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Entropy is a robust method that is able to measure irregularities or the general 
behavior of the complex time series which could be continuously interact with many 
different and independent factors in time. This study aimed to investigate the 
sample entropy measurement of heart rate variability (HRV) for evaluating of 50Hz 
interference and baseline wander (BW) noise effects on RR interval. Three different 
synthetic electrocardiogram (ECG) signals were recorded using the simulator 
device. Sample Entropy (SampEn) values of full length and windowed length of data 
were calculated to track and identify RR intervals.  It was found that adult normal 
sinus rhythm (NSR) signal without noise had the most regular and consistent results 
while adult ECG signal with BW noisy had the most irregular and inconsistent 
results. Furthermore, the BW noisy had more effect on irregularity ECG signal than 
50 Hz interference. Consequently, the SampEn provided the measurement of 
irregularity and randomness of ECG data. However, it was found that the 
determination of RR intervals for classification and decision support systems was 
not practical in real-time analysis of HRV from raw ECG recordings because of noisy 
affect. 

  

RR INTERVAL TESPİTİNDE KALP ATIM HIZI DEĞİŞKENLİĞİNİN ÖRNEK 
ENTROPİ ANALİZİ  

 

Anahtar Kelimeler Öz 
Örnek Entropy, 
Kalp Hızı Değişkenliği, 
Gürültü Faktörü, 
Düzensizlik. 

Entropi, zaman içinde birçok farklı ve bağımsız faktörlerle sürekli olarak etkileşime 
girebilecek karmaşık zaman serilerinin düzensizliklerini veya genel davranışlarını 
ölçebilen sağlam bir yöntemdir. Bu çalışma, 50Hz gürültüsünün ve taban hattı 
kayması (BW) gürültüsünün RR aralığı üzerindeki etkilerini değerlendirmek için 
kalp hızı değişkenliğinin (HRV) örnek entropi (SampEn) ölçümünü araştırmayı 
amaçlamıştır. Stimülatör cihazı kullanılarak üç farklı sentetik elektrokardiyogram 
(EKG) sinyali kaydedilmiştir. RR aralıklarını izlemek ve tanımlamak için tam 
uzunluktaki ve pencereli veri uzunluğundaki SampEn değerleri hesaplanmıştır. BW 
gürültüsüne sahip yetişkin EKG sinyali en düzensiz ve tutarsız sonuçlara sahipken 
Gürültüsüz erişkin Normal Sinüs Ritim (NSR) sinyalinin en düzenli ve tutarlı 
sonuçlara sahip olduğu bulunmuştur. Ayrıca, EKG sinyali üzerindeki 
düzensizliklerde BW gürültüsü 50 Hz gürültüsüne göre daha fazla etkiye sahipti. 
Sonuç olarak, SampEn, EKG verilerinin düzensizliği ve rasgeleliğinin ölçülmesini 
sağlamıştır. Bununla birlikte, sınıflandırma ve karar destek sistemleri için RR 
aralıklarının belirlenmesi, gürültülü etki nedeniyle ham EKG kayıtlarından HRV'nin 
gerçek zamanlı analizinde pratik olmadığı bulunmuştur.  
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1. Introduction 
 
Heart rate variability (HRV) have a strong relationship with heart rate. Therfore, this is gold standard clinical tool 
to assess cardiovascular autonomic function and cardiac event risks (Villarel et al,, 2002). HRV represents the 
variability of intervals between consecutive R-peaks (RR) on QRS complex measured on the electrocardiogram 
(ECG) signal (Malik et al., 1196).  Irregular and decreased HRV is associated with numerous pathologies for cardiac 
events, including sudden cardiac death. Over the past decades, HRVmeasurement from the wearable ECG systems 
became so popular and have been conducted to wide applications (Guo et al., 2015; Rosenberg et al., 2013; Baig et 
al., 2013). These systems are utilized for long-term monitoring of the cardiovascular-related diseases and provide 
decision support system.  Although HRV has traditionally been analyzed using linear methods such as time and 
frequency domain analysis as well as nonlinear dynamic analysis techniques depends in which the time series 
requires characterizing the signal according to its characteristics such as linear, nonlinear, random and chaotic 
(Pincus, 1991; Richman and Moorman, 2000; Lake et al., 2002). For accurate HRV measurements, it is very 
important to analyze normal RR intervals by excluding abnormal RR intervals come from ectopic pulses, noise, 
artifacts, etc. The exclusion of abnormal RR is possible with short-term clinical ECG recordings under standard 
conditions where the recorded signals typically contain minimal artifacts. However, it is inevitable the abnormal 
beats and artifacts appear in ECG signals in long-term recordings and moving conditions of subject.  In addition, 
abnormal RR intervals may be caused by fluctuations in body function such as the body's response to changes in 
reflexes, physical activity, hormones, endocrine, temperature, as well as the state of the changes dynamism related 
to physiological or pathological events such as circadian rhythms (Steşn et al., 2005; Kleiger et al., 2005). It is 
therefore a difficult task to identify and interpret abnormal RR intervals because of its complexity and irregularity, 
in particular in long-term recordings (24 hours and over). The quantifiy measurement of the complexity could 
provide usefull information from nonlinear properties rather any analysis using time domain measurements. 
Therefore, entropy has recently emerged as a remarkable method for the analysis of nonlinear dynamic time series 
and quantitative measurement of complexity when many different and independent elements are continuously 
interacting in time (Pincus, 1991; Richman and Moorman, 2000; Ferrario et al., 2006). Many entropy algorithms 
have been introduced for complexity measurement, for example, approximate entropy (ApEn), sample entropy 
(SampEn), multiscale entropy (MSE), fuzzy entropy (FuzzyEn), permutation entropy (PerEn), distribution entropy 
(DistEn) etc.  Initially, ApEn was developed to classify medical systems such as heartbeats (Pincus, 1991). ApEn 
measures the likelihood that the patterns obtained in the m dimension are similar in subsequent incremental 
comparisons. The likelihood of being similar implies higher regularity. And this produces smaller ApEn values or 
vice versa. Consequently, the conditional probabilities in the correlation integral determine the ApEn value. 
However, ApEn has bias such as the inclusion of self-matching of template vectors in the calculations, being largely 
dependent on data length and lack of consistency in predictions.  Therefore, SampEn algorithm was introduced 
the to address ApEn biases. (Richman and Moorman, 2000). In practice, however, there are some difficulties in 
applying complexity measures, such as the effect of noise, lengths of data or parameter settings (Xiong et al., 2017; 
Kuntzelman et al., 2018, Kaya et al., 2019; Alcan and Uçar, 2019). Thus, in order to investigate what are the 
limitation of entropy measures from time series with various types noisy and how to provide appropriate 
interpretations, this study presents the sample entropy measurement of HRV for evaluating of the powerline 
interference and baseline wander (BW) noise afftects on RR interval using the windowing analysis.  
 
2. Material and Method 
 
2.1. Data 
 
ECG data was recorded from Fluke ProSim 8 vital sign patient monitor simulator device (Fluke Corp., Everett WA, 
USA). Data was sampled by the CED Micro1401 data acquisition (DAQ) unit (Cembridge Electronic Design Ltd, UK). 
DAQ unit was coupled with simultaneous output of simulator device at 360 Hz sampling rate, 16 bit resolution, 
and  ±5V input ranges. Data was stored on PC for further analysis (Figure 1) 
 
Raw ECG signals can often contain various artefacts and noises, such as baseline wander, powerline interference, 
EMG noise and electrode motion artifacts. Thus, three different types of ECG  signals from the simülatör were 
recorded (Figure 2).   We determined the physiological parameters and morpology of the normal sinus rhtym 
(NSR) ECG signals according to the range of values of a normal (healthy) adult person.   
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Figure 1. Schematic representation of data recording process 

 

 
Figure 2. The synthetic NSR recorded from simulator device a) without noise b) with 50 Hz power line artifact c) with 

baseline wander noise 

 
The first type signal was the noiseless (non-artefact) ECG signal of a normal adult. (Figüre 2a) The second type 
signal was the NSR signal with 25% 50 Hz alternative current (AC) interference (Figüre 2b) in the output which is 
one of the major artefact in ECG recording. The third signal was  adult NSR signal with 25% baseline wander (BW) 
noise (Figure 2c).  BW is a low frequency artifact in the ECG caused by breathing, electrically charged electrodes, 
or movement of the person. This artefact and may prevent detection of ST changes. Both the second and the third 
type of signals with noisy had also a standard deviation of 5%  shown in Table 1.  
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Table 1. The properties of the synthetic ECG signals recorded from the stiimulator device 

Parameters 
Normal Sinus Rhtym ECG Signal Types for Adult 

Without  artefact With 50 Hz AC 
interference 

With Baseline Wander 

ECG Rate 60 bpm 60 bpm 60 bpm 

Resp Rate 20 brpm 20 brpm 20 brpm 

Tempeture 37.0 C 37.0 C 37.0 C 

IBP channel 1 120/80 mmHg 120/80 mmHg 120/80 mmHg 

IBP channel 2 28/15 mmHg 28/15 mmHg 28/15 mmHg 

NIBP 120/80 (93) mmHg 120/80 (93) mmHg 120/80 (93) mmHg 

SpO2 97% 97% 97% 

ST Devination Off 5% 5% 

Amplitude 1.00 mV 1.00 mV 1.00 mV 

Artifact Size: non 25% 25% 

Artifact Lead non All Leads All Leads 

ECG= electrocardiagram, resp rate= resiratory rate, IBP = invasive blood pressure, NIPB = non-invasive blood pressure, SpO2= signal and 
blood-oxygen saturation, bpm= beats per minute, brpm= breaths per minute, mmHg=millimeters of mercury, Hz= hertz, AC=alternatice 

current, mV=milivolt, SD= standard devination 

 

2.2. The Interpretation of ECG Signal 
 
The interpretation of the ECG signal is critical to decide whether the person has normal heart rhythm or abnormal 
heart rhythms (arrhythmias) such as bradycardia, tachycardia, and atrial fibrillation. ECG interpretation requires 
a structured assessment of the waves and intervals as shown Figure 3. 
 

 
Figure 3. The waves and intervals for interpratation of the ECG signal 

 
The P wave reflects the depolarization of the Atria. Under normal circumstances, the stimulus comes out of the 
sinus node, first depolarizes the right and then the left atrium. Therefore, the first part of the P wave is 
depolarization of the right atrium and the second part is the depolarization of the left atrium. Q wave is any 
negative deflection that precedes an R wave. The R wave is the first upward deflection after the P waveThe R wave 
represents early ventricular depolarisation. The QRS complex reflects the depolarization of the Ventricles. The Q 
wave refers to the first negative wave after the P wave, the R wave refers to the first positive wave, and the S wave 
refers to the negative wave after R. Different QRS complexes are observed in different leads, and not all parts of 
the QRS complex are seen in each lead. The T wave is the positive deflection after each QRS complex.It represents 
ventricular repolarisation. The PR interval is the time from the onset of the P wave to the start of the QRS complex. 
It reflects conduction through the AV node. . The PR interval is obtained by measuring the time between the start 
of the P wave and the start of the QRS complex (in the absence of the Q wave, the start of the R wave).  The QT 
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interval reflects the total time spent for depolarization and repolarization of the ventricles. The QT interval is 
determined by measuring the time from the start of the QRS complex to the end of the T wave.The ST segment 
shows the electrically quiet period between depolarization and repolarization of the ventricles. The ST segment is 
the range that connects the J (junction) point where the QRS complex ends with the start of the T wave. The ST 
Segment represents the interval between ventricular depolarization and repolarization. The J point is the the 
junction between the termination of the QRS complex and the beginning of the ST segment.  The RR interval is the 
time changed between two successive R-waves of the QRS complex on the ECG.    
 
2.3. Sample Entropy 
 
In this study, SampEn algorithm was used to effectively predict the randomness, degree of regularity or 
irregularity of a data set. SampEn (m, r, N) is the negative value of the logarithm of the conditional probability. It 
counts on all other vectors except for each vector itself, looking for the condition that two similar m-point 
sequences remain similar at the next m + 1 point. In SampEn, the percentage of Xm (j) vectors within the tolerance 
range r of Xm (i), excluding self-matching, is calculated by the Equation 1. 

   

𝐴𝑖
(𝑚)

 (𝑟) =  
𝑁𝑖

(𝑚)
(𝑟)

𝑁 − mτ − 1′ 
 

 
(1) 

 

where, m denotes the embedded size (length of patterns to be compared), r denotes similarity criterion, τ denotes 
time delay variable and N denotes the length of the data. Ni (m) (r) denotes the number of js in the range di, j ≤ r, 
and 1 ≤ j ≤ N - mτ is j ≠ i. 
 
Then the percentage average Ai (m) (r) above 1 ≤ i ≤ N - mτ is determined by the Equation 2. 

                                                                     

Ѱ 𝑚(𝑟) =  
1

𝑁−mτ
∑ 𝐴𝑖

(𝑚)
 (𝑟)𝑁−mτ

𝑖=1  

 
(2) 

 
Similarly, Ѱ (m + 1) (r) is defined after increasing the dimension to m + 1. The SampEn value of the u time series 
is then defined as the negative natural logarithm of the probability of similar patterns of length m to the probability 
of similar patterns of length m + 1, and SampEn is calculated with the Equation 3. 
                                                                            

𝑆𝑎𝑚𝑝𝐸𝑛 (𝑚, τ, r ) = - ln 
Ѱ (𝑚+1) (𝑟)

Ѱ (𝑚) (𝑟)
  

(3) 
 
3. Experimental Results 
 
In this study, SampEn parameters were selected as  m =2, τ =1, and r= 0.2*SD (Standard Deviation) based on 
literature.  The data length of each ECG signal had 3600 data points. SampEn of ECG signals were calculated with 
two different approaches. Firstly, SampEn values of full length of data were calcuated. Table 2 shows the  analysis 
results of full length data.  
 

Table 2. Entropy values of the full length data for three different ECG signals  

Entropy 
Algortihm 

ECG Adult Normal Sinus Rhtym Signal Types 

Without 
Noisy 

50 Hz AC 
interference 

BW Noisy 

SampEn 0,0289 0,4240 0,7773 

                                                        SampEn=sample entropy,BW=baseline wander 
 

As expected from the background of entropy, the SampEn value of the ECG signal without noise is very low while 
it is high in signals with noisy.  This result provides a quantitative measure of regularity or irregularity in signals. 
In particular, when the algorithm is considered, it is understood that the comparison of the template vectors in the 
data series of the regular signals is similar to the next vector and therefore the entropy value is low and vice versa. 
BW type noise appears to have more effect on the randomness or irregularity of the signal than the 50Hz AC 
interference. This may be due to the fact that the 50 Hz noise is a more regular noise type in terms of 
reproducibility throughout the series. In other words, the effect of 50 Hz AC interference on signal complexity is 
less than BW. Both types of noise caused high entropy values rather than pathological conditions. This may lead 
to controversial for the interpretation of these signals and the validity of entropy calculations. Especially in 
arrhythmic ECG evaluation, the reason of the high entropy value will be uncertain because of the noise or 
pathological condition. 
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Secondly, windowing technique for the analysis of ECG signals was used to see how SampEn performs to follow 
the wave and intervals of the ECG signal in particular how sensitive to the noise affect. For windowing technique, 
the window length was determined as 100 data points. Totally thirty-six intermediate results corresponding to 
windows were calculated. The overlap between windows was not taken account to avoid more time-consuming 
for long-term monitoring applications. Figure 4 shows the intermediate values of the entropy for adult NSR signal 
without noise.  
 

 
Figure 4. The intermediate values of the entropy for NSR signal without noise 

 
As shown in the Figure 4, in the HRV analysis of noiseless ECG signals, the RR intervals can be visually detected. In 
the lower windowing range, the entropy results will be more sensitive to the P, QRS complex and T-stage and more 
precision tracking to signal. However,  the process will need more calculation cost. As a result of this, time time of 
process will increase depends on data length. In the higher windowing values, we may miss many R peaks in the 
dataset because there may be more than one QRS complex in the same window range. This can lead incorrect 
measurement.  
 
Figure 5 shows the entropy values of the normal adult NSR signal with 50 Hz AC interference. There are 
significantly, irregularities in entropy values (high and low). While our signal has ten R peaks in the specified range, 
there are visually too many R peaks in entropy results. In fact, it is unclear which of these is caused by the noise or 
the heart beat.  
 

 
Figure 5. The intermediate values of the entropy for NSR signal with 50 Hz AC interference 

 
Finally, intermediate values of the entropy for the normal adult NSR signal with BW noise was calculated which 
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shown in Figure 6. The entropy values calculated on each windowing range became more inconsistent and 
irregular. From the entropy results, most of the ten R peaks in the original signal were visually missing. In addition, 
there is a decrease in entropy values. 
 

 
Figure 6. The intermediate values of the entropy for NSR signal with BW noisy 

 

 
4. Result and Discussion 
 
As a result, it was found that the low value of entropy represents regularity while the high value represents 
irregularity or randomness depending on noisy type. On the other hand, If there is irregularity in the signal due to 
noise or pathological conditions, the windowing method can provide information where and how the presence of 
the irregularity and randomness in the data set by tracing the fluctuations and characteristics of the signal 
depending on the window length. The existence of patterns within a series is the essence of the definition of 
randomness. Thus SampEn forms a hierarchy of randomness based on different patterns and their repetitions. 
When comparing intermediate values of entropy for three type ECG signals, adult NSR signal without noise had 
the most regular and consistent results while adult NSR signal the BW noisy had the most irregular and 
inconsistent results. When comparing noise types, it can be said that the BW noisy has more effect on irregularity 
ECG signal than 50 Hz AC interference.  
 
This study presented that the entropy value of a full-length data provide information about the overall irregularity 
or randomness of complex signals. However, the determination of RR intervals was not practical in real-time 
monitoring and analysis of HRV measured raw ECG recordings because of noisy affect. Thus, the pre-processing of 
ECG signals is necessary to eliminate these various inteference, in particular, before feature extraction preccess 
for accurate classification and interpolation of HRV.  After pre-processing steps that eliminates noisy, SampEn 
could be used to determine RR intervals for feature exctraction as the fast analysis method in terms of classification 
and decision support systems for long-term ECG signal monitoring. 
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