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Abstract 

Several atomic radius concepts were proposed to express size of atoms in chemistry and 

physics. This study briefly surveys widely used definitions of atomic radiuses and introduces a 

probabilistic atomic radius concept that is based on the probability measure, which considers 

probability of the outermost electron to be in a spherical volume that is centered by nucleus of a 

hydrogen-like atom. Depending on this probability measure, 99% probabilistic atomic radius is 

calculated for a ground state hydrogen atom and its interpretation for hydrogen-like atomic 

systems is discussed. 

Keywords: Quantum mechanics; Solutions of wave equations; Atomic radius; Bound 

states. 
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Kimya ve Fizik alanında atomların büyüklüğünü ifade etmek için birkaç atom yarıçapı 

kavramı önerilmiştir. Bu çalışmada, atomik yarıçap tanımları incelenmiş, olasılık ölçüsüne 

dayanan ve en dıştaki elektronun hidrojen benzeri bir atomun çekirdeği ile merkezlenmiş küresel 

bir hacimde olma olasılığını dikkate alan olasılıksal bir atomik yarıçap kavramını sunulmuştur. 

Bu olasılık ölçüsüne bağlı olarak, temel durum hidrojen atomu için %99 olasılık ile atomik 

yarıçapı hesaplanmış ve bunun hidrojen benzeri atomik sistemler için yorumlanmıştır. 

Anahtar Kelimeler: Kuantum Mekaniği; Dalga denklemlerinin çözümleri; Atom yarıçapı; 

Bağlı durumlar. 

1. Introduction 

Rutherford–Bohr model, also known as Bohr model, have suggested an atom structure that 

consists of a nucleus and spinning electrons. This model is relatively primitive model of a 

hydrogen atom compared to quantum wave mechanics models of atoms. Based on experimental 

measurements, Bohr atom model suggests that mechanical energy related with energy of atomic 

electrons should be quantized. According to Bohr's model, electron orbiting around nucleus of 

atom can be certain particular states of motion, which is called “stationary states” [1]. In other 

words, the model implies that an electron orbits only at certain distances to nucleus depending on 

energy state of an atom. Such consideration of an atom allows fundamental definition of an atom 

radius with respect to distances of electron orbits to nucleus in space. For single electron atoms 

such as hydrogen, the smallest possible orbit with lowest energy state has an orbital radius, which 

was called Bohr radius. Then, the Bohr radius became an important physical constant associated 

with atomic scales and it is approximately equal to the most probable distance between the nucleus 

and the electron in a hydrogen atom in its ground state. Value of Bohr radius is approximately                                                                    

𝑎! =
"!

#$%!
= 0.0529	𝑛𝑚 ≅ 0.53 𝐴&. An important point for Bohr radius is the fact that it is the 

radial distance to nucleus that has the peak of probability density of an electron [2].  

 The atomic radius is commonly used in chemistry and physics to assign a size for atoms 

in spatial domain, and it is generally considered as distance between the nucleus and the boundary 

of the surrounding cloud of electrons [3]. Experimental value of atomic radius came out in works 

of X-ray crystallography with a question whether the same radii is valid for atoms of the same 

element [4]. More experimental data on crystal structures showed that the same atom in different 

crystal structures could not have the same experimental radii [5].  

There is not unique value of atomic radius parameter because it changes depending on the 

atom’s state and the purpose of measurements or analyses [3]. The main difficulty is that 
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definition of atomic boundary varies depending on the context of analyses. For example, atomic 

radius changes depending on several factors: atoms can be isolated or bounded; type of bounding 

(ionic or covalent) affects atomic boundary considerations and energy states of atoms are effective 

in atom models. Therefore, several non-equivalent definitions of atomic radius are utilized at 

various contexts. For ease of atomic radius calculations, atoms were mainly assumed to have a 

spherical shape and such approximate models are utilized for explanations of several phenomena, 

such as the density of matter, the diffusion of fluids, arrangement of atoms and ions in crystals 

and the size and shape of molecules [6]. Such a spherical confinement of hydrogen atom enables 

investigation of many properties in several studies [7]. A set of empirical atomic radii has been 

proposed and sum of the atomic radii of two atoms forming a bond in a crystal or molecule is 

used for estimation of approximate distance between nucleuses of those two atoms [8]. For other 

atoms and molecules, relationship between atomic radius and chemical properties has been 

investigated. A recent work indicated existence of a linear relationship between the atomic radius 

and deposition potentials for lanthanide metals [9]. Another study considered decoding of atomic 

and ionic radii of transition metals in terms of energy response against changes in electron 

number. Employing charge sensitivity analysis and the electronegativity equalization principle, 

authors have presented an interpretation of the electronic structure transformation (electron-

following/preceding perspectives) into atomic diameters [10].  

This study introduces a probabilistic atomic radius concept, which is based on probability 

of the outermost electrons to be in the spherical volume that is centered by nucleus. Hence, 

probability measure is used to express tendency of the outermost electron in a nucleus centered, 

spherical space volume. Cumulative radial probability density of electron, which is obtained from 

solution of Schrodinger equation for hydrogen atom, is used and the 99% probability of electron 

to be existent in this volume is considered for probabilistic atomic radius definition. It is the case 

that spherical space volume involves 99% of electron cloud, which infers a 99% probability of an 

electron existence in this spherical volume. The 99% probabilistic atomic radius is defined 

arithmetically as the radius of such nucleus centered spherical volume that involves the valance 

electron with a probability of 99%.  

2. Brief Survey of Atomic Radius 

This section summarizes commonly used atomic radius definitions:  

Van der Waals radius is the half of minimum distance between the nuclei of two atoms that 

are not bound to the same molecule [11]. It is widely used to calculate Van der Waals volume of 
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atoms. For hydrogen molecules, value of Van der Waals radii is found 0.12 nm. Neutron 

diffraction experiments can provide an estimate experimental value of Van der Waals radius. 

Ionic radius defines a radius for an ion in ionic crystals. Sum of ionic radiuses is utilized to 

estimate gaps between two adjacent oppositely charged ions [11]. Ions were assumed to be hard 

spherical bodies with ionic radii. The sum of ionic radii is used to estimate the distance between 

cations and anions in a crystal lattice. X-ray crystallography is used to estimate ionic radius of 

ions. Hydrogen ions lose their single electrons and they become a positive charged ion formed 

only by a proton nucleus without any electron. Therefore, ionic radius is not applicable for 

hydrogen ions so that it does not contain a valance electron to form space volume.  

Covalent radius is the radius that is defined for covalently bounded atoms [6]. The length 

of covalent bond is estimated by the sum of covalent radii [11]. For Hydrogen with single bond, 

covalent radius is estimated to be 0.038 nm. X-ray diffraction and rotational spectroscopy are 

used to estimate experimental value of covalent radius. 

Metallic radius is the half distance between the two adjacent metal ions in a metallic 

structure [6]. It is defined for atoms that can be joined by metallic bonds. 

Bohr radius is considered as the most probable distance between the nucleus and the 

electron in a hydrogen atom in its ground state. Value of Bohr radius was given 𝑎! ≅ 0.0529 nm 

and depending on energy states, radius of hydrogen atom is written by	𝑟' = 𝑎&𝑛(, where principle 

quantum number 𝑛 takes 1, 2, 3. Bohr radius of hydrogen atom is considered as a physical constant 

to scale atomic distances [2]. 

Critical cage radius is considered according to binding energy of ground state hydrogen 

atom. A spherical box is assumed to have impenetrable surface and the radius of sphere box 

reduced until binding energy diminishes [12, 13]. A critical value of the sphere radius at which 

the binding energy becomes zero is called critical cage radius [7, 12, 13]. Binding energy of 

ground state of the hydrogen atom is calculated as a function of the sphere radius [13].  For 

hydrogen in ground state, critical cage radius is found about 1.83 𝑎! = 0.097 nm [7].  

Another probabilistic modeling of atom radius was given corresponding to the maximum 

of the radial probability function of the valence electron [14-16]. For a hydrogen-like atom, peak 

of radial probability function is exactly at Bohr radius [14-16]. On the other hand, expected value 

of radial probability function is accounted as atomic radii. For ground state hydrogen atoms, 

expected value is calculated as < 𝑟 >= 1.5𝑎! = 0.0794	nm [2]. 
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3. Volumetric Probability Distribution of a Particle in Quantum Mechanics 

As known, electrons in the hydrogen atom have a spherically symmetric potential, 

therefore, spherical polar coordinates are used for the time independent solution of Schrodinger 

wave equation. Schrodinger equation is generally solved for the hydrogen atoms by separating 

the variables in spherical polar coordinate system as follows [2, 17-19], 

𝜓',*,#"(𝑟, 𝜃, 𝜑) = 𝑅(𝑟)𝑃(𝜃)𝐹(𝜑) (1) 

where, parameters (𝑟,𝜃, 𝜑) are components of polar coordinate. Schrodinger equation is 

generally expressed as [2, 17-19],  

−ℏ(

2𝜇
1

𝑟( 𝑠𝑖𝑛 𝜃
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+
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𝑠𝑖𝑛 𝜃
𝜕(𝜓
𝜕𝜃(

H + 𝑈(𝑟)𝜓(𝑟, 𝜃, 𝜑)

= 𝐸𝜓(𝑟, 𝜃, 𝜑) 
(2) 

where, the potential energy is 𝑈(𝑟) = −𝑒(/4𝜋𝜀!𝑟 and the parameter 𝐸 denotes energy of 

system. The reduced mass is written as 𝜇 = 𝑚%𝑚+/(𝑚% +𝑚+). Solution of this equation is found 

depending on states of principle quantum number (𝑛), orbital quantum number (𝑙), magnetic 

quantum number (𝑚*). 

In quantum mechanics, the maximum of square of wave function shows the most likely 

position where a particle can exist in space [2, 17-19]. Probability of a free particle in a range 𝑥 ∈

[𝑥,, 𝑥(]) is expressed as, 

𝑃(𝑥, ≤ 𝑥 ≤ 𝑥() = U |𝜓(𝑥)|(𝑑𝑥
-!

-!
 (3) 

where, 𝜓(𝑥) is normalized wave function of the particle, which satisfies the condition 

∫ |𝜓(𝑥)|(𝑑𝑥.
/. = 1  to express a probability density function on space. This condition also infers 

that the particle definitely exist in an infinite space. The radial probability density is defined as 

multiplication of the normalized wave function square and a spherical shell volume element 

4𝜋𝑟𝑑𝑟 as, 

𝑑𝑃 = |𝜓(𝑟)|(4𝜋𝑟𝑑𝑟 (4) 

When a finite volume of spherical space element, which is bounded in radial range of 𝑟, ≤

𝑟 ≤ 𝑟(, is considered, volumetric probability density of a particle can be expressed as, 
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𝑃(𝑟, ≤ 𝑟 ≤ 𝑟() = U |𝜓(𝑟)|(4𝜋𝑟𝑑𝑟
0!

0!
 (5) 

where, 𝑟 is the diameter of spherical shell volume. Then, one can express volumetric 

probability density function of the radial distance 𝑟	for a particle that is confined into spherical 

space volume with radius  𝑟 as, 

𝑃(𝑟) = U |𝜓(𝑟)|(4𝜋𝑟𝑑𝑟
0

!
 (6) 

This function expresses cumulative radial density function of a valance electron.  

4. Probabilistic Atom Radius According to Orbiting Electron Probability 

In quantum mechanics, one can mention probability of a particle to exist in space. Since 

atoms are composed of subatomic particles, probabilistic atomic radius is preferable to consider 

a spherical volume of atoms, where all building blocks or elements of an atom exist with a high 

probability in this volume. Even though radial probability density infinitely overlay throughout 

space, a finite space volume can be represented by a probabilistic boundary, which infers a space 

volume with a high probability of containing all elements of Bohr atom model (nucleus and 

electrons). A probability measure of 𝑞 ∈ (0,1) can be used to express such probabilistic 

boundaries or probabilistic confinement of space volumes of an atom. The probability measure 𝑞 

excludes the value of 0 because zero probability infers absence of electrons in space, and it also 

excludes the value of 1, which infers a definite existence of all elements of atom; however, it is 

only possible for infinite (unbounded) space volume with an infinite radius in quantum 

mechanical point of view.  

The 𝑞% probabilistic atomic radius (𝑟1) represents a finite spherical volume around the 

nucleus of atom, which contains the outermost electron with a probability value of 𝑞%. 

Probabilistic atom radius 𝑟1 can be calculated by solving the equation 𝑃(𝑟1) = 𝑞, which can be 

expressed by using cumulative radial density function of orbital electrons as  

U |𝜓(𝑟)|(4𝜋𝑟𝑑𝑟
0#

!
= 𝑞 (7) 

This paper particularly considers 99% probabilistic radius (𝑟!.33) of hydrogen atom and 

presents an analysis for atomic radius and volume in quantum mechanical perspective. In order 

to calculate 99% probabilistic radius, the equation of 𝑃(𝑟!.33) = 0.99 is solved and 𝑟!.33 radius is 
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calculated, numerically. Fig. 1 depicts 𝑟!.33 probabilistic radius of an atom based on electron 

probability. In the spherical volume with 𝑟!.33, valance electron exists with a probability of 99%.  

 

 

 

 

Figure 1: 𝑟!.## probabilistic radius of an atom 

5. Probabilistic Atomic Radius (𝒓𝟎.𝟗𝟗) for Single Electron Hydrogen-like Atoms 

The radial probability density of an electron for ground state hydrogen atom (the quantum 

numbers are 𝑛 = 1, 𝑙 = 0, 𝑚* = 0 for 1s state)  is written by multiplying the square of the 

normalized wave function, given by 

𝜓',*,#"(𝑟, 𝜃, 𝜑) = 𝑅(𝑟)𝑃(𝜃)𝐹(𝜑) =
2𝑒/0/7$

𝑎!
8/(

1
√2

1
√2𝜋

=
𝑒/0/7$

√𝜋𝑎!
8/( (8) 

[2,17-19] and the spherical shell volume element 4𝜋𝑟( as follows:  

𝑑𝑃 = [
𝑒/0/7$

√𝜋𝑎!
8/(]

(4𝜋𝑟(𝑑𝑟 =
4
𝑎!8
𝑟(𝑒/(0/7$𝑑𝑟 (9) 

For the probability of electron to be in the spherical volume, the following cumulative 

radial density function for existence of orbital electron in spherical volume surrounding a 

hydrogen nucleus is written according to Eqn. (6) as 

𝑃(𝑟) = U [
𝑒/0/7$

√𝜋𝑎!
8/(]

(4𝜋𝑟(𝑑𝑟
0

!
 (10) 

where parameter 𝑟	is radial distance to nucleus of atom. The solution of Eqn. (10) is written 

by, 

𝑃(𝑟) = 1 −
1
𝑎!(
(𝑎!( + 2𝑎!𝑟 + 2𝑟()𝑒/(0/7$ (11) 

99.0r
-e

r

)(rP 99.0
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where, 𝑎!is an atomic unit length, also known as Bohr radius. It is found as 𝑎! =
ℏ!

#$%!
=

0.0529	𝑛𝑚 ≅ 0.53 𝐴& [1]. 99% probabilistic atom radius (𝑟!.33) was defined as the radius of a 

spherical cage of the nucleus of hydrogen atom, where the electron is found with a probability of 

99%. To calculate 𝑟!.33, the following equation is written by consideration of  𝑃(𝑟!.33) = 0.99.  

1 −
1
𝑎!(
(𝑎!( + 2𝑎!𝑟!.33 + 2𝑟!.33( )𝑒/(0$.&&/7$ = 0.99 (12) 

This equation can be numerically solved by using the code that is shown in Fig. 2. If 

numerical calculation is performed by 𝛥𝑟 unit increment, error in calculations becomes less than 

𝛥𝑟. 

 

Figure 2: Proposed code for numerical calculation of equation 𝑟$ for 𝑞 = 0.99 

Fig. 3 shows volumetric probability of electron in ground state (1s) hydrogen atom. 

According to proposed definition, 𝑃(𝑟!.33) = 0.99 is numerically solved and the 99% 

probabilistic atomic radius for isolated, ground state hydrogen atom is found 𝑟!.33 ≅

2.2510/,!	𝑚, which is about 4.2 Bohr radius (4.2𝑎!). In general, hydrogen atom is assumed to 

have one Bohr radius (𝑎!) and it coincides to an electron probability of 32% (𝑃(𝑟!.8() = 0.32).  

% Code for numerical calculation of probabilistic atomic radius rq for 
ground state hydrogen atoms 
 
% User configurations 
a0=0.0529e-9; % Bohr radius in meter unit [m] 
dr=0.001; % Unit increment of numerical calculation [m] 
ri=(0:dr:1)*1e-9; % Sampled radial distance for numerical [m] calculation 
q=0.99; % Sub-index of rq to set cummulative probability 
 
% Calculation of cumulative radial probabilities and rq 
P(1)=0; 
for i=2:length(ri) 
r=ri(i); 
P(i)= 1 - (exp(-(2*r)/a0)*(a0^2 + 2*a0*r + 2*r^2))/a0^2 
%For calculation of rq (probabilistic atom radius) 
if (P(i)-q)*(P(i-1)-q)<0 
%rx is assumed at mid-point of unit increment 
rq=0.5*(ri(i)+ri(i-1)); 
end 
end 
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Figure 3: Cumulative probability density of electrons in spherical volume 

Fig. 4 shows radial probability density function of ground state electron. The figure shows 

Bohr radius and the expected value of radial distance < 𝑟 >= 3𝑎!/2 that is 1.5 times the Bohr 

radius. Bohr radius appears at a maximum of radial density function. As seen in figures, 𝑟!.33 ≅

4.2𝑎! includes a large portion of radial probability density and implies a high probable inclusion 

of an electron by a spherical volume. The existence probability of the outermost element of atom, 

namely the valance electron probability, is considered. Bohr radius or expected value of radial 

distance does not imply a volume with such a high probable of electron existence. Fig. 5 shows 

two-dimensional (2D) view of atomic volumes in spatial domain, which are drawn corresponding 

to 𝑟!.33 and 𝑎! radiuses. When compared,  𝑟!.33 radii better represents size of atom in term of 

quantum mechanical aspects.  

 

 

 

 

 

 

 

Figure 4: Radial probability density of hydrogen atom and some atomic radiuses 
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Figure 5: (a) 2D view of cumulative probability density of electrons in spherical volume (b) 2D view of 
radial probability density of hydrogen atom and comparisons of corresponding atomic radiuses 

Table 1 compares values of several atomic radius definitions that can be applicable for 

hydrogen atoms. The 𝑟!.33 probabilistic atomic radius has the largest value that ensures all 

fundamental elements (electron and proton) of a ground state hydrogen atom are included with a 

probability of 0.99 within the spherical space volume. The classes of 𝑞% probabilistic atomic 

radiuses (𝑟1,	𝑞 ∈ (0,1)) can be particularly useful when analyzing and modeling quantum 

mechanical interaction among atoms and expressing their results. This definition can embody an 

atom in space with its quantum mechanical entity. Besides 𝑟!.33 radius, Van der Waals radius and 

Critical cage radius can express a volume of Hydrogen atom with high possibilities of electron 

existence, which are 83% for Van der Waals radius and 70% for Critical cage radius, respectively. 

Table 1: Values of several atomic radius definitions, which are applicable for hydrogen atom 

Atomic Radius Definitions Values in 
nm 

Normalized 
values  
(Bohr radius 
(𝒂𝟎)) 

Their correspondence 
to probabilistic 
atomic radii  
(𝒒% , 𝒓𝒒) 

Van der Waals radius 0.12 2.26 (83% , 𝑟!.'() 
Covalent radius 0.038 0.71 (17%, 𝑟!.)*) 
Critical cage radius 0.097 1.83 (70%, 𝑟!.*!) 
Peak probability atomic radius 
(Maximum of radial probability density) 

0.0529 1 (32%, 𝑟!.(+) 

Expected value of radial probability 
density 

0.0794 1.5 (57%, 𝑟!.,*) 

99% probabilistic atomic radius (𝒓𝟎.𝟗𝟗) 0.225 4.2 (99%, 𝑟!.##) 
 

6. Normalization of Spatial Domain according to Radial Probability Factor of Atoms 

Another useful application of probabilistic radial distance 𝑟!.33 is that, space surrounding 

nucleus of atom can be mapped to radial probability factor 𝑞 ∈ (0,1) that allows a normalization 
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of real distances according to cumulative radial probability of electrons. One of the advantages of 

this normalization is that it can compensate difficulties in analyses, which are associated with 

diversity in atomic radius. Use of radial probability factor 𝑞 ∈ (0,1) instead of spatial distance 

metrics allows consideration of a limited-range and common factor 𝑞 ∈ (0,1) for analysis of all 

atoms. 

Normalization of spatial radial distance for 𝑞 radial probability factor of hydrogen atom 

can be expressed as 𝑑(𝑞) = 𝑟/𝑟1. Normalization of a spherical space volume can be expressed as  

𝑉(𝑞) = (𝑟/𝑟1)8. In this case, atom density can be normalized according to the electron probability 

as   

𝜌(𝑞) = 𝑛/𝑉(𝑞) (13) 

where 𝑛 is the number of atoms in the normalized volume 𝑉(𝑞) that is for probability factor 

𝑞. Accordingly, one can analyze interaction between atoms on the bases of radial probability 

factor 𝑞 ∈ (0,1).    

7. Conclusion 

This study introduces a probabilistic atomic radius model that represents an atom with a 

nucleus centered spherical space volume according to cumulative radial probabilities of a valance 

electron. The 𝑟!.33	probabilistic atomic radius expresses a spherical atom volume that is the most 

likely to observe a valance electron. This assumes the case that an electron can be found in this 

spherical volume with 99% probability. For ground state Hydrogen atom, atomic radius 𝑟!.33	is 

calculated and its value is compared with values of other substantial atomic radius definitions. 

Radius 𝑟𝑞 definition allows sizing an atom in a space volume according to probability space 

of the time independent solutions of Schrödinger wave equation. Particularly, this probabilistic 

radius concept can contribute to analyze quantum mechanical interactions among atoms 

depending on a probabilistic radial dimension 𝑟, and this atomic radius concept can project the 

probability space to the real spatial space of atom. 

Future studies can address calculation of 𝑟!.33	values for higher quantum numbers and 

energy states of hydrogen atoms. While compressing hydrogen atoms, effects of interactions 

between atoms can be observed experimentally. In analysis of experimental results, changes in 

phase or properties of various atoms can be elaborated on the bases of probability factor 𝑞.  
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