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Abstract

In this article we investigate the connections between the Pascal distribution series and the class of analytic
functions f normalized by f(0) = f ′(0) − 1 = 0 in the open unit disk U = {z ∈ C : |z| < 1} and its
coe�cients are probabilities of the Pascal distribution.More precisely ,we determine such connection with
parabolic starlike and uniformly convex functions in the open unit disk U .
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1. Introduction

Let U represent the unit disk {z ∈ C : |z| < 1} and H represent the set of analytic functions in U. We
suppose A denote the subset of H comprising of functions

f(z) = z +

∞∑
n=2

anz
n z ∈ U, (1)

normalized by f(0) = 0 = f ′(0)− 1 and univalent in U. Denote by T the subclass of A whose members are

f(z) = z −
∞∑
n=2

anz
n, an ≥ 0. (2)
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For functions f1(z) = z +
∑∞

n=2 an,1z
n and f2(z) = z +

∑∞
n=2 an,2z

n, in A then the Hadamard product (or
convolution) of f1 and f2 by

(f1 ∗ f2)(z) = z +

∞∑
n=2

an,1an,2z
n, z ∈ U.

For 0 ≤ α < 1, we let the well known subclasses of A as below:

1. S∗(α) =
{
f ∈ A : <

(
zf ′(z)
f(z)

)
> α

}
2. K(α) =

{
f ∈ A : <

(
1 + zf ′′(z)

f ′(z)

)
> α

}
and

3. R(α) = {f ∈ A : < (f ′(z)) > α}

where z ∈ U. Obviously S∗(0) =: S∗, Further, K = K(0). Further, note that f ∈ K(α)⇐⇒ zf ′ ∈ S∗(α).
Due to Ali et al., [1] and Murugusundaramoorthy et al., [9] we stateMµ(ϑ, ν) and Nµ(ϑ, ν) the subclasses

of A as below:
For some ϑ (0 ≤ ϑ < 1), µ (0 ≤ µ ≤ 1), ν ≥ 0 and f ∈ A be given by (1), we let f ∈ Mµ(ϑ, ν) if it

satisfy the analytic criteria

<
(

zf ′(z)

(1− µ)z + µf(z)
− ϑ

)
> ν

∣∣∣∣ zf ′(z)

(1− µ)z + µf(z)
− 1

∣∣∣∣ , z ∈ U

and also let f ∈ Nµ(ϑ, ν), if it satisfy the criteria

<
(

zf ′(z) + z2f ′′(z)

(1− µ)z + µzf ′(z)
− ϑ

)
> ν

∣∣∣∣ zf ′(z) + z2f ′′(z)

(1− µ)z + µzf ′(z)
− 1

∣∣∣∣ , z ∈ U.

Note thatM1(ϑ, ν) ≡ SP(ϑ, ν) and N1(ϑ, ν) ≡ UCV(ϑ, ν)[3]. Further, denoteM∗µ(ϑ, ν) =Mµ(ϑ, ν)∩T and
N ∗µ(ϑ, ν) = Nµ(ϑ, ν) ∩ T , the subclasses of T also specializing the parameters we note the following:

1. M∗1(ϑ, ν) ≡ T SP(ϑ, ν)[3]

2. M∗1(0, ν) ≡ T SP(ν)[14]

3. N ∗1 (ϑ, ν) ≡ UCT (ϑ, ν)[3]

4. N ∗1 (0, ν) ≡ UCT (0ν)[14]

Example 1.1. For some ϑ(0 ≤ ϑ < 1), ν ≥ 0, and �xing µ = 0 and f ∈ A be given by(1),we let
(i)M0(ϑ, ν) ≡ USD(ϑ, ν) if

<
(
f ′(z)− ϑ

)
> ν

∣∣f ′(z)− 1
∣∣ z ∈ U

(ii) N0(ϑ, ν) ≡ UCD(ϑ, ν) if

<
(
(zf ′(z))′ − ϑ

)
> ν

∣∣(zf ′(z))′ − 1
∣∣ , z ∈ U.

Murugusundaramoorthy et al., [9] have studiedMµ(ϑ, ν) and Nµ(ϑ, ν) based on Hurwitz-zeta functions.
To prove our main results we need the following results, proved and stated (a special cases given) in [9].

Lemma 1.1. [9] Let f ∈ A be given by (1),then f belongs to the class

1. Mµ(ϑ, ν) if
∞∑
n=2

[n(1 + ν)− µ(ϑ+ ν)]|an| ≤ 1− ϑ. (3)
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2. Nµ(ϑ, ν) if
∞∑
n=2

n[n(1 + ν)− µ(ϑ+ ν)]|an| ≤ 1− ϑ. (4)

3. SP(ϑ, ν) if
∞∑
n=2

[n(1 + ν)− (ϑ+ ν)]|an| ≤ 1− ϑ.

4. UCV(ϑ, ν) if
∞∑
n=2

n[n(1 + ν)− (ϑ+ ν)]|an| ≤ 1− ϑ.

Lemma 1.2. [9] Let f ∈ A be given by (1),then f belongs to the class

1. USD(ϑ, ν) if
∞∑
n=2

n(1 + ν)|an| ≤ 1− ϑ.

2. UCD(ϑ, ν) if
∞∑
n=2

n2(1 + ν)|an| ≤ 1− ϑ.

Remark 1.1. The conditions given in Lemma 1.1 and 1.2 are both necessary and su�cient if f ∈ T be given
by (2).

Special functions (series) play a vital role in geometric function theory, exclusively in the proof by de
Branges of the famous Bieberbach conjecture. The astonishing use of special functions (hypergeometric
functions) has provoked renewed attention in function theory in the last few decades (see[4, 6, 12, 16, 17])
and lately by probability distribution series [2, 5, 8, 10, 11].

A variable χ is said to be Pascal distribution if it takes the values 0, 1, 2, 3, . . . with probabilities

(1− q)κ, qκ(1−q)
κ

1! , q
2κ(κ+1)(1−q)κ

2! , q
3κ(κ+1)(κ+2)(1−q)κ

3! , . . . respectively, where q and κ are called the parame-
ter,and thus

P (χ = %) =

(
%+ κ− 1

κ− 1

)
q%(1− q)κ, % = 0, 1, 2, 3, . . .

Lately, for κ ≥ 1; 0 ≤ q ≤ 1, El-Deeb et al.[5] gave a power series whose coe�cients are probabilities of
Pascal distribution

Φm
q (z) = z +

∞∑
n=2

(
n+ κ− 2

κ− 1

)
qn−1(1− q)κzn, z ∈ U (5)

We note by the familiar Ratio Test that the radius of convergence of the above series is in�nity. More recently,
Bulboac  and Murugusundaramoorthy [2] introduced a linear operator by the convolution (or Hadamard)
product

Iκq : A → A

which is de�ned as follows:

Iκq f(z) = Φκ
q (z) ∗ f(z) = z +

∞∑
n=2

(
n+ κ− 2

κ− 1

)
qn−1(1− q)κanzn, z ∈ U (6)

Motivated by the aforementioned works on hypergeometric functions [4, 6, 12, 16, 17], and distribution
function [2, 5, 8, 10, 11] we give the connections between Pascal distribution series with the classesM∗µ(ϑ, ν)
and N ∗µ(ϑ, ν) by applying the convolution operator given by (6).
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For convenience throughout in the sequel, let m ≥ 1; 0 ≤ q ≤ 1 and following notations:

∞∑
n=0

(
n+ κ− 1

κ− 1

)
qn =

1

(1− q)κ
(7)

∞∑
n=0

(
n+ κ

κ

)
qn =

1

(1− q)κ+1
(8)

∞∑
n=0

(
n+ κ+ 1

κ+ 1

)
qn =

1

(1− q)κ+2
(9)

Theorem 1.1. If κ ≥ 1 then Φκ
q (z) ∈Mµ(ϑ, ν) if

(1 + ν)qκ

(1− q)
+ [(1 + ν)− µ(ϑ+ ν)] (1− (1− q)κ) ≤ 1− ϑ. (10)

Proof. Since Φκ
q (z) = z +

∞∑
n=2

(
n+κ−2
κ−1

)
qn−1(1− q)κzn ∈Mµ(ϑ, ν) by virtue of Lemma 1.1 and (3) it suits to

show that

L1(κ, µ, ϑ, ν) =
∞∑
n=2

[n(1 + ν)− µ(ϑ+ ν)]

(
n+ κ− 2

κ− 1

)
qn−1(1− q)κ ≤ 1− ϑ.

Now by writing n = (n− 1) + 1 we get

L1(κ, µ, ϑ, ν) = (1 + ν)

∞∑
n=2

n

(
n+ κ− 2

κ− 1

)
qn−1(1− q)κ

− µ(ϑ+ ν)
∞∑
n=2

(
n+ κ− 2

κ− 1

)
qn−1(1− q)κ

= (1 + ν)(1− q)κ
∞∑
n=2

(n− 1)

(
n+ κ− 2

κ− 1

)
qn−1

+ (1− q)κ[(1 + ν)− µ(ϑ+ ν)]
∞∑
n=2

(
n+ κ− 2

κ− 1

)
qn−1

= (1 + ν)(1− q)κ
∞∑
n=2

qκ

(
n+ κ− 2

κ

)
qn−2

+ (1− q)κ[(1 + ν)− µ(ϑ+ ν)]

∞∑
n=2

(
n+ κ− 2

κ− 1

)
.qn−1

L1(κ, µ, ϑ, ν) = (1 + ν)(1− q)κ
∞∑
n=0

qκ

(
n+ κ

κ

)
qn

+ (1− q)κ[(1 + ν)− µ(ϑ+ ν)]

( ∞∑
n=0

(
n+ κ− 1

κ− 1

)
qn − 1

)

≤ (1 + ν)(1− q)κqκ 1

(1− q)κ+1

+ (1− q)κ[(1 + ν)− µ(ϑ+ ν)]

(
1

(1− q)κ
− 1

)
=

(1 + ν)qκ

(1− q)
+ [(1 + ν)− µ(ϑ+ ν)] (1− (1− q)κ) .

But L1(κ, µ, ϑ, ν) is bounded above by 1− ϑ if (10) holds, which completes the proof.
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Theorem 1.2. If κ ≥ 1 then Φκ
q (z),∈ Nµ(ϑ, ν) if

(1 + ν)κ(κ+ 1)q2

(1− q)2
+

[3(1 + ν)− µ(ϑ+ ν)]qκ

1− q
+ [(1 + ν)− µ(ϑ+ ν)] (1− (1− q)κ) ≤ 1− ϑ. (11)

Proof. Since Φκ
q (z) = z +

∞∑
n=2

(
n+κ−2
κ−1

)
qn−1(1− q)κzn ∈ Nµ(ϑ, ν)

according to Lemma 1.1 and (4), it enough to show that

∞∑
n=2

n[n(1 + ν)− µ(ϑ+ ν)]

(
n+ κ− 2

κ− 1

)
qn−1(1− q)κ ≤ 1− ϑ.

Let

L2(κ, µ, ϑ, ν) =
∞∑
n=2

(
n2(1 + ν)− nµ(ϑ+ ν)

)(n+ κ− 2

κ− 1

)
qn−1(1− q)κ.

Taking n = 1 + (n− 1) and n2 = 1 + 3(n− 1) + (n− 1)(n− 2), we can rewrite the above term as

L2(κ, µ, ϑ, ν) = (1 + ν)(1− q)κ
∞∑
n=2

(n− 1)(n− 2)

(
n+ κ− 2

κ− 1

)
qn−1

+ [3(1 + ν)− µ(ϑ+ ν)](1− q)κ
∞∑
n=2

(n− 1)

(
n+ κ− 2

κ− 1

)
qn−1

+ [(1 + ν)− µ(ϑ+ ν)](1− q)κ
∞∑
n=2

(
n+ κ− 2

κ− 1

)
qn−1.

That is,

L2(κ, µ, ϑ, ν) = (1 + ν)q2(1− q)κ
∞∑
n=2

(n− 1)(n− 2)

(
n+ κ− 2

κ− 1

)
qn−3

+ [3(1 + ν)− µ(ϑ+ ν)](1− q)κ
∞∑
n=2

qκ(n− 1)

(
n+ κ− 2

κ

)
qn−2

+ [(1 + ν)− µ(ϑ+ ν)](1− q)κ
∞∑
n=2

(
n+ κ− 2

κ− 1

)
qn−1

=(1 + ν)q2(1− q)κ
∞∑
n=3

(n− 1)(n− 2)

(
n+ κ− 2

κ− 1

)
qn−3

+ [3(1 + ν)− µ(ϑ+ ν)](1− q)κ
∞∑
n=2

qκ(n− 1)

(
n+ κ− 2

κ

)
qn−2

+ [(1 + ν)− µ(ϑ+ ν)](1− q)κ
∞∑
n=2

(
n+ κ− 2

κ− 1

)
qn−1

=(1 + ν)q2(1− q)κ
∞∑
n=3

(n− 1)(n− 2)

(
n+ κ− 2

κ− 1

)
qn−3

+ [3(1 + ν)− µ(ϑ+ ν)](1− q)κ
∞∑
n=2

qκ(n− 1)

(
n+ κ− 2

κ

)
qn−2

+ [(1 + ν)− µ(ϑ+ ν)](1− q)κ
∞∑
n=2

(
n+ κ− 2

κ− 1

)
qn−1
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= (1 + ν)κ(κ+ 1)q2(1− q)κ
∞∑
n=0

(
n+ κ+ 1

κ+ 1

)
qn

+ [3(1 + ν)− µ(ϑ+ ν)]qκ(1− q)κ
∞∑
n=0

(
n+ κ

κ

)
qn

+ [(1 + ν)− µ(ϑ+ ν)](1− q)κ
(

1

(1− q)κ
− 1

)

=
(1 + ν)κ(κ+ 1)q2

(1− q)2
+

[3(1 + ν)− µ(ϑ+ ν)]qκ

1− q
+ [(1 + ν)− µ(ϑ+ ν)] (1− (1− q)κ) .

But L2(κ, µ, ϑ, ν) is bounded above by 1− ϑ if (11) holds. Thus the proof is complete.

Corollary 1.1. If κ ≥ 1 then

1. Φκ
q (z) ∈ SP(ϑ, ν) if (1+ν)qκ

(1−q)κ+1 ≤ 1− ϑ

2. Φκ
q (z) ∈ UCV(ϑ, ν) if (1+ν)κ(κ+1)q2

(1−q)κ+2 + [3+2ν−ϑ)]qκ
(1−q)κ+1 ≤ 1− ϑ.

3. Φκ
q (z) ∈ USD(ϑ, ν) if (1 + ν)

[
qκ

(1−q) + 1− (1− q)κ
]
≤ 1− ϑ

4. Φκ
q (z) ∈ UCD(ϑ, ν) if (1 + ν)

[
κ(κ+1)q2

(1−q)2 + 3qκ
1−q + 1− (1− q)κ

]
≤ 1− ϑ.

2. Inclusion Properties

The class Rτ (υ, δ) was given by Swaminathan [17] (for special cases see the references cited there in) and
for f ∈ Rτ (υ, δ) he proved the result given below:

Let f ∈ A be in Rτ (υ, δ), (τ ∈ C\{0}, 0 < υ ≤ 1; δ < 1), if it holds the inequality∣∣∣∣∣ (1− υ)f(z)z + υf ′(z)− 1

2τ(1− δ) + (1− υ)f(z)z + υf ′(z)− 1

∣∣∣∣∣ < 1, (z ∈ U).

Lemma 2.1. [17] If f ∈ Rτ (υ, δ) is of form (1), then

|an| ≤
2 |τ | (1− δ)
1 + υ(n− 1)

, n ∈ N \ {1}. (12)

The bounds given in (12) is sharp.

Making use of the Lemma 2.1,in the following theorem we will establish the connection between Pascal
distribution series with the class Nµ(α, ν).

Theorem 2.1. If κ ≥ 1 and f ∈ Rτ (υ, δ), if the inequality

[
(1 + ν)qκ

(1− q)
+ [(1 + ν)− µ(ϑ+ ν)] (1− (1− q)κ)

]
≤ υ(1− ϑ)

2 |τ | (1− δ)
(13)

is satis�ed, then Iκq f(z) ∈ Nµ(α, ν).
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Proof. Let f be given by (1) and a member of Rτ (υ, δ). By asset of Lemma 1.1 and (4) it suits to show that

∞∑
n=2

n[n(1 + ν)− µ(ϑ+ ν)]

(
n+ κ− 2

κ− 1

)
qn−1(1− q)κ|an| ≤ 1− ϑ.

Since f ∈ Rτ (µ, δ) then by Lemma 12 we have

|an| ≤
2 |τ | (1− δ)
1 + υ(n− 1)

, n ∈ N \ {1}.

Let

L3(κ, µ, ϑ, ν) =
∞∑
n=2

n[n(1 + ν)− µ(ϑ+ ν)]

(
n+ κ− 2

κ− 1

)
qn−1(1− q)κ|an|

≤ 2 |τ | (1− δ)
∞∑
n=2

n
[n(1 + ν)− µ(ϑ+ ν)]

1 + µ(n− 1)

(
n+ κ− 2

κ− 1

)
qn−1(1− q)κ.

Since 1 + υ(n− 1) ≥ nυ, we get

L3(κ, µ, ϑ, ν) ≤ 2 |τ | (1− δ)
υ

∞∑
n=2

[n(1 + ν)− µ(ϑ+ ν)]

×
(
n+ κ− 2

κ− 1

)
qn−1(1− q)κ.

Proceeding as in Theorem 1.1, we get

L3(κ, µ, ϑ, ν)

≤ 2 |τ | (1− δ)
υ

[
(1 + ν)qκ

(1− q)
+ [(1 + ν)− µ(ϑ+ ν)] (1− (1− q)κ)

]
.

But the expression L3(κ, µ, ϑ, ν) is bounded above by 1− ϑ if (15) holds. Thus the proof is complete.

Corollary 2.1. If κ ≥ 1 and f ∈ Rτ (υ, δ), if the inequality

[
(1 + ν)κ(κ+ 1)q2

(1− q)κ+2
+

[3 + 2ν − ϑ)]qκ

(1− q)κ+1

]
≤ υ(1− ϑ)

2 |τ | (1− δ)
(14)

is satis�ed, then Iκq f(z) ∈ UCV(ϑ, ν).

Corollary 2.2. If κ ≥ 1 and f ∈ Rτ (υ, δ), if the inequality

(1 + ν)

[
κ(κ+ 1)q2

(1− q)2
+

3qκ

1− q
+ 1− (1− q)κ

]
≤ υ(1− ϑ)

2 |τ | (1− δ)
(15)

is satis�ed, then Iκq f(z) ∈ UCD(ϑ, ν).

Remark 2.1. The above conditions are also necessary for functions Φκ
q (z) of the form(5).

Theorem 2.2. Let κ ≥ 1, and L(κ, z) =
∫ z
0

Iκq (t)
t dt then L(κ, z) ∈ Nµ(ϑ, ν) if and only if

(1 + ν)qκ

(1− q)
+ [(1 + ν)− µ(ϑ+ ν)] (1− (1− q)κ) ≤ 1− ϑ. (16)
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Proof. Since

L(κ, z) = z +
∞∑
n=2

(
n+ κ− 2

κ− 1

)
qn−1(1− q)κ z

n

n

then by Theorem 1.1 we requisite to con�rm that

∞∑
n=2

n[n(1 + ν)− µ(ϑ+ ν)]
1

n

(
n+ κ− 2

κ− 1

)
qn−1(1− q)κ ≤ 1− ϑ.

That is,
∞∑
n=2

[n(1 + ν)− µ(ϑ+ ν)]

(
n+ κ− 2

κ− 1

)
qn−1(1− q)κ ≤ 1− ϑ.

Now by expressing n = (n− 1) + 1 and following the lines of Theorem 1.1, we get

∞∑
n=2

[n(1 + ν)− µ(ϑ+ ν)]

(
n+ κ− 2

κ− 1

)
qn−1(1− q)κ

=

[
(1 + ν)qκ

(1− q)
+ [(1 + ν)− µ(ϑ+ ν)] (1− (1− q)κ)

]
which is bounded above by 1− ϑ if (16) holds.

Corollary 2.3. Let κ ≥ 1 and L(κ, z) =
∫ z
0

Iκq (t)
t dt,then

1. L(κ, z) ∈ UCT (ϑ, ν) ⇔ (1+ν)qκ
(1−q)κ+1 ≤ 1− ϑ,

and

2. L(κ, z) ∈ UCD(ϑ, ν) ⇔ (1 + ν)
(
qκ
1−q + 1− (1− q)m

)
≤ 1− ϑ.

Concluding Remark: By specializing µ = 0 or µ = 1 and �xing ϑ = 0 in Theorems proved in present
paper ,one can deduce for the classes studied in [14] and similar manner by taking ν = 0 we can easily deduce
for the function classes studied in [13].The details involved may be port as an exercise for the attracted reader.

Acknowledgement: I thank the referees for their valuable suggestions to improve the results in present
form.
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