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Abstract: So far, isomorphism theorems in hyperstructure were proved for different structures of polygroups, hyperrings and etc. In
this paper, the polygroups properties is studied with the introduction of a suitable equivalence relation. We show that the above relation
is strongly regular. Our main purpose in the paper is investigating Lagrang theorem and other expressing of isomorphism theorems for
polygroups.
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1 Introduction

The theory of algebraic hyperstructures which is a generalization of ordinary algebraic structures was first introduced by

Marty [9]. Since then, many researchers have studied the theory of hyperstructures and developed it. Moreover, the

applications of this theory in other fields such as geometry, graphs and hypergraphs, lattices, automata, cryptography,

codes, etc has been extensively studied, see ([1], [2], [3], [4], [10]).

Lagrange theorem, Isomorphism theorem and essential theorem of group products are some of the most important items

in ordinary groups theory. The results of Lagrang theorem are applied in different parts of groups theory specially sylow

and free abelian groups. In [6], Davvaz introduced some relations in polygroups specially the follow relation on

polygroup H. Let N be a normal subpolygroup of polygroup H, then

a ≡ b(modN)⇐⇒ ab−1 ∩N ̸= /0.

The above relation can be employed for investigation of isomorphism theorem with similar define for kernel of

homomorphism about polygroups.

In the first part we will express the necessary topics for using in the main part of paper. In the Main Result part we wil

obtain Lagrange theorem for hypergroups. For this we use a suitable equivalence relation on a normal subpolygroup from

a polygroup. Finally we will prove isomorphism theorem of polygroups based on fundamental relation on a polygroup.

2 Priliminaries

Every · : H ×H −→ P∗(H) is called a hyperoperation or join operation. (H, ·) is called hypergroupoid and a hypergroup

is a structure (H, ·) that satisfies two axioms:
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– (semihypergroup) a(bc) = (ab)c for all a,b,c ∈ H,

– (quasihypergroup) aH = H = Ha for all a ∈ H.

Let H be a hypergroup and K a nonempty subset of H. Then K is a subhypergroup of H if itself is a hypergroup under

hyperoperation restricted to K. Hence it is clear that a subset K of H is a subhypergroup if and only if aK = Ka = K,

under the hyperoperation on H (See [5]).

A hypergroup is called a polygroup if

1. There exist e ∈ H such that ex = x = xe for all x ∈ H,

2. for all x ∈ H there exists an unique element, say x
′ ∈ H such that e ∈ xx

′ ∩ x
′
x (we denote x

′
by x−1),

3. for all x,y,z ∈ H,z ∈ xy =⇒ x ∈ zy−1 =⇒ y ∈ x−1z.

A nonempty subset N of a polygroup (H, ·) is called a subpolygroup if (N, ·) is itself a polygroup. In this case we write

N <p H. A subpolygroup N is called normal in H if xNx−1 ⊆ N, for all x ∈ H. In this case we write N Ep H.

Lemma 1. [11] Let N <p H. Then

1. for all n ∈ N, Nn = nN = N,

2. NN = N,

3. (a−1)−1 = a.

Let (H, ·) Be a semihypergroup and R be an equivalence relation on H. If A and B are nonempty subsets of H, then

– ARB means that for all a ∈ A there exist b ∈ B such that aRb and for all b
′ ∈ B there exist a

′ ∈ Asuch that a
′
Rb

′
;

– ARB means that for all a ∈ Aand b ∈ B we have aRb.

Definition 1. [7] The equivalence relation R is called

1. Regular, if for all x of H, from aRb, it follows that (ax)R(bx) and (xa)R(xb);

2. Strongly regular, if for all x of H, from aRb, it follows that (ax)R(bx) and (xa)R(xb).

Proposition 1. [7] If (H, ·) is a hypergroup and R is an equivalence relation on H, then R is rgular if and only if (H/R,⊗)

is a hypergroup such that x⊗ y = {z|z ∈ xy} for all x,y ∈ H/R.

Definition 2. [7] Let (H, ·) be a semihypergroup and n be a nonzero natural number. We say that

xβn if there exists a1,a2, · · · ,an in H, such that {x,y} ⊆ ∏n
i=1 ai.

Let β =
∪

n≥1 βn. Clearly, the relation β is reflexive and symmetric. Denote by β ∗ is transitive closure of β .

Proposition 2. [7] β ∗ is the smallest strongly regular relation on H.

Definition 3. [8] Let (H1, ·)and(H2,∗) be two hypergroupoids. A map f : H1 −→ H2, is called

1. a homomorphism if for all x,y of H, we have f (xy)⊆ f (x)∗ f (y);

2. a good homomorphism if for all x,y of H, we have f (xy) = f (x)∗ f (y).

Definition 4. [7] Let (H, ·) is a hypergroup and consider canonical projection φH : H −→ H/β ∗. The heart of H is the set

ωH = {x ∈ H|φH(x) = e}, where e is the identity of the group (H/β ∗,⊗).
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Lemma 2. citeDB1 If (H, ·) is a hypergroup, then the relation β is an equivalence relation on H.

Definition 5. Let H, H
′
be hypergroups and let f : H −→ H

′
be a homomorphism. The kernel of f is the set K( f ) = {x ∈

H| f (x) ∈ ωH ′ }.

We define image of f , the set im( f ) = { f (x) ∈ H
′
/β ∗|x ∈ H}.

Lemma 3. [7] The kernel K( f ) of a hypergroup homomorphism f : H −→ H
′

is a normal subhypergroup of H.

3 Main Result

Let N be a subpolygroup of polygroup H. We define the follow relation on H:

a ∼N b ⇐⇒ ab−1 ⊆ N for all a,b ∈ H. (1)

Proposition 3. If N Ep H, then ∼N is an equivalence relation.

Proof. Let N Ep H, then for all x ∈ H we have,

xx−1 ⊆ xex−1 ⊆ xNx−1 ⊆ N.

Therefore x ∼N x, so ∼N is reflexive. The relation ∼N is symmetric because for all x,y ∈ H, if x ∼N then xy−1 ⊆ N. Since

xy−1 ̸= /0, there exist n ∈ N such that n ∈ xy−1. Therefore at definition of polygroup, y ∈ n−1x, so yx−1 ⊆ n−1xx−1 ⊆ N.

Hence y ∼N x. For all x,y,z ∈ H, if x ∼N y and y ∼N z, then xy−1 ⊆ N and yz−1 ⊆ N. We have

xz−1 ⊆ xez−1 ⊆ xy−1yz ⊆ xy−1yz ⊆ N.

Hence x ∼N z. This show ∼N is transitive relation.

If we define relation N ∼ on H as aN ∼ b ⇐⇒ a−1b ⊆ N for all a,b ∈ H, then the above proposition is correct too.

Theorem 1. Let x,y ∈ H and N Ep H, then Nx = Ny if and only if x ∼N y. similarly xN = yN if and only if xN ∼ y.

Proof. Let for N Ep H, Nx = Ny. Then x ∈ Ny and so there exist n ∈ N such that x ∈ ny. This show xy−1 ⊆ N.

If xy−1 ⊆ N, x ∈ xy−1y ⊆ Ny. Therefore there exist n ∈ N that x ∈ ny. Hence y ∈ n−1x. The proof is completed.

Corollary 1. Let N be a normal subpolygroup of H, then

1. H is union of right (left) cosets N in H.

2. Two right(left) cosets N in H are either disjoint or equal.

Proof. The proof consequence of theorem.

Corollary 2. The relation ∼N is strongly regular.

Proof. If for some a,b ∈ H, a ∼N b. Then let n ∈ ab−1, so a ∈ nb. Now we choose x ∈ H arbitrary. Let y ∈ ax and z ∈ bx.

We have y ∈ nbx and b ∈ zx−1 that it conclude b−1y ⊆ Nx and z−1b ⊆ Nx−1. Then

yz−1 ⊆ (bb−1)yz−1(bb−1)⊆ b(b−1yz−1b)b−1 ⊆ b(NxNx−1)b−1 ⊆ bNb−1 ⊆ N.

Therefore y ∼N z. This show ax∼Nbx. Similarly, we can show, for all x ∈ H, if a ∼N b then xa∼Nxb.
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Corollary 3. The relation β is inclusive in ∼N .

Proof. It is clear by 2 and 2.

Definition 6. Let N be a normal subpolygroup of a polygroup H. The index of N in H, denoted [H : N]p, is the cardinal

number of the set of distinct right (resp, left) coset of N in H.

Theorem 2. Let M,N are two normal subpolygroups of H, with M <p N. Then [H : M]p = [H : N]p[N : M]p. If any two

of these indices are finite, then so is the third.

Proof. By corollary 1, H =
∪

i∈I Nai with ai ∈ G, |I|= [H : N]p and the cosets Nai mutally disjoint (that is, Nai = Na j ⇐⇒
i = j). Similarly N =

∪
j∈J Mb j with b j ∈ N, |J| = [N : M]p and the cosets Mb j are mutually disjoint. Therefore H =∪

i∈I Nai =
∪

i∈I(
∪

j∈J Mb j)ai =
∪

(i, j)∈I×J Mb jMai. It suffices to show that the cosets Mb jai are mutually disjoint. For

then by corollary we must have [H : M]p = |I × J|, whence [H : M]p = |I × J|= |I||J|= [H : N]p[N : M]p. (Hungerford)

Let Mb jai = Mbrat , then b jai ⊆ Mbrat , so there exist m ∈ M that b jai = mbrat . Since m,br,b j ∈ N, for all n ∈ N,

nb jai ⊆ Nai and nb jai ⊆ nmbrat ⊆ Nat . We have Nai ∩Nat ̸= /0, hence Nai = Nat and i = t. In other hand, for all m
′ ∈ M,

there exist m
′′ ∈ M such that

m
′
b j ⊆ m

′′
braia−1

i ⊆ m
′′
brM ⊆ m

′′
Mbr ⊆ Mbr

Since, m
′
b j ̸= /0, Mb j ∩Mbr ̸= /0. Thus Mb j = Mbr and r = j. Therefore, the cosets Mb jai are mutually disjoint. The last

statement of the theorem is obvious.

Corollary 4. (Lagrange Theorem for polygroups) If N is a normal subpolygroup of a polygroup H, then |H|= [H : N]p|N|.
In particular if H is finite, the oreder of each normal subpolygroup, divides |H|.

Proof. Apply the theorem 2 with M =< e > for the first statement. The second is clear.

Theorem 3. Let N is a normal subpolygroup of H and H/N the set of all cosets N in H, then H/N is a polygroup with

order [H : N]p by hyper operation (Na)(Nb) = {nz|z ∈ ab}.

Proof. Hypergroupoid H/N with the above hyperooperation is semihypergroup, because for all, Na,Nb,Nc ∈ H/N, we

have

(Na)(Nb)Nc =
∪

z∈ab

NzNC =
∪

w∈(ab)c

Nw =
∪

w∈a(bc)

Nw =
∪

z∈bc

NaNz = Na(NbNc).

The following conditions are satisfied:

– For all Na ∈ H/N, there exist unique element Ne, such that NaNe = Na = NeNa;

– For all Na ∈ H/N, there exist unique element Na−1, such that Ne ∈ NaNa−1 ∩Na−1Na.

For all Na,Nb,Nc ∈ H/N we have

Na ∈ NbNc ⇒ a ∈ bc ⇒ b ∈ ac−1 ⇒ Nb ∈ NaNc−1,c ∈ b−1a ⇒ Nc ∈ Nb−1Na.

H/N is a quasihypergroup, because for all Na,Nb ∈ H/N, Na ∈ NbNb−1Na∩Nab−1Nb.

The above conditions show that H/N is polygroup.
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Theorem 4. (First isomorphism theorem) Let f : G −→ H be a good homomorphism on polygroups, then f induces

isomorphism G/ker( f )∼= im( f ) on polygroups.

Proof. Let K = ker( f ). We define φ : G/K −→ im( f ) as φ(Kx) = f (x). φ is well-define, because for all x,y ∈ G, Kx = Ky,

that is xy−1 ⊆ K. Then for z ∈ xy−1, we have f (z)βe and x ∈ zy. Since f is good homomorphism, f (x)∈ f (zy) = f (z) f (y).

We cocclude f (x)β f (y). For all Kx,Ky ∈ G/K, we have

φ(KxKy) = φ({Kz|z ∈ xy}) = { f (z)|z ∈ xy}= f (xy) = f (x) f (y) = φ(Kx)φ(Ky).

φ is injective, because if φ(Kx) = φ(Ky), then f (x)β f (y). By , f (xy−1)β f (e). This show for all α ∈ xy−1, f (α)β f (e).

Hence α ∈ K and xy−1 ⊆ K. Thus Kx = Ky. It is clear that φ be onto.

Corollary 5. Let N,M subpolygroup of polygroup H, that N Ep H. Then

1. MN is a polygroup.

2. N ∩M is normal subpolygroup of M.

3. N is normal subpolygroup of NM.

4. (Second isomorphism theorem) M/M∩N ∼= NM/N.

Proof. (1) Let x,y ∈ MN. Then, there exist m1,m2 ∈ M, n1,n2 ∈ N such that x ∈ m1n1 and y ∈ m2n2. Thus xy ⊆ m1n1m2n2.

Since N Ep H, there is n
′
1 ∈ N that n1m2 = m2n

′
1. This show xy ∈ P∗(MN).

For all x ∈ MN, there exist eH ∈ MN, such that eHx = x = xeH .

For all x ∈ MN, there are m ∈ M, n ∈ N, such that x ∈ mn. Therefore n−1 ∈ x−1m, so x−1 ∈ n−1m−1. By normality N in

H, x−1 ∈ MN. Other conditions of polygroup is induced from H.

(2) It is straight forward.

(3) For all n ∈ N and x ∈ NM, there exist n
′ ∈ N, m ∈ M such that x ∈ n

′
m. So x−1 ∈ m−1(n

′
)−1 and we have

xnx−1 ⊆ (n
′
m)n(m−1(n

′
)−1) = n

′
(mnm−1)(n

′
)−1 ⊆ N.

(4) We define φ : M −→ NM/N with φ(m) = Nm. It is clear that, φ is well-define and epimorphism.

Show ker(φ) = M∩N.

If m ∈ ker(φ), φ(m) = Nm ∈ ωNM/N , so NmβN. By 2 Nm ∼<eNM/N> N, thus Nm = NmN ⊆ N. Hence m ∈ M ∩N.

Vice-versa if m ∈ M∩N, then

φ(m) = Nm = N = φ(e) ∈ ωNM/N .

Thus m ∈ ker(φ). This complete the proof by first isomorphism theorem.

Corollary 6. (Third isomorphism theorem) Let H be a polygroup and N,M two normal subpolygroups, such that M <p N,

then N/MEp H/M and
H/M
N/M

∼= H/N

Proof. Let Mx be an arbitrary of H/M. Then for all Mn ∈ N/M we have

MxMn = {Mz|z ∈ xn}= {Mz|z ∈ n
′
x}= Mn

′
Mx.

This show that N/MEp H/M.
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We define φ : H/M −→ H/N with φ(Mx) = Nx for all Mx ∈ H/M. Easily, it can be showed as φ is a epimorphism. It

sufficient to show, ker(φ) = N/M.

Let Mx ∈ ker(φ), then NxβN. By 2, Nx ∼<eH/N> N, so Nx = NxN ⊆ N. This show x ∈ N. Vice-versa, let Mn ∈ N/M,

then we have

φ(Mn) = Nn = N = φ(M) ∈ ωH/N .

Thus Mn ∈ ker(φ). This complete the proof.
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