequence (Ax)
υ
n

(Ax)
υ
n :=

{ ∞∑
w=1

aυnwxw

}
(n, υ ∈ N)

is called by A-transform of x, if the series is convergent for all n, υ ∈ N.
Moreover, if

lim
n→∞

∞∑
w=1

aυnwxw = L uniformly in υ

holds, we call “x is A-summable to L”and denote by
A− limx = L

(see [9]).
• A is called regular if for any limk xk = L implies that A−limx = L ([9, 10]).
• A characterization for the regularity of the given method A is found by Bell
in [10] such that

A is regular ⇔ · for each w ∈ N, limn→∞ aυnw = 0 (uniformly in υ),

· limn→∞
∞∑
w=1

aυnw = 1 (uniformly in υ),

· for all n, υ ∈ N,
∞∑
w=1
|aυnw| <∞ and there exist integers

N and M such that sup
n≥N,υ∈N

∞∑
w=1
|aυnw| ≤M .

• Throughout the paper, we will assume that A is regular with nonnegative
real entries.

We should note that Bell-type summability method consists many well-known
methods such as Cesàro summability [18], almost convergence [23], order sum-
mability [19, 20] and etc. It also allows us to increase the speed of convergence
[21, 27, 29]. Some applications of Bell-type summability method are given in
[3, 4, 5, 6, 7, 8, 17, 22, 24, 28].
Now, we can define our operator as follows:

Tn,υ (f ;x) =
∞∑
w=1

aυnw
∑
k∈Z

f
(
x− k

w

)
lk,w (x∈R, n, υ ∈ N) (1.1)

where f : R→ R is bounded and lk,w ∈ l1 (Z) is a family of discrete kernels for all
w ∈ N.
Our aim is to prove the following general convergence result

lim
n→∞

‖Tn,υ (f)− f‖ = 0 (uniformly in υ ∈ N)

for all f ∈ BUC (R) . It is not hard to see that operator (1.1) coincides with the
following operator

Tw (f ;x) =
∑
k∈Z

f
(
x− k

w

)
lk,w
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when A = {Aυ} = {I} (identity matrix). Furthermore, we will indicate that oper-
ator (1.1) contains the A-transform of generalized sampling series, defined by

Sn,υ (f ;x) =
∞∑
w=1

aυnw
∑
k∈Z

f
(
k
w

)
χ (wx−k) (x∈R, n, υ ∈ N) (1.2)

where f, χ : R→ R and generalized sampling series

Sw (f ;x) =
∑
k∈Z

f
(
k
w

)
χ (wx− k)

is a special case of (1.2).

2. Approximation in Usual Supremum Norm

In this section, we will prove our main approximation theorem. For this, we need
the following conditions on the kernel of the corresponding operator.

(l1) There exists a constant A > 0 such that sup
n,υ∈N

∞∑
w=1

aυnw ‖ lk,w‖l1 = A <∞,

(l2) A− lim

(∑
k∈Z

lk,w

)
= 1,

(l3) there exists r > 0 such that A− lim

( ∑
|k|≥r

|lk,w|
)

= 0.

Here, when A is taken the identity matrix, conditions (l1) − (l3) reduce to the
approximate identities given in [1].
The following lemma shows that (1.1) is well defined for all bounded functions.

Lemma 2.1. If f is bounded on R and (l1) holds, then ‖Tn,υ (f)‖ < ∞ for every
n, υ ∈ N. Moreover, if f ∈ L1 (R) , then Tn,υ (f) ∈ L1 (R) .

Proof. Since f is bounded, there exists a positive number M such that |f (x)| ≤M
for all x ∈ R. Considering this with (l1) , we get

|Tn,υ (f ;x)| ≤
∞∑
w=1

aυnw
∑
k∈Z

∣∣f (x− k
w

)∣∣ |lk,w|
≤MA

and having supremum over x∈R, we have

‖Tn,υ (f)‖ ≤MA <∞

for all n, υ ∈ N, which shows that Tn,υ maps from the space of bounded functions
into itself.
For the second part of the theorem, assume that f ∈ L1 (R) . Then, it is possible

to write that ∫
R
|Tn,υ (f ;x)| dx≤

∫
R

∞∑
w=1

aυnw
∑
k∈Z
|lk,w|

∣∣f (x− k
w

)∣∣ dx
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and from a theorem of integration by series (see [26]),∫
R
|Tn,υ (f ;x)| dx≤

∞∑
w=1

aυnw
∑
k∈Z
|lk,w|

∥∥f (· − k
w

)∥∥
L1

holds for all n, υ ∈ N. Since
∥∥f (· − k

w

)∥∥
L1

= ‖f‖L1 , then∫
R
|Tn,υ (f ;x)| dx ≤ ‖f‖L1

∞∑
w=1

aυnw
∑
k∈Z
|lk,w|

≤ A ‖f‖L1

is obtained, where ‖f‖L1 is the classical L1 norm, i.e., ‖f‖L1 =
∫
R
|f (x)| dx. �

Lemma 2.2. Assume that (l1) holds. If f ∈ BUC (R) , then Tn,υ (f) ∈ BUC (R)
for all n, υ ∈ N.

Proof. By the previous lemma it is clear that if f is bounded, then Tn,υ (f) is too.
Now, let ε > 0 be given and let |x− y| < δ where δ corresponds to given ε and f.
Then,

|Tn,υ (f ;x)− Tn,υ (f ; y)| ≤
∞∑
w=1

aυnw
∑
k∈Z
|lk,w|

∣∣f (x− k
w

)
− f

(
y − k

w

)∣∣
holds. Since

∣∣x− k
w −

(
y − k

w

)∣∣ = |x− y| < δ, from (l1)

|Tn,υ (f ;x)− Tn,υ (f ; y)| ≤ Aε

for all n, υ ∈ N. �

The main approximation theorem is given below.

Theorem 2.3. Assume that (l1)− (l3) hold. Then, for all f ∈ BUC (R) we have

lim
n→∞

‖Tn,υ (f)− f‖ = 0 uniformly in υ.

Proof. From triangle inequality, it is possible to write that

|Tn,υ (f ;x)− f (x)| =
∣∣∣∣ ∞∑
w=1

aυnw
∑
k∈Z

lk,w
(
f
(
x− k

w

)
− f (x)

)
+f (x)

( ∞∑
w=1

aυnw
∑
k∈Z

lk,w − 1

)∣∣∣∣
≤
∞∑
w=1

aυnw
∑
k∈Z
|lk,w|

∥∥f (· − k
w

)
− f (·)

∥∥
+ ‖f‖

∣∣∣∣ ∞∑
w=1

aυnw
∑
k∈Z

lk,w − 1

∣∣∣∣
:= A1 +A2
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holds. In A1, we concentrate on the continuity of f. Since f is uniformly continuous,
for every ε > 0 we can find a δ > 0 such that

|f (x)− f (y)| < ε (2.1)

whenever |x−y| < δ. Then, for a fixed r̄ it is easy to find a number w1 satisfying∣∣ r̄
w

∣∣ < δ

for all w > w1.Now, if we divide A1 as follows

A1 =
w1∑
w=1

aυnw
∑
|k|<r̄

|lk,w|
∥∥f (· − k

w

)
− f (·)

∥∥
+

∞∑
w=w1+1

aυnw
∑
|k|<r̄

|lk,w|
∥∥f (· − k

w

)
− f (·)

∥∥
+
∞∑
w=1

aυnw
∑
|k|≥r̄

|lk,w|
∥∥f (· − k

w

)
− f (·)

∥∥
:= A1

1 +A2
1 +A3

1

from (2.1) and (l1)
A2

1 ≤ Aε
holds, since

∣∣x− k
w − x

∣∣ =
∣∣ k
w

∣∣ < r̄
w < δ.

For A1
1, from the regularity of A, one can find a number n1 = n1 (ε) such that

A1
1 < D′w1ε

where D′ := max1≤w≤w1

{∑
|k|<r̄ |lk,w|

∥∥f (· − k
w

)
− f (·)

∥∥} . And from (l3) , we see

that
A3

1 < 2 ‖f‖ ε
for suffi ciently large n ∈ N.
Finally, it follows from (l2)

A2 < ‖f‖ ε
yields for suffi ciently large n ∈ N. Hence, having supremum over x∈R in the first
inequality, we complete the proof. �

3. Rate of Convergence

In this section we investigate the rate of approximation, and therefore we need
the following Lipschitz class.
For any given α > 0, define Lip (α) as follows:

Lip (α) = {f ∈ BUC (R) : ‖f (· − t)− f (·)‖ = O (|t|α) as t→ 0}
where f (t) = O (g (t)) as t→ 0 means that, there exist δ,N > 0 such that |f (t)| ≤
N |g (t)| for |t| < δ. Let Ψ be family of all functions ξ : R+

0 → R+
0 , such that

ξ (0) = 0, ξ (t) > 0 for t > 0 and ξ be continuous at t = 0. Now, for any fixed α > 0
and ξ ∈ Ψ, consider the following conditions:
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( ∞∑
w=1

aυnw
∑
k∈Z

lk,w − 1

)
= O (ξ (1/n)) as n→∞ (uniformly in υ), (3.1)

there exists a constant r0 > 0 such that

∞∑
w=1

aυnw
∑
|k|<r0

|lk,w|
wα

= O (ξ (1/n)) as n→∞ (uniformly in υ), (3.2)

∞∑
w=1

aυnw
∑
|k|≥r0

|lk,w| = O (ξ (1/n)) as n→∞ (uniformly in υ) (3.3)

and for a given A = {[aυnw]}υ∈N
for each w ∈ N, aυnw = O (ξ (1/n)) as n→∞ (uniformly in υ). (3.4)

We obtain the following rates of approximations.

Theorem 3.1. Suppose that for any fixed ξ ∈ Ψ and α > 0, (3.1)-(3.4) and (l1)
hold. Then, for all f ∈ Lip (α)

‖Tn,υ (f)− f‖ = O (ξ (1/n)) as n→∞ (uniformly in υ).

Proof. From the proof of Theorem 2.3, we observe that

‖Tn,υ (f)− f‖ ≤
∞∑
w=1

aυnw
∑
k∈Z
|lk,w|

∥∥f (· − k
w

)
− f (·)

∥∥
+ ‖f‖

∣∣∣∣ ∞∑
w=1

aυnw
∑
k∈Z

lk,w − 1

∣∣∣∣
:= B1 +B2

holds. In B1 for some fixed r0 > 0, we can find a number w2 such that for all
w > w2,

∣∣x− k
w − x

∣∣ =
∣∣ k
w

∣∣ < r0
w < δ and since f ∈ Lip (α) , there exists a constant

N > 0 such that ∥∥f (· − k
w

)
− f (·)

∥∥ ≤ N ∣∣ kw ∣∣α
hold. Then, we get

B1 =
w2∑
w=1

aυnw
∑
|k|<r0

|lk,w|
∥∥f (· − k

w

)
− f (·)

∥∥
+

∞∑
w=w2+1

aυnw
∑
|k|<r0

|lk,w|
∥∥f (· − k

w

)
− f (·)

∥∥
+
∞∑
w=1

aυnw
∑
|k|≥r0

|lk,w|
∥∥f (· − k

w

)
− f (·)

∥∥
≤ D′′w2 max

1≤w≤w2
aυnw

+N
∞∑

w=w2+1
aυnw

∑
|k|<r0

|lk,w|
(
r0
w

)α
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+ 2 ‖f‖
∞∑
w=1

aυnw
∑
|k|≥r0

|lk,w|

:= B1
1 +B2

1 +B3
1

where D′′ := max1≤w≤w2

{∑
|k|<r0 |lk,w|

∥∥f (· − k
w

)
− f (·)

∥∥} . From (3.4), (3.2)

and (3.3) it is clear that

B1
1 , B

2
1 , B

3
1 = O (ξ (1/n)) as n→∞ (uniformly in υ),

yields.
Finally, from (3.1) we conclude that

B2 = O (ξ (1/n)) as n→∞ (uniformly in υ).

�
Notice that, it is possible to find regular methods such that (3.4) is satisfied,

for instance, {C1} (Cesàro Matrix) and F (almost convergence matrix) which are
given in Corollary 4.3.

4. Conclusions and Applications

In the present section, we give some applications of the operators of type (1.1).
Let f : R → R be given, and suppose that lk,w ≡ χ (k) , that is, lk,w is not

depending on w where χ : R→ R. Then, (1.1) reduces to

T̄n,υ (f ;x) =
∞∑
w=1

aυnw
∑
k∈Z

f
(
x− k

w

)
χ (k) , x∈R

which is in some cases equal to A−transform of generalized sampling series, namely

Sn,υ (f ;x) =
∞∑
w=1

aυnw
∑
k∈Z

f
(
k
w

)
χ (wx−k) , x∈R.

In this case (l1) and (l2) coincide with the following assumptions
(l′1) χ ∈ l1 (Z)
(l′2)

∑
k∈Z

χ (k) = 1

where on the other hand, (l3) is clearly not satisfied. But these two conditions are
still enough to verify the following approximations (see also [1]).

Theorem 4.1. Let f ∈ BUC (R) . If (l′1), (l′2) hold, then

lim
n→∞

∥∥T̄n,υ (f)− f
∥∥ = 0 (uniformly in υ ∈ N).

Proof. Considering (l′2) , by the proof of the Theorem 2.3, we obtain the following
inequalities∥∥T̄n,υ (f)− f

∥∥ ≤ ∞∑
w=1

aυnw
∑
k∈Z
|χ (k)|

∥∥f (· − k
w

)
− f (·)

∥∥+ ‖f‖
∣∣∣∣∣
∞∑
w=1

aυnw − 1

∣∣∣∣∣ .
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Since
∑
k∈Z
|χ (k)| <∞ from (l′1) , for all ε > 0 there exists a number r̆ > 0 such that

∑
|k|≥r̆

|χ (k)| < ε

and hence, for suffi ciently large n ∈ N
∞∑
w=1

aυnw
∑
|k|≥r̆

|χ (k)|
∥∥f (· − k

w

)
− f (·)

∥∥ < 2 ‖f‖
∞∑
w=1

aυnwε

≤ 2M ‖f‖ ε

holds where M comes from the regularity of A. In a similar way with the proof of
Theorem 2.3, it is possible to show

∞∑
w=1

aυnw
∑
|k|<r̆

|χ (k)|
∥∥f (· − k

w

)
− f (·)

∥∥ < ε
(
D̄w̄1 + ĀM

)
for suffi ciently large n ∈ N, where D̄ := max1≤w≤w̄1

{∑
|k|<r̆ |χ (k)|

∥∥f (· − k
w

)
− f (·)

∥∥} .
Finally, by the regularity of A

‖f‖
∣∣∣∣ ∞∑
w=1

aυnw − 1

∣∣∣∣ < ‖f‖ ε
for suffi ciently large n ∈ N. Since ε is arbitrary, the proof is completed. �

Although T̄ and S are similar, they are different in general. However, in some
cases, they coincide (see [1]).

Corollary 4.2. Let f ∈ B1
πw (R) (the Paley-Wiener Space B1

πw (R) =
{
f ∈ L1 (R) :

|f (z)| ≤ exp (πw |z|) ‖f‖ for every z ∈ C}) for some w > 0 and χ ∈ B∞π (R). If
(l′1) and (l′2) hold, then

lim
n→∞

‖Sn,υ (f)− f‖ = 0 (uniformly in υ ∈ N).

Proof. It is proved in [1] thatB1
πw (R) ⊂ Lip (R) , and therefore bounded elements of

B1
πw (R) are also elements of BUC (R) . On the other hand, using similar arguments

in Lemma 4.2 in [1] we get

Sn,υ (f) = T̄n,υ (f)

for all n, υ ∈ N and f ∈ B1
πw (R) . Consequently, by the Theorem 4.1, the proof

completes. �

Remark 4.1. It may clearly be seen that, Corollary 4.2 holds for f ∈ Bpπw (R)
where 1 ≤ p ≤ 2. In this case, we need to assume χ ∈ Bqπ (R) to apply Lemma 4.2
in [1] where 1/p + 1/q = 1. For some examples of χ which satisfy χ ∈ B∞π (R),
(l′1) and (l′2) , we refer to Example 4.5 in [1].
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It is clear that operator (1.1) can be written as

Tn,υ (f ;x) =
∞∑
w=1

aυnwTw (f ;x) (4.1)

where Tw is given by

Tw (f ;x) =
∑
k∈Z

f
(
x− k

w

)
lk,w (x∈R, w ∈ N) . (4.2)

Considering (4.1) and (4.2), we get the following corollary.

Corollary 4.3. Taking specific regular matrices, we observe the following estima-
tions:

• Assume that A = F = {F υ} = {[aυnw]} where aυnw = 1/n if υ ≤ w ≤
n + υ − 1; aυnw = 0 if otherwise. Assume further that (l1) − (l3) hold for
A = F (almost convergence matrix). Then, for all f ∈ BUC (R) ,

lim
n→∞

∥∥∥∥Tυ (f) + Tυ+1 (f) + · · ·+ Tn+υ−1 (f)

n
− f

∥∥∥∥ = 0 (uniformly in υ)

i.e., Tn (f) is almost convergent to f,
• Assume that A = {C1} = {[cnw]} where cnw = 1/n if 1 ≤ w ≤ n; cnw = 0
if otherwise. Assume further that (l1) − (l3) hold for A = {C1} (Cesàro
matrix). Then, for all f ∈ BUC (R) ,

lim
n→∞

∥∥∥∥T1 (f) + T2 (f) + · · ·+ Tn (f)

n
− f

∥∥∥∥ = 0

i.e., Tn (f) is arithmetic mean convergent to f,
• Suppose that A = {I} and (l1)− (l3) hold. Then, for all f ∈ BUC (R) ,

lim
n→∞

‖Tn (f)− f‖ = 0

i.e., Tn (f) is uniformly convergent to f, where Tn (f) is given in (4.2).

Similar corollaries also hold for generalized sampling series

Sw (f ;x) =
∑
k∈Z

f
(
k
w

)
χ (wx−k) .

Now, we will give a specific kernel of lk,w, which satisfies (l1)− (l3) respectively.
Take A = {C1} , and then define lk,w as follows:

lk,w =
(−1)

w
+ 1

2w(|k|)

(
2w − 1

2w + 1

)
.

It is easy to see that (l1) and (l2) are satisfied from the following calculations:

sup
n∈N

n∑
w=1

1

n

∑
k∈Z
|lk,w| ≤ sup

n∈N

n∑
w=1

1

n

∑
k∈Z

2

2w|k|
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= sup
n∈N

n∑
w=1

2

n

(
2w + 1

2w − 1

)
≤ sup
n∈N

n∑
w=1

6

n

= 6

and since lk,w > 0, from the previous statement

lim
n→∞

∣∣∣∣ n∑
w=1

1

n

∑
k∈Z

lk,w − 1

∣∣∣∣ ≤ lim
n→∞

∣∣∣∣ n∑
w=1

(−1)
w

n

∣∣∣∣ = 0.

On the other hand, for (l3) , for any integer r ≥ 1, we get
n∑

w=1

1

n

∑
|k|≥r

|lk,w| =
n∑

w=1

1

n

(
(−1)

w
+ 1

2w + 1

)
2w+1

2wr

where

lim
w→∞

(
(−1)

w
+ 1

2w + 1

)
2w+1

2wr
= 0. (4.3)

Then, since (4.3) is convergent to 0, its arithmetic mean is too, namely,

lim
n→∞

n∑
w=1

1

n

(
(−1)

w
+ 1

2w + 1

)
2w+1

2wr
= 0,

which implies (l3). For the behaviour of lk,w , see Figure 1 (k = 0, · · · , 5 and
w = 1, · · · , 6) which is symmetric for k. But in the classical sense, lk,w does not

Figure 1. The kernel function lk,w

satisfy the condition of (A1) since∣∣∣∣∑
k∈Z

lk,w − 1

∣∣∣∣ = (−1)
w

+ 1

is divergent. Therefore, our approximation is not trivial.
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