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Abstract

In this paper we study conformally flat minimal C-totally real submanifolds of (x, u)-

nullity space forms.

Keywords: Contact metric manifold; («, pt)-space form; Conformally flat manifold; Second

fundamental form; Totally geodesic.
(x, p)-Nullity Uzay Formlarimin Konformal Flat Minimal C-total Reel Altmanifoldlar:
Ozet

Bu calismada (x, u)-nullity uzay formlarmin konformal flat minimal C-total reel

altmanifoldlarini ¢alistik.

Anahtar Kelimeler: Degme metrik manifold; (x, y)-uzay formu; Konformal flat manifold;

Ikinci temel form; Total jeodezik.
1. Introduction

Let M™ be a minimal C-totally real submanifold of dimension m, having constant -

sectional curvature ¢ in a (2m + 1)-dimensional Sasakian space form M of constant ¢-sectional
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curvature ¢. B.Y. Chen and K. Ogiue [1] studied totally real submanifolds and proved that if a
such a submanifold is totally geodesic, then it is of constant curvature ¢ = %E. Then D. Blair [2]
showed that such a submanifold is totally geodesic if and only if it is of constant curvature
c= i(c“ + 3). Also S. Yamaguchi, M. Kon and T. Ikawa [3] stated that if such a submanifold is
compact and has constant scalar curvature, then it is totally geodesic and has constant sectional

curvature c¢ satifying ¢ = %(E + 3) or ¢ < 0. Later D. E. Blair and K. Ogiue [4] proved that if M

m-2
4(2m-1)

is compact and ¢ > (¢ +3), then M is totally geodesic. Also P. Verheyen and L.

Verstraelen [5] obtained that if M™ (m > 4) is a compact conformally flat submanifold admitting

(m-1)3(m+2)

constant scalar curvature scal >
4(m2+m-4)

(¢ +3) and @-sectional curvature c satisfying

(m-1)?
4m(m2+m-—4)

(€ + 3), then it is totally geodesic.

In the present paper, we study the results indicated above for a conformally flat minimal
C-totally real submanifold M in a (k, u)-nullity space form M?™*! with constant (-sectional

curvature ¢. We prove the followings:

Theorem 1. Let M?>™*! be a (k, u)-nullity space form of constant -sectional curvature &
and M™ be an m > 4-dimensional compact conformally flat minimal C-totally real submanifold
of a M>™*1 Then

2(m-1)[m(m2-2)A(A+2)+(m-2)4]
4(m%2+m-—4)

(m-1)3(m+2)
4(m2+m-—4)

scal >

)

c+3)+

implies that M™ is totally geodesic, where 1 = V1 — k.

Theorem 2. Let M™ be a minimal C-totally real submanifold of a (k, p)-nullity space form

M?m*1 If M™ has constant curvature c, then either
c=7[(¢+3)+242 +82],
in which case M™ is totally geodesic, or ¢ < 0.
2. Preliminiaries
Let M?™*1 be a contact metric manifold with the ({, £, 7, §) satisfying
P =-1+7Q%,

1§ =1,¢$=0,7U) = gU,3), (D
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g@u,ev) =g, v) —qWUnv), g@u,v)=dij,V),

for vector fields U and V on M. The operator h defined by h = — %Lgcb’, vanishes iff ¢ is Killing.

Also we have
@h+hp =0, h§ =0, joh =0, tr h =tr ph = 0. 2)

Due to anti-commuting h with @, if U is an eigenvector of h with the eigenvalue A then gU
is also an eigenvector of h with the eigenvalue —A [6]. Moreover, for the Riemannian connection

V of g, we have
Vyé = —@U — GhU. 3)

If € is Killing then contact metric manifold M is said to be a K-contact Riemannian

manifold. On a K-contact Riemannian manifold, we have

R, ¢ =U—7(U)s.

A Sasakian manifold is known as a normal contact metric manifold. A contact metric
manifold to be Sasakian if and only if R(U,V)& = 5(V)U — #(U)V, where R is the curvature

tensor on M. Moreover, every Sasakian manifold is a K-contact manifold [2].

The (k, w)-nullity distribution for a contact metric manifold M is a distribution

Null(x, p): p — Null, (i, 1) = {W € TpMIR(U, VIW = x[g(V, W)U — g(U, W)V]},

+ulg(V, WIRU — §(U, W)AV]

forany U,V €T, (M), where k, u € Rand k < 1. We consider that M is a contact metric manifold

with € concerning to the (x, )-nullity distribution, i.e.,
R, V)¢ = k(W)U = j(U)IV] + ulii(VIRU — 5 (U)RV]. “4)

The necessary and sufficient condition for the manifold M to be a Sasakian manifold is that
k=1 and u = 0 [7]. Also, for more details, one can see [8] and [9]. For k < 1, (k, u)-contact
metric manifolds have constant scalar curvature. Also, the sectional curvature K(U,@U)
according to a @-section determined by a vector U is called a @-sectional curvature. A (k, 1)-
contact metric manifold with constant @-sectional curvature ¢ is a (x, p)-nullity space form. The

curvature tensor of a (i, w)-nullity space form M is given by [10]

RW, VW =2 (& +3){g(vV, W)U — g(U, W)V}
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E+3-4K {ﬁ(U)ﬁ(W)V —TWiw)Hu }

4 (+gUW)i(V)E — gV, W)HnU)é
e 90PN + 50 WI0V) “
4+ (—g(V, W)U

g(hV, W)hU — g(hU, W)hV
+9(@hU, W)@hV — g(@hV, W)@hU

+ - iy o crr o
+9(@V,pW)hU — g(pU, pW)hV
+g(hU, W)P2V — g(hV, W) $*U
g(hV,W)YhU — g(hU, W)hV

41 +g(@hU,W)@PhV — g(@hV,W)@hU

+9(@V, pW)HRU — g(¢U, W )RV
+g(hU, W)@V — g(hV, W)@*U

+ {ﬁ(V)ﬁ(W)hU = 7(U)7(W)hV }
+g(RV, W)ij(U)$ — g(hU, W) (V)E)

where ¢ is constant @-sectional curvature.
3. C-totally Real Submanifolds

Let M be an m-dimensional submanifold in a (2m + 1)-dimensional manifold M equipped
with a Riemannian metric g. We denote by V (resp. V) the covariant derivation with respect to g

(resp.g). Then the second fundamental form B is given by
B(U,V) =V,V —V,V. (6)

For a normal vector field £ on M, we write V& = —AgU + Dy§, where —A¢U (resp. Dy$)

denotes the tangential (resp. normal) component of V;;&. Then, we have
gBU,V),¢) = g(A:U,V). (7)

A normal vector field & on M is said to be parallel if Dyé = 0 for any tangent vector U.

For any orthonormal basis {wy,...,w;,} of the tangent space T,M, the mean curvature vector
H(p) is given by

m

Hp) =1 % Bwiw). ®)
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The submanifold M is totally geodesic in M if B = 0, and minimal if H = 0. 1f B(U,V) =
g(U,V)H for all U,V € TM, then M is totally umbilical. For the second fundamental form B,

with respect to the covariant derivation V is defined by
(VuB)(V,W) = Dy(B(V,W)) = B(VyV,W) = B(V,Vy W), )

for all U,V and W on M [11], where V is the covariant differentiation operator of van der

Waerden-Bortolotti.
Also the equations of Gauss, Codazzi and Ricci are given by
gRU,VIW,T) = g(RWU,VIW,T) (10)
+9(BWU,W),B(V,T)) —g(BWV,W),B(U,T)),
RU, VW)Yt = (VyB)(V, W) = (WwB)(U, W), (11
gRWU,VIW,N) = g(R*(U,VIW,N) + g([Ay, Aw]U, V), (12)

where R and R are the Riemannian curvature tensor of M and M and (R(U, V)W) denotes the

normal component of R(U, V)W [11]. The second covariant derivative VZB of B is defined by
T BYW,T,U,V) = (VyVyB)W,T)
= V5(@yBYW, T)) — (TyB)(VyW, T) (13)
~(VyBYW,VyT) = (Vy,v BY(W,T).
Then, we have
VyWBYW,T) = W VyBYW,T) = (R(U,V)BY(W,T)
= RY(U,V)B(W,T) — B(R(U,V)W,T) — B(W,R(U,V)T), (14)

where R is the curvature tensor belonging to the connection V. The Laplacian of the square of the

lenght of the second fundamental form is defined
1 2 —2 — 2
SAlIBII> = g(V B,B) + ||[VB], (15)

where ||B|| is the length of the second fundemental form B, so that
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IBIE = X g(Bwi,wy), Bwi,w))), (16)
and using (3.8), we can write

V81" = 3 9, TurBY 03w, Far T BYO3 i), (17)
and

9(V'B,B) = 2 9T T B, Wi, By, wi), (18)

A submanifold M in a contact metric manifold is called a C-totally real submanifold [12]
if every tangent vector of M belongs to the contact distribution. Hence, a submanifold M in a
contact metric manifold is a C-totally real submanifold if & is normal to M. A submanifold M in

an almost contact metric manifold is called a C-totally real submanifold if p(TM) < T+(M) [13].

4. Conformally Flat Minimal C-totally Real Submanifolds of (i, u)-Nullity Space

Forms

Let M™ be a C-totally real submanifold of a (i, u)-nullity space form M?™*! with ¢-
sectional curvature ¢ and structure tensors (@, ¢,7, g), with & normal to M. The conformal

curvature tensor field of M™ is defined by

B 1 [Ric(U,W)V — Ric(V, W)U
CWVIW =RUIW + 2= |\ wyov — o7, W)U

scal

e WU W)V — gV, W)U], (19)

for all vector fields U,V, and W, where Q denotes the Ricci operator defined by g(QU,V) =
Ric(U,V). For m = 4, the manifold M is conformally flat manifold if and only if C = 0 [11].

Lemma 3. Let M be an m-dimensional C-totally real submanifold on (k, p)-contact metric

manifold M2™*1, Then, we have
l) A@Win = A(EW]-WL"

i) tr(X AD)? = ¥ (trd;A))*
i i,j

Lemma 4. A C-totally real submanifold M of dimension m > 4 in a (k, u)-nullity space

form M?™*! conformally flat if and only if
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{Z {g(AaijWk)g(AaWi:Wl)}
(m—-1)(m—2)y¢
—g(Agwi, wi ) g(Agwj, wp)}

+HE (4 = IBIP gy, widg Wi w) = 9w wd g Gy, w)} (20)

D A AW, W) g (5, w0) = g (Agwy, WidG (Wi, W)

a

+9(Aawj, W) g (Wi, i) — g(AaWi, W) g(Wj, wic) }

+(m—-1)

2 {9(Aawi, w) g (Aawi, we) g (W), wi)

—(m—-1) _g(AaWj»Wt)g(AaWk: we)g(wi, wy) =0,
+9(Agw;, wi)g(Aqwi, we) g (wi, wy)
—g(Aqwi, wp) g (Agwy, we)g (W), wi )}

where

IB11? = a%jg(AaWi:Wj)z = trd’, 21)
and

A =§ (A% (22)

Proof. Let M be a conformally flat manifold. Then, from Eqn. (5) and Eqn. (19), we have

(m —1(m = 2)g(R(w;, wj)wy, wy)

Ric(wi, wi) g(wj, wi) — Ric(wj, wi ) g(wi, wi) } 23)

+Ric(wj, wi)g(wi, wi) — Ric(wi, w) g(wj, wy)

+(m — 1){

—scal{g(wi, Wk)g(Wj.Wl) - g(Wj:Wk)g(Wi'Wl)} = 0.
Using Eqn. (10) in Eqn. (23), we get

(m —1)(m = 2) 2 {g(Aawj, Wi) g (AaWi, W) = 9 (AaWi, Wi (Aaw), Wi)}

24

(m—-1)(m-2) 2 gwj, wi)g(wi, wy) }
+———=f(c+ 3) + 2% + 84} + scal
4 « ) J }{—g(wi.wk)g(wj,Wz)

Ric(wi,wk)g(wj,w,) - Ric(wj,wk)g(wi,wl) } _o

+(m—1) {+RiC(Wj' wy)gwy, wie) — Ric(wy, w)g(wy, w)
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where Ric and scal, respectively, the Ricci tensor and scalar curvature of M, defined by

(m-1)

Ric(wj,wi)) =——{(c+3) + 2% + 82}g (w), wy) (25)
+Za tr(Ag)g(Aawj, wi) — g(Aqwj, Agwy),
and
scal = "= ((c + 3) + 242 + 84} +3 (tr(42))* - IBIP. (26)

From Eqn. (24)-Eqn. (26), we have Eqn. (20).

Lemma 5. Let M be an m-dimensional C-totally real submanifold on (k, p)-contact metric

manifold M?™*1 If M is minimal, then Eqn. (20) becomes
(m —1)(m — 2)g([A;, Aj]wi, W)
—1BII*{g (W), wi) g (wi, wi) — g(wy, wi) g (wj, wi)} (27)
—(m — D{g(wj, w)tr(A;Ax) — gw;, w)tr(4;Ax)
+9(wi, wi)tr(4;A;) — g(wj, wi)tr(4;4,)} = 0.

Lemma 6. Let M be a conformally flat minimal C-totally real submanifold of dimension

m > 4 in a (i, w)-nullity space form M?>™+1, then

(m—1)(m —2) Y tr(A;4))* = |IBlI* + (m — 1)(m — 4)tr(A*)>. (28)
iJ

Also we have the following:

Lemma 7. In any (k, 1t)-contact metric manifold, we have

=112

DlIvB[” = 11BII%, (29)
ii) tr(A*)? < ||B||*. (30)
Now using Lemma 7, we get the following:

Lemma 8. Let M?™*! be a (k, u)-nullity space form of constant (3-sectional curvature &
and M be an m > 4-dimensional minimal C-totally real submanifold of M. The Laplacian of the

square of the length of the second fundamental form B of M
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1 _ 2 (=1 +m@E+3) A
SAIBI? = [[78] +( ; +5 0@+ 8 —A)) B2
+2 % tr(AqAg)? — 3tr(4%)?, 31)
by
where A = V1 — k.

Proof. If M is minimal then, from [11], we have
T BU.Y) =3 ROv, DBYW, V). (32)
For an orthonormal base w;, from Eqn. (12), we have
(R(Wi, w)B) (W, w)) = R (Wi, wi) B(Wk, W) — B(R(Wy, W)Wy, W) (33)
—B(wk, R(Wy, wi)w;).
Using Eqn. (10) in Eqn. (33), we get
9((RWi, w)B) (W, w)), B(w;, w))) = g(R* (Wi, w;) B(Wg, wj), B(w;, wj))

—g(B(R (W, w)wy, w;), B(w;, w))) — aZﬂ g(AgAqwy, AgAgwy) (34)
+ 3 (At (45 A0) — g (BWie R(wie w)w)), B(w, w))
= 3 (tr(AAp))? + 3, tr(Agha)?.
a,B a,B
Again using Eqn. (11) in Eqn. (34), we have

9((R(Wk, w)B) (Wi, wj), B(w;, w))) = g(R(Wy, w;) B(Wy, w)), B(w;, wj))

—g(B(R(Wy, w)wy, w)), B(w;, w))) — g(B(Wk, R(Wi, w)w;), B(w;, w)))

+3 ZZ‘Z;‘; ;Eiif)la)z - (tr(A/zAa))z]_ (35)

After some calculations, we have
gR Wy, w;) B(wi, w)), B(w;, wy)) = (%1 - %2) 1B, (36)
GBR Wi, wwi, w)), B(w;, wy)) = D) g 2, (37)
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= —(€+3)-2A(A+4
(B Wi, Rwy, ww)), B(wy, w) = (2222 g 2, (38)

zﬁ [tr(AgAp — AgAa)? — (tr(AgAg))?] = % 2tr(AgAg) — 3tr(A%)%. (39)

Thus, using Eqn. (36)-(39) in Eqn. (35), we get Eqn. (31).
5. Proofs of the Main Results
For a conformally flat submanifold M of dimension m = 4 we use equation Eqn. (28) to
replace ), tr(AaA[g)Z in Eqn. (31), we have
ap
1 — 2
S(m =1 (m=2)AIB|I* = (m — 1)(m - 2)||VB|

(6-1)+m(c+3)

+(m — D) (m - 2) (=22

+2m@+ 4 -2) 18I (40)
—(m = 1)(m + 2)tr(4")? + 2||B|1*.
So from Lemma 7, we get
~(m —1)(m - 2)Al1B1? (41)
> (m - 1)(m — 2)|IBII? + 2||B|I* — (m — 1)(m + 2)|B||*

+i(m —1D(m—=2)[(¢—1)+m(C +3) + 2A(m(A + 4) — D]||BI|?

(m-1)(m—-2)(m+1)(C+3) Am(A+4)-1)
_slR| et Dm - TR
—(m? +m - 4)||B||?

If ¢ > —3, then

m?-1)(m-2)(¢+3)
4(m2+m-4)

A(mA+4)-2)
2(m2+m-4)’

1B < ¢ +(m — 1)(m — 2) (42)

which implies that A||B||> >0 . For a compact submanifold M, Hopf’s lemma states that
A||B||? = 0 and from Eqn. (41) and Eqn. (42), we conclude that ||B||? = 0. Hence, we have

scal = "= (¢ + 3) + 242 + 813 — [IBI2, (43)

for every compact minimal C-totally real submanifold in a (x, ¢)-nullity space form M. Thus, the

proof of Theorem 1 is completed.
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On the other hand, since M™ has constant curvature ¢ and scal = m(m — 1)2, from Eqn.

(26), we have

~ 2
||B||2 _ m(m . 1) ((c+3)+21 +84 C),

4
and

X 2
c< (c+3)+42l +81 '

Also, Eqn. (10) becomes
(c =2 +3) + 242 +823) {g (wy, wie) g (wi, wi) — g (wi, wie) g (wy, w )}

= g([4i, 4j]wi, wy). (44)

Multiplying this equation by Y, g(Ayw;, w;)g(Ayw;j, wy), we obtain
N
1,
(c —3{(c+3)+222 + 81}) IBI? = X tr(4iA))? — 3. (tr(4iAp)2. (45)
i,j L]

Since Ric = %al g, from Eqn. (25) and Lemma 3, we have

scal [I1B|%

tr(4;A) = g(Aqw), Agw)) = —gw;, w) = —=g(w;, w,),
and

tr(AiA)? = (c = (@ +3) + 222 + 823) BII? + 12
i1 2 —

Substituting the last equation into Eqn. (31), we obtain

_mE+)+E-1) AmA+4H -2

BJI2.
y i LG

= 2 _[(m+1)
751" = | =5 181
Now using
IBIIZ = m(m — DE{(E +3) + 242 + 823},

and Lemma 7, we get

[VB||" = m(m? - 1) (c- {M}) (c--1)

4 m+1
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< 2

4
Thus, the proof of Theorem 2 is completed.
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