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Abstract

In this paper, we first define a new density of a ∆-measurable subset of a product time
scale Λ2 with respect to an unbounded modulus function. Then, by using this definition,
we introduce the concepts of ∆

f
Λ2 -statistical convergence and ∆

f
Λ2 -statistical Cauchy for a

∆-measurable real-valued function defined on product time scale Λ2 and also obtain some
results about these new concepts. Finally, we present the definition of strong ∆

f
Λ2 -Cesaro

summability on Λ2 and investigate the connections between these new concepts.

1. Introduction

The idea of statistical convergence of number sequences was formally introduced by Fast [1] and also independently Steinhaus [2]. This
concept is a generalization of classical convergence and has a close relation with the concept of density of the subset of natural numbers N.
The natural density of K ⊆ N is defined by δ (K) = lim

n
n−1 |{k ≤ n : k ∈ K}| if the limit exists, where and throughout the paper |K| denotes

the cardinality of K. A sequence x = (xk) is said to be statistically convergent to L if, for every ε > 0

lim
n

1
n
|{k ≤ n : |xk−L| ≥ ε}|= 0,

and we denote this by st− limx = L. In later years, statistical convergence has taken a very important place in mathematical analysis and
has been studied by many researchers, see [3–12]. Another notion that can be of importance is modulus function which was first given by
Nakano [13]. The readers can consult the works [14–16] for more on this function. We remind here that a modulus f : [0,∞)→ [0,∞) is a
function which satisfies
i) f (x) = 0 if and only if x = 0,
ii) f (x+ y)≤ f (x)+ f (y) for every x≥ 0, y≥ 0 ,
iii) f is increasing,
iv) f is continuous from right at 0.
We can easily see that a modulus function f is continuous everywhere on [0,∞) from above properties (ii) and (iv). A modulus function may
be bounded or unbounded. As in example, f (x) = x

1+x is bounded, while f (x) = xp is unbounded where 0 < p≤ 1.
In [17], by means of an unbounded modulus function, Aizpuru et al. firstly presented a new idea of density for the subset of N. With this
way, they also defined a new convergence idea with the name f -statistical convergence and show that it is between classical convergence and
statistical convergence. The readers can found further works using this concept in the references [18, 19].
A time scale is an arbitrary closed subset of the real numbers R and it is denoted by the symbol T. We here suppose that it has the subspace
topology which is inherited from R with the standart topology. The calculus of time scales was constructed by Hilger [20], and it allows to
the unification of continuous and discrete cases. After that, this theory has received much attention [21–26] as it has tremendous potential
for applications. Moreover, the idea of statistical convergence has been studied on time scales in [27] and [28], independently. Later, by
inspiring from these works, various researchers have done many studies using the time scale on the summability theory in the literature,
see [29–39]. Let’s now remember some necessary concepts about the time scale calculus before proceeding further.
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For t ∈ T, the forward jump operator σ : T→ T is defined by σ(t) = inf{s ∈ T : s > t}. Here we take inf /0 = supT , where /0 is an empty set.
For a≤ b, a closed interval in T is defined by [a,b]T = {t ∈ T : a≤ t ≤ b}. Similarly, half-open intervals or open intervals can be defined
on time scales. Let F1 denote the family of all intervals of T having the form [a,b)T = {t ∈ T : a≤ t < b} with a,b ∈ T and a≤ b. Then
the set function m1 : F1→ [0,∞) define as m1 ([a,b)T) = b−a is a countably additive measure on F1. The Caratheodory extension of the
set function m1 associated with family F1 is said to be the Lebesgue ∆−measure on T and also this is denoted by µ∆, see [23]. Also from
the work [23] by Guseinov, one knows that if a ∈ T\{maxT}, then the single point set {a} is ∆−measurable and µ∆ ({a}) = σ (a)−a. If
a,b ∈ T and a≤ b, then µ∆ ([a,b)T) = b−a and µ∆ ((a,b)T) = b−σ (a). If a,b ∈ T\{maxT} and a≤ b, then µ∆ ((a,b]T) = σ (b)−σ (a)
and µ∆ ([a,b]T) = σ (b)−a.
Turan and Başarır [36] gave ∆ f -convergence by combining the ideas of Seyyidoğlu and Tan [27], Turan and Duman [28], and Aizpuru et
al. [17] as in the following:

Definition 1.1. [36] Let T be a time scale such that infT = α > 0 and supT = ∞ and let f be a modulus function. A ∆−measurable
function g : T→ R is ∆ f - convergent to a number L on T, if for every ε > 0

lim
t→∞

f (µ∆ ({s ∈ [α, t]T : |g(s)−L|> ε}))
f (µ∆ ([α, t]T))

= 0,

which is denoted by ∆ f − lim
t→∞

g(t) = L

Quite recently, Çınar et al. [32] carried statistical convergence and its related concepts which are given on 1-dimensional time scales to
an arbitrary product time scales. Before remembering these definitions, let’s give some necessary concepts and notations that we will use
throughout this study. Let T1 and T2 be a time scale. Consider the Cartesian product

Λ
2 = T1×T2 = {t = (t1, t2) : t1 ∈ T1 and t2 ∈ T2} .

Then Λ2 is called an 2-dimensional time scale or product time scale. Here, we are interested in a product time scale Λ2 = T1×T2 such that
infT1 = t0 and supT1 = ∞; infT2 = r0 and supT2 = ∞. For convenience, we denote A :=

{
[t0, t]T1

× [r0,r]T2

}
for (t,r) ∈ Λ2. Thanks to

the work [25] given by Bohner and Guseinov, it is clear that µ∆ (A) = µ∆

(
[t0, t]T1

)
.µ∆

(
[r0,r]T2

)
.

Definition 1.2. [32] Let g : Λ2→ R be a ∆-measurable function. Then g is said to be statistically convergent to L on Λ2 , if for every ε > 0,

lim
(t,r)→∞

µ∆ ({(s,u) ∈ A : |g(s,u)−L| ≥ ε})
µ∆ (A)

= 0,

which is denoted by stΛ2 − lim
(t,r)→∞

g(t,r) = L.

Definition 1.3. [32] Let g : Λ2→ R be a ∆-measurable function and 0 < p < ∞. Then we say that g is strongly p-double Cesaro summable
to L on Λ2, if

lim
(t,r)→∞

1
µ∆ (A)

∫∫
A

|g(s,u)−L|p∆s∆u = 0.

We write
[
wp
]

Λ2 for the set of all strongly p-double Cesaro summable functions on Λ2.

The aim of this study is to extend the concept of f -statistical convergence and its related notions to any product time scale, in light of works
Aizpuru et al. [17], Turan and Başarır [36] and Çınar et al. [32].
This paper has the following order. In Section 2, we introduce the new notions such as ∆

f
Λ2 -density, ∆

f
Λ2 -statistical convergence and

∆
f
Λ2 -statistical Cauchy on product time scales, where f is any unbounded modulus. We also establish some results related to these new

concepts. In Section 3, the definition of strong ∆
f
Λ2 -Cesaro summability on any product time scale is presented, and we examine the

connections between strong ∆
f
Λ2 -Cesaro summability and ∆

f
Λ2 -statistical convergence, Cesaro summability.

2. ∆
f
Λ2-Density, ∆

f
Λ2-Statistical Convergence and ∆

f
Λ2-Statistical Cauchy on Product Time Scale

We first define a new type of density on a product time scale Λ2, namely ∆
f
Λ2 -density, by using the idea of Aizpuru et al. [17]. Then, with

the aid of this definition, the new concepts such as ∆
f
Λ2 -statistical convergence and ∆

f
Λ2 -statistical Cauchy on any product time scale are

introduced. Throughout the paper let f be an unbounded modulus function.

Definition 2.1. Let Ω be a ∆-measurable subset of Λ2. Then, the ∆
f
Λ2 -density of Ω on Λ2 is defined by

δ
f

Λ2 (Ω) = lim
(t,r)→∞

f (µ∆ (Ω(t,r)))
f (µ∆ (A))

if this limit exists, where Ω(t,r) = {(s,u) ∈ A : (s,u) ∈Ω} for (t,r) ∈ Λ2.
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Definition 2.2. Let g : Λ2→R be a ∆-measurable function. Then, we say that g is ∆
f
Λ2 -statistically convergent to L on Λ2, if for every ε > 0,

δ
f

Λ2

({
(t,r) ∈ Λ

2 : |g(t,r)−L| ≥ ε

})
= 0

holds, i.e.,

lim
(t,r)→∞

f (µ∆ ({(s,u) ∈ A : |g(s,u)−L| ≥ ε}))
f (µ∆ (A))

= 0,

which is denoted by st f
Λ2 − lim

(t,r)→∞

g(t,r) = L. Also, we denote the set of all ∆
f
Λ2 -statistically convergent functions on Λ2 by S f

Λ2 .

Remark 2.3. If we choose f (x) = x in Definition 2.2, then ∆
f
Λ2 -statistical convergence is reduced to statistical convergence given in

Definition 1.2.

Proposition 2.4. If g : Λ2→ R is ∆
f
Λ2 -statistically convergent function, then its limit is unique.

Proof. The proof can be carried out by using similar techniques to Proposition 2.4 in [32].

Proposition 2.5. Let g,h : Λ2→ R be ∆-measurable functions with st f
Λ2 − limg(t,r) = L1 and st f

Λ2 − limh(t,r) = L2. Then, we have:

i) st f
Λ2 − lim(g(t,r)+h(t,r)) = L1 +L2,

ii) st f
Λ2 − lim(cg(t,r)) = cL1 for any c ∈ R.

Proof. The proof can be carried out by using similar techniques to Proposition 2.5 in [32].

Theorem 2.6. Let g : Λ2→ R be a ∆-measurable function. If lim
(t,r)→∞

g(t,r) = L, then st f
Λ2 − lim

(t,r)→∞

g(t,r) = L.

Proof. Suppose that lim
(t,r)→∞

g(t,r) = L. Then, the set
{
(s,u) ∈ Λ2 : |g(s,u)−L|> ε

}
is bounded, for each ε > 0. Since

{(s,u) ∈ A : |g(s,u)−L|> ε} ⊂
{
(s,u) ∈ Λ

2 : |g(s,u)−L|> ε

}
and modulus function f is increasing, we get

f (µ∆ ({(s,u) ∈ A : |g(s,u)−L|> ε}))
f (µ∆ (A))

6
f
(
µ∆

({
(s,u) ∈ Λ2 : |g(s,u)−L|> ε

}))
f (µ∆ (A))

.

Taking limit as (t,r)→ ∞ in here, we obtain

lim
(t,r)→∞

f (µ∆ ({(s,u) ∈ A : |g(s,u)−L|> ε}))
f (µ∆ (A))

= 0,

which means that st f
Λ2 − lim

(t,r)→∞

g(t,r) = L.

Theorem 2.7. Let g : Λ2→ R be a ∆-measurable function. Then, st f
Λ2 − lim

(t,r)→∞

g(t,r) = L implies stΛ2 − lim
(t,r)→∞

g(t,r) = L.

Proof. Suppose that st f
Λ2 − lim

(t,r)→∞

g(t,r) = L. Then, using the limit definition and also properties of subadditivity of the modulus function f ,

for every p ∈ N, for sufficiently large (t,r) ∈ Λ2, we have

f (µ∆ ({(s,u) ∈ A : |g(s,u)−L|> ε}))6 1
p

f (µ∆ (A)) 6
1
p

p f
(

µ∆ (A)
p

)
= f

(
µ∆ (A)

p

)
.

Also, since f is increasing, we get

µ∆ ({(s,u) ∈ A : |g(s,u)−L|> ε})
µ∆ (A)

6
1
p
,

which means that stΛ2 − lim
(t,r)→∞

g(t,r) = L.

Corollary 2.8. Let g : Λ2→ R be a ∆-measurable function. Then, we have

lim
(t,r)→∞

g(t,r) = L⇒ st f
Λ2 − lim

(t,r)→∞

g(t,r) = L⇒ stΛ2 − lim
(t,r)→∞

g(t,r) = L.

Theorem 2.9. Let g : Λ2→ R be a ∆-measurable function and h : R→ R be a continuous function at L. If st f
Λ2 − lim

(t,r)→∞

g(t,r) = L, then

st f
Λ2 − lim

(t,r)→∞

h(g(t,r)) = h(L).

Proof. Using techniques similar to Lemma 3.11 in [28], the proof can be carried out easily and is therefore omitted.
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Definition 2.10. A ∆-measurable function g : Λ2→ R is ∆
f
Λ2 -statistical Cauchy on Λ2, if for every ε > 0, there exist some numbers t1 > t0

and r1 > r0 such that δ
f

Λ2

({
(t,r) ∈ Λ2 : |g(t,r)−g(t1,r1)| ≥ ε

})
= 0.

Theorem 2.11. Let g : Λ2→ R be a ∆-measurable function. Then, the following statements are equivalent:
i) g is ∆

f
Λ2 -statistical convergent on Λ2,

ii) g is ∆
f
Λ2 -statistical Cauchy on Λ2.

Proof. Using techniques similar to Theorem 3 in [27], the proof can be carried out easily and is therefore omitted.

3. Strong ∆
f
Λ2-Cesaro Summability on Product Time Scale

We begin in here by presenting the last new definition, namely, strong ∆
f
Λ2 -Cesaro summability on Λ2.

Definition 3.1. Let f be a modulus function and g : Λ2 → R be a ∆-measurable function. Then, we say that g is strongly ∆
f
Λ2 -Cesaro

summable to L on Λ2, if

lim
(t,r)→∞

1
µ∆ (A)

∫∫
A

f (|g(s,u)−L|)∆s∆u = 0.

We also denote the set of all strongly ∆
f
Λ2 -Cesaro summable functions on Λ2 by [w] f

Λ2 .

Lemma 3.2. [15] Let f be any modulus function and let 0 < δ < 1. Then, for each x > δ , we have f (x)6 2 f (1)δ−1x.

Lemma 3.3. [16] Let f be any modulus function. Then lim
t→∞

f (t)
t exists.

The next theorem gives us the connection between the concepts of strong ∆
f
Λ2 -Cesaro summability and strong double Cesaro summability

given in Definition 1.3.

Theorem 3.4. i) For any modulus function f , we have [w]
Λ2 ⊂ [w] f

Λ2 .

ii) Let f be any modulus function. If lim
t→∞

f (t)
t > 0, then we have [w] f

Λ2 ⊂ [w]
Λ2 .

Proof. i) Let g ∈ [w]
Λ2 with the limit L. Then, we have

lim
(t,r)→∞

1
µ∆ (A)

∫∫
A

|g(s,u)−L|∆s∆u = 0.

Since modulus f is continuous, for any given ε > 0, we may choose δ with 0 < δ < 1 such that f (t)< ε for every t with 0 6 t 6 δ . Then,
by Lemma 3.2, we write

1
µ∆ (A)

∫∫
A

f (|g(s,u)−L|)∆s∆u =
1

µ∆ (A)

∫∫
A

|g(s,u)−L|<δ

f (|g(s,u)−L|)∆s∆u+
1

µ∆ (A)

∫∫
A

|g(s,u)−L|>δ

f (|g(s,u)−L|)∆s∆u

6 ε +2 f (1)δ
−1 1

µ∆ (A)

∫∫
A

|g(s,u)−L|∆s∆u.

Taking limit as (t,r)→ ∞ in here, because ε > 0 is arbitrary, we obtain that g ∈ [w] f
Λ2 .

ii) From the proof of Proposition 1 of [16], one has β = lim
t→∞

f (t)
t = inf

{
f (t)
t : t > 0

}
. Then, we get f (t)> β t for all t > 0. Now let g∈ [w] f

Λ2

with the limit L. Since β > 0, we get

lim
(t,r)→∞

1
µ∆ (A)

∫∫
A

f (|g(s,u)−L|)∆s∆u > lim
(t,r)→∞

β

µ∆ (A)

∫∫
A

|g(s,u)−L|∆s∆u.

It follows that g ∈ [w]
Λ2 and so the proof is completed.

Before giving the last theorem of this study, we give some lemmas that will be used in the its proof.

Lemma 3.5. [32] Let g : Λ2→ R be a ∆-measurable function and let

Ω(t,r) = {(s,u) ∈ A : |g(s,u)−L|> ε}

for ε > 0. Then, we have

µ∆ (Ω(t,r))6
1
ε

∫∫
Ω(t,r)

|g(s,u)−L|∆s∆u 6
1
ε

∫∫
A

|g(s,u)−L|∆s∆u.
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Lemma 3.6. Let t1, t2 ∈ T1, r1,r2 ∈ T2 and c,d ∈ R and D =
{
[t1, t2]T1

× [r1,r2]T2

}
. If φ : D→ (c,d) is ∆-integrable and F : (c,d)→ R

is convex, then

F


∫∫
D

φ (s,u)∆s∆u

µ∆ (D)

6

∫∫
D

F (φ (s,u))∆s∆u

µ∆ (D)
.

Proof. It can be proved by considering a similar way in the proof of Theorem 4.1 of [22].

Now, we construct a connection between ∆
f
Λ2 -statistical convergence and strong ∆

f
Λ2 -Cesaro summability in the next theorem.

Theorem 3.7. Let g : Λ2→ R be a ∆-measurable function. Then, we have
i) Let f be a convex, modulus function such that there exists a positive constant c such that f (xy)≥ c f (x) f (y) for all x ≥ 0, y≥ 0, and
lim
t→∞

f (t)
t > 0 and lim

t→∞

f (1/t)
1/t > 0 exist. If g is strongly ∆

f
Λ2 -Cesaro summable to L, then st f

Λ2 − lim
(t,r)→∞

g(t,r) = L.

ii) If st f
Λ2 − lim

(t,r)→∞

g(t,r) = L and g is a bounded function, then g is strongly ∆
f
Λ2 -Cesaro summable to L, for any modulus f .

Proof. i) Let g be strongly ∆
f
Λ2 -Cesaro summable to L. Using the lemmas 3.5 and 3.6, for any given ε > 0, we obtain that

1
µ∆ (A)

∫∫
A

f (|g(s,u)−L|)∆s∆u >
µ∆ (A)
µ∆ (A)

f


∫∫
A

f (|g(s,u)−L|)∆s∆u

µ∆ (A)

 ,

> f


∫∫
A

|g(s,u)−L|>ε

f (|g(s,u)−L|)∆s∆u

µ∆ (A)

 ,

> f
(

µ∆ ({(s,u) ∈ A : |g(s,u)−L|> ε})
µ∆ (A)

ε

)
,

> c f (µ∆ ({(s,u) ∈ A : |g(s,u)−L|> ε})) f
(

ε

µ∆ (A)

)
,

= cε
f (µ∆ (A))

µ∆ (A)
f (µ∆ ({(s,u) ∈ A : |g(s,u)−L|> ε}))

f (µ∆ (A))

f
(

ε

µ∆(A)

)
ε

µ∆(A)
.

Also, by using lim
t→∞

f (t)
t > 0 and lim

t→∞

f (1/t)
1/t > 0, since g is strongly ∆

f
Λ2 -Cesaro summable to L, we get st f

Λ2 − lim
(t,r)→∞

g(t,r) = L.

ii) Let g be bounded and st f
Λ2 − lim

(t,r)→∞

g(t,r) = L. Then, there exists a positive number M such that |g(s,u)−L| ≤M for all (s,u) ∈ Λ2. For

any given ε > 0, we get

1
µ∆ (A)

∫∫
A

f (|g(s,u)−L|)∆s∆u =
1

µ∆ (A)

∫∫
A

|g(s,u)−L|>ε

f (|g(s,u)−L|)∆s∆u+
1

µ∆ (A)

∫∫
A

|g(s,u)−L|<ε

f (|g(s,u)−L|)∆s∆u,

6
µ∆ ({(s,u) ∈ A : |g(s,u)−L|> ε})

µ∆ (A)
f (M)+

µ∆ (A)
µ∆ (A)

f (ε) .

Hence, letting (t,r)→ ∞ on both sides in here and then ε → 0, by means of Theorem 2.7, we get

1
µ∆ (A)

∫∫
A

f (|g(s,u)−L|)∆s∆u = 0,

which completes the proof.

Remark 3.8. If we take f (x) = x in Theorem 3.7, we get Theorem 2.10 of [32] for the special case p = 1.
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