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Abstract 

 

In the current study, analytical solutions are constructed by applying (1 / )G -expansion 

method to the Kolmogorov–Petrovskii–Piskunov (KPP) equation. Hyperbolic type exact 

solutions of the KPP equation are presented with the successfully applied method. 3D, 

2D and contour graphics are presented by giving special values to the parameters in 

the solutions obtained. This article explores the applicability and effectiveness of this 

method on nonlinear evolution equations (NLEEs). 

 

Keywords: Kolmogorov–Petrovskii–Piskunov equation, (1 / )G -expansion method, 

traveling wave solutions, exact solution. 

 

 

Kolmogorov – Petrovskii – Piskunov denkleminin analitik 

çözümleri 
 

 

Öz 

 

Bu çalışmada, Kolmogorov – Petrovskii –Piskunov (KPP) denkleminin analitik 

çözümleri (1 / )G -açılım yöntemi uygulanarak elde edilmiştir. Başarılı bir şekilde 

uygulanan yöntem ile KPP denkleminin hiperbolik tipte tam çözümleri sunulmuştur.  

Elde edilen çözümlerdeki parametrelere özel değerler verilerek 3 boyutlu, 2 boyutlu ve 

kontur grafikleri sunulmuştur. Bu makalede, bu yöntemin doğrusal olmayan evrim 

denklemleri (NLEE'ler) üzerindeki uygulanabilirliği ve etkinliği araştırılmaktadır. 

 

Anahtar kelimeler: Kolmogorov–Petrovskii–Piskunov denklemi, (1 / )G -açılım 

yöntemi, yürüyen dalga çözümleri, tam çözüm. 
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1.  Introduction 

 

To search the exact solutions of NLEEs has been hot and an important topic in 

mathematics physics for long years. There are various methods for obtain exact 

solutions of NLEEs such as sumudu transform method [1], the homotopy perturbation 

method [2], the Multistage Variational İteration Method [3], ( )'G G -expansion method 

[4,5], extended sinh-Gordon equation expansion method [6,7], sub equation method [8], 

( )1 'G -expansion method [9-11],  the Clarkson–Kruskal (CK) direct method [12], the 

modified Kudryashov method [13], adomian decomposition methods [14-16], 

( ),1G G G -expansion method [17], first integral method [18], collocation method [19], 

new sub equation method [20], residual power series method [21], homogeneous 

balance method [22] and so on [28-37].  

Consider the KPP equation [23] 

 
2 3 0t xxu u u vu u , − + + + =               (1) 

 

where v,  and  are real numbers.  

 

This equation has significant place in physics, it also includes the Fisher, Burgers-

Huxley, Huxley, Fitzhugh-Nagumo and Chaffee–Infanfe equations. Studies have been 

conducted by many scientists with KPP equation. Some of studies are as follows: 

analytical solutions of KPP equation obtained using modified simple equation method 

[24], in order to obtain the solutions of KPP equation obtained, HAM was applied [25], 

the existence and uniqueness of the solutions of the KPP equation studied [26], new 

exact solutions of the KPP equation are attained using first integral method [27]. 

In this work, we consider the KPP equation. We have been attained exact solutions for 

KPP equation using (1 / )G -expansion method. 

 

 

2. ( )1 G -expansion method 

 

( )1 G -expansion method was first presented as a Phd. thesis by Yokus, the author of 

this article, in 2011, [38]. This method is inspired by the ( )G G -expansion method. 

The ( ),1G G G -expansion method was brought to literature by another researcher, 

inspired by the ( )1 G  and ( )G G -expansion methods. Recently, we see that a lot of 

work has been done with the ( )1 G -expansion method [9,10,11,39,40]. 

We get general form of NLEEs  

 
2

2
, , , ,... 0.

u u u
u

t x x

   

= 
   

                          (2) 

 

Here, let ( ) ( ), , , 0,u u x t U x wt w = = = −   where w  is a constant and the speed 

of the wave. After, we can be converted into following nonlinear ODE for ( )U  : 
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( ), , , ,... 0.U U U U    =                   (3) 

 

The solution of Eq. (4) is assumed to have the form 

 

( ) 0

1

1
,

in

i

i

U a a
G


=

 
= +   

                      (4) 

 

where ( )0 1ia , i , ,...,n=  are constants, n  is an integer that we will calculate with the 

balancing principle and ( )G G =  provides the following second order IODE 

 

0,G G  + + =                         (5) 

 

where   and   are constants to be determined after, 

 

( ) ( ) ( )

1 1
,

G
Acosh Asinh

  


=


− + −

             (6) 

 

where A  is integral constant. If the desired derivatives of the Eq. (4) are calculated and 

substituting in the Eq. (3), a polynomial with the argument ( )1 G  is attained. An 

algebraic equation system is created by equalizing the coefficients of this polynomial to 

zero. The equation is solved using package program and put into place in the default Eq. 

(3) solution function. Lastly, the solutions of Eq. (1) are found. 

 

 

3. Solutions of KPP equation  

 

The traveling wave transmutation x wt, = −  allows us to convert Eq. (1) into an ODE 

for ( )u U = , 

 
2 3 0U wU U vU U .  − − + + + =                  (7) 

 

Here we consider the highest order linear term in the Eq. (7) and the nonlinear term. 

These terms are U and 3U . Here, when the derivative is taken twice in Eq. (4), it is 

written as a polynomial bound to 
1

G
, and the degree of this polynomial becomes 2n+ . 

Similarly, when the third power of the Eq. (4) is taken, it is written as a polynomial 

connected to 
1

G
, and the degree of this polynomial is 3n . When these degrees are 

equalized according to the homogeneous balance principle 1n = is obtained and the 

following situation is presented, 

( ) 0 1 1

1
, 0.U a a a

G


 
= +   

                           (8) 
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Replacing Eq. (8) into Eq. (7) and the coefficients of the algebraic Eq. (1) are equal to 

zero, can attain the following algebraic equation systems 

 
2 3

0 0 0: 0,a vaC aonst   =+ +  

 

1

2 2

1 1 1 0 1 0 1

1
0,: 2 3

G
a w a a va a a a


   


=

 
− − + + 

 
                   (9) 

 

2

2 2

1 1 1 0 1

1
0,: 3 3

G
w a a va a a


  


=

 
− − + + 

 
 

 

3

2 3

1 1

1
0.: 2

G
a a


 



 
− +


=


 

 

Case1. 
2

2 2

0 1 2

2 4 2

2 2 2 2

4 2
w , a , a , v ,

  

      

   

−
− + − −

= = = =
−

          (10) 

 

replacing values Eq. (10) into Eq. (8) and we have the following exact solutions for Eq. 

(1): 

 

( )

( )

( )

( )

2

2

2
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2 4 2
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Acosh x
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

 
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



−

+
   − +
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      −
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=



                              (11)  

 
            

Figure1. 3D, contour and 2D graphs respectively for 

5 2 2 3 1A , , , ,   = = = − = =  values of Eq. (11). 
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Case 2. 

 

( ) ( )

( ) ( )

( ) ( )

( )

2 2 2 2 2 2
2

0 2

2 2 2 2 2 2
2 2

2 2

2 2

3 2
2 2 2 2 2 2

2 2

4

1 2 3 2 2

3 2
2 2 2

2 2

2 2

2

2 2

2 2
2

2 21
8 3

4

2
8 2

/

/

w , a ,

a

        

   

          
   

     

          
   

        

       
  

    

+ +
= − = − + −

+ +
− + − − + −

+ +
= − + − + + −

−

+
+ + − − + −

 
 
 
 

 
 
 
 

( )
5 2

2 2 2

2

2
/

,

  




+

 
 
 
 
 
 
 
 
 
  
  
  

  

 

( ) ( )

( ) ( )

( ) ( )

2 2 2 2 2 2
2 2

2 2

2 2

3 2
2 2 2 2 2 2

2 2

4 2

2 2 2

3 2 5 2
2 2 2 2 2 2

2 2

2 2 3

2 2

2 2
6

2 21
4 2

2

2 2
4

/

/ /

v

          
  

     

          
 

      

          
  

     

+ +
+ − + + −

+ +
= + + − − + −

+ +
− + − + + −

 
 
 
 
  
  
  

  
 

    
       
    

.



      (12) 

 

Replacing values Eq. (12) into Eq. (8) and we have the following exact solutions for Eq. 

(1) 

 

( )
( )

( )  ( ) 

2 2 2
2

1

22

2 a

Acosh tw x A sinh tw x

u x,t .
    

  
 



+
− + − +

− + − + − − +

=    (13) 

 
 

Figure2. 3D, contour and 2D graphs respectively for 

1 05 2 2 1 1 1 1 2 1A , , , , a , w , a , ,    = = = − = = = = = =  values of Eq. 

(13). 

  



DURUR H., YOKUŞ A. 

 633 

 

           

Case 3.  

 
2 2

0 1

2 2 2 2
0

2
w , a , a , v ,

     

 

− − −
=== = −         (14) 

substituting Eq. (14) into Eq. (8), the following solution is obtained 

 

( )
( ) ( )2

3
2

2
.u

t t
Acosh x A

,

h

x t

sin x


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  

  

−
       − −
       − + − − −

       
      

=



   (15) 

 

  
Figure3. 3D, contour and 2D graphs respectively for 

5 1 5 3 1A , , , ,   = = = − = =  values of Eq. (15). 

 

 

4.  Conclusion 

 

In this letter, we have been obtained traveling wave solutions for the KPP equation with 

the help of ( )1 G -expansion method. Hyperbolic type traveling wave solutions of KPP 

equation are presented with this powerful and reliable method. Traveling wave solutions 

are known to play an important role in many physical phenomena. We consider that the 

constants in the traveling wave solutions presented in this study will be much more 

valued after they gain physical meaning. Different values for the constants found 

solutions for 3D, 2D and contour graphs are presented. Computer technology was 

utilized in the construction of these solutions. This method is easy to implement, 

reliable and efficient for finding analytical solutions nPDEs. 
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