Certain ranks of some ideals in symmetric inverse semigroups contains S_{n} or A_{n}

Leyla BUGAY*
Department of Mathematics, Çukurova University Adana, Turkey

Geliş Tarihi (Received Date): 03.02.2020
Kabul Tarihi (Accepted Date): 14.05.2020

Abstract

Let I_{n}, S_{n} and A_{n} be the symmetric inverse semigroup, the symmetric group and the alternating group on $X_{n}=\{1, \ldots, n\}$, for $n \geq 2$, respectively. Also let $I_{n, r}$ be the subsemigroup consists of all partial injective maps with height less than or equal to r for $1 \leq r \leq n-1$, and let $S I_{n, r}=I_{n, r} \cup S_{n}$ and $A I_{n, r}=I_{n, r} \cup A_{n}$. A non-idempotent element whose square is an idempotent is called a quasi-idempotent. In this paper we obtain the rank and the quasi-idempotent rank of $S I_{n, r}\left(o f ~ A I_{n, r}\right.$). Also we obtain the relative rank and the relative quasi-idempotent rank of $S I_{n, r}$ modulo S_{n} (of $A I_{n, r}$ modulo A_{n}).

Keywords: Symmetric inverse semigroup, quasi-idempotent, rank.

Simetrik inverse yarıgrubun S_{n} veya A_{n} i içeren bazı ideallerinin rankları

$\ddot{\mathbf{O} z}$
$n \geq 2$ için I_{n}, S_{n} ve A_{n}, sırasıyla, $X_{n}=\{1, \ldots, n\}$ üzerindeki simetrik inverse yarıgrup, simetrik grup ve alterne grup olsun. Ayrıca, $1 \leq r \leq n-1$ için $I_{n, r}$, yüksekliği en fazla r olan tüm klsmi bire-bir dönüşümlerden oluşan altyarıgrup, $S I_{n, r}=I_{n, r} \cup S_{n}$ ve $A I_{n, r}=$ $I_{n, r} \cup A_{n}$ olsun. Karesi idempotent olan fakat kendisi idempotent olmayan bir elemana quasi-idempotent denir. Bu callşmada $S I_{n, r}\left(A I_{n, r}\right)$ nin rankını elde ettik. Ayrıca, modulo S_{n} e göre $S I_{n, r}$ nin (modulo A_{n} e göre $A I_{n, r}$ nin) ilişkili rankını ve quasi-ilişkili rankını elde ettik.

[^0]Anahtar kelimeler: Simetrik inverse yarıgrup, quasi-idempotent, rank.

1. Introduction

For $n \in \mathbb{Z}^{+}$let $X_{n}=\{1, \ldots, n\}$. Also let I_{n} be the semigroup of all partial injective maps on X_{n}, called symmetric inverse semigroup, let S_{n} be the group of all permutations on X_{n}, called symmetric group, and let A_{n} be the group of all even permutations on X_{n}, called alternating group. Clearly, $A_{n} \leq S_{n} \leq I_{n}$. For escape from triviality throughout this paper we consider the case $n \geq 2$ unless otherwise stated. It is well known that I_{n} is an inverse semigroup and that every finite inverse semigroup S is embeddable in I_{n} for a suitable $n \in$ \mathbb{N}. Thus, investigating the structure of I_{n} is an important research topic in inverse semigroup theory, like as investigating the structure of symmetric group S_{n} in group theory.

An element $\alpha \in I_{n}$ is called an idempotent if $\alpha^{2}=\alpha$, and, as introduced in [6] that an element $\alpha \in I_{n}$ is called a quasi-idempotent if $\alpha \neq \alpha^{2}=\alpha^{4}$, that is, α is a non-idempotent element whose square is an idempotent. We denote the set of all quasi-idempotents in any subset U of any semigroup by $Q(U)$.

Let S be a semigroup, and let A be a non-empty subset of S. Then the subsemigroup generated by A is defined as the smallest subsemigroup of S containing A and denoted by $\langle A\rangle$. If there exists a non-empty subset A of S such that $S=\langle A\rangle$, then A is called a generating set of S. Also, the rank of a semigroup S is defined by
$\operatorname{rank}(S)=\min \{|A|:\langle A\rangle=S,|A|<\infty\}$.
In particular, if there exists a generating set A of S consists of some quasi-idempotents, then A is called quasi-idempotent generating set of S and the quasi-idempotent rank of S is defined by
qrank $(S)=\min \{|A|:\langle A\rangle=S, A \subseteq Q(S),|A|<\infty\}$.
For a fixed subset U of a semigroup S, if there exists a non-empty subset A of S such that $\langle A \cup U\rangle=S$, then A is called a relative generating set of S modulo U and the relative rank of S modulo U is defined by
$\operatorname{rerank}(S: U)=\min \{|A|:\langle A \cup U\rangle=S,|A|<\infty\}$.
Similarly, if there exists a non-empty subset A of $Q(S)$ such that $\langle A \cup U\rangle=S$, then A is called a relative quasi-idempotent generating set of S modulo U, and relative quasi-idempotent rank of S modulo U is defined by
$\operatorname{reqrank}(S: U)=\min \{|A|:\langle A \cup U\rangle=S, A \subseteq Q(S),|A|<\infty\}$.
For more studies about various ranks of a semigroup, we refer $[2,5,9,10]$ for example. The height, fix and shift of $\alpha \in I_{n}$ are defined by
$\mathrm{h}(\alpha)=|\operatorname{im}(\alpha)|$
fix $(\alpha)=\{x \in \operatorname{dom}(\alpha): x \alpha=x\}$ and
shift $(\alpha)=\{x \in \operatorname{dom}(\alpha): x \alpha \neq x\}=\operatorname{dom}(\alpha) \backslash$ fix (α),
respectively. A permutation $\alpha \in S_{n}$ with $\operatorname{shift}(\alpha)=\left\{a_{1}, \ldots, a_{k}\right\}(2 \leq k \leq n)$ is called a cycle of size k (k-cycle) and denoted by $\alpha=\left(a_{1} \ldots a_{k}\right)$ if
$a_{i} \alpha=a_{i+1} \quad(1 \leq i \leq k-1) \quad$ and $\quad a_{k} \alpha=a_{1}$.
In particular, a 2 -cycle $\left(a_{1} a_{2}\right)$ is called a transposition. The identity permutation ε on X_{n} is expressible as (a), for any $1 \leq a \leq n$, and (a) is called a 1-cycle. Also, a map $\alpha \in I_{n}$ with $\operatorname{dom}(\alpha)=X_{n} \backslash\left\{a_{k}\right\}$ and $\operatorname{shift}(\alpha)=\left\{a_{1}, \ldots, a_{k-1}\right\}(2 \leq k \leq n)$ is called a chain of size k (k-chain) and denoted by [$a_{1} \ldots a_{k}$] if
$a_{i} \alpha=a_{i+1} \quad(1 \leq i \leq k-1)$.
Moreover, a map $\alpha \in I_{n}$ with $\operatorname{dom}(\alpha)=$ fix $(\alpha)=X_{n} \backslash\left\{a_{k}\right\}$ called a 1-chain and denoted by [a_{k}]. Two cycles $\left(a_{1} \ldots a_{k}\right)$ and ($b_{1} \ldots b_{t}$) (and similarly two chains $\left[a_{1} \ldots a_{k}\right]$ and [$b_{1} \ldots b_{t}$], or a cycle ($a_{1} \ldots a_{k}$) and a chain $\left[b_{1} \ldots b_{t}\right]$), for $1 \leq k, t \leq n$, are said to be disjoint if the sets $\left\{a_{1}, \ldots, a_{k}\right\}$ and $\left\{b_{1}, \ldots, b_{t}\right\}$ are disjoint.

It is well known that every map in I_{n} can be written as a product of disjoint cycles (1-cycles are neglected in general) and chains, and every permutation in S_{n} can be written as a product of disjoint cycles (1-cycles are neglected in general), more particularly, as a product of transpositions. Moreover, it is also well known that $S_{2}=\langle(12)\rangle, S_{3}=\langle(13),(23)\rangle, S_{n}=$ $\langle(12),(12 \ldots n)\rangle$ for $n \geq 3$, and that $A_{3}=\langle(123)\rangle$ and A_{n} is generated by two elements:

$$
\text { and } \begin{cases}(12 \ldots n) & \text { if } n \text { is odd } \tag{123}\\ (23 \ldots n) & \text { if } n \text { is even }\end{cases}
$$

for $n \geq 4$. Furthermore,
$\operatorname{rank}\left(S_{n}\right)=\left\{\begin{array}{ll}1 & \text { for } n=2 \\ 2 & \text { for } n \geq 3\end{array}\right.$ and
$\operatorname{rank}\left(A_{n}\right)=\left\{\begin{array}{ll}1 & \text { for } n=3 \\ 2 & \text { for } n \geq 4\end{array}\right.$.
(For unexplained terms in semigroup theory see for example [4, 7].)
Let P_{n} and T_{n} be the partial transformations semigroup and the full transformations semigroup on X_{n}, respectively. Moreover, let $P K(n, r)=\left\{\alpha \in P_{n}:|\operatorname{im}(\alpha)| \leq r\right\}$ and $K(n, r)=\left\{\alpha \in T_{n}:|\operatorname{im}(\alpha)| \leq r\right\}$ for $1 \leq r \leq n-1$. Yiğit et al. showed in [9] that

$$
\begin{align*}
\operatorname{rerank}\left(T_{n, r}: S_{n}\right) & =p_{r}(n) \quad(\text { as shown in }[1,8] \text { before }) \tag{13}\\
\operatorname{rerank}\left(P T_{n, r}: S_{n}\right) & =\sum_{s=0}^{n-r} p_{r}(n-s) \tag{14}\\
\operatorname{rerank}\left(A_{n, r}: A_{n}\right) & =p_{r}(n) \tag{15}\\
\operatorname{rerank}\left(P A_{n, r}: A_{n}\right) & =\sum_{s=0}^{n-r} p_{r}(n-s) \tag{16}
\end{align*}
$$

for $1 \leq r \leq n-1$, where
$T_{n, r}=K_{n, r} \cup S_{n}, P T_{n, r}=P K_{n, r} \cup S_{n}$,
$A_{n, r}=K_{n, r} \cup A_{n}, P A_{n, r}=P K_{n, r} \cup A_{n}$,
and also $p_{r}(n)$ is the cardinality of the set $P_{r}(n)$, the set of all integer solutions of the equation
$x_{1}+x_{2}+\cdots+x_{r}=n \quad$ with $\quad x_{1} \geq x_{2} \geq \cdots \geq x_{r} \geq 1$.
Recall from [6, Lemma 2.1] that a non-idempotent map $\alpha \in I_{n}$ is a quasi-idempotent if and only if all its orbits are of size at most 2 , and so, $\alpha \in Q\left(I_{n}\right)$ if and only if α can be written as a product of some disjoint 1 -cycles (1-cycles are neglected in general), 1 -chains and at least one 2 -cycle and/or 2-chain. In particular, it is easy to see that $\alpha \in Q\left(S_{n}\right)$ if and only if α can be written as a product of some disjoint 2-cycles, and that $\alpha \in Q\left(A_{n}\right)$ if and only if α can be written as a product of positive even number of disjoint 2 -cycles. In addition to these results recently it is shown in [3] that
$\operatorname{qrank}\left(S_{n}\right)= \begin{cases}1 & \text { for } n=2 \\ 2 & \text { for } n=3, \\ 3 & \text { for } n \geq 4\end{cases}$
$\operatorname{qrank}\left(I_{n}\right)= \begin{cases}2 & \text { for } n=2 \\ 3 & \text { for } n=3 \\ 4 & \text { for } n \geq 4\end{cases}$
and qrank $\left(A_{n}\right)=3$ for $n \geq 5$. Now let
$I_{n, r}=\left\{\alpha \in I_{n}:|\operatorname{im}(\alpha)| \leq r\right\}$
$S I_{n, r}=I_{n, r} \cup S_{n}$
for $n \geq 2$ and $1 \leq r \leq n-1$, and let
$A I_{n, r}=I_{n, r} \cup A_{n}$
for $n \geq 3$ and $1 \leq r \leq n-1$. Clearly each one of the sets $I_{n, r}, S I_{n, r}$ and $A I_{n, r}$ is an
ideal of I_{n}. Moreover, $I_{n, n-1}=I_{n} \backslash S_{n}$ and so $S I_{n, n-1}=I_{n}$.
In this paper we obtain the rank and the quasi-idempotent rank of $S I_{n, r}$ (of $A I_{n, r}$), and then we immediately obtain the relative rank and the relative quasi-idempotent rank of $S I_{n, r}$ modulo S_{n} (of $A I_{n, r}$ modulo A_{n}).

2. Certain ranks of $\boldsymbol{S} \boldsymbol{I}_{\boldsymbol{n}, \boldsymbol{r}}$

For any α, β in $I_{n, r}$ it is easy to see that

$$
\begin{align*}
& (\alpha, \beta) \in \mathcal{L} \Leftrightarrow \operatorname{im}(\alpha)=\operatorname{im}(\beta) \\
& (\alpha, \beta) \in \mathcal{R} \Leftrightarrow \operatorname{dom}(\alpha)=\operatorname{dom}(\beta) \tag{25}\\
& (\alpha, \beta) \in \mathcal{D} \Leftrightarrow \mathrm{h}(\alpha)=\mathrm{h}(\beta) \\
& (\alpha, \beta) \in \mathcal{H} \Leftrightarrow \operatorname{dom}(\alpha)=\operatorname{dom}(\beta) \text { and } \operatorname{im}(\alpha)=\operatorname{im}(\beta)
\end{align*}
$$

where $\mathcal{L}, \mathcal{R}, \mathcal{D}$ and \mathcal{H} denotes the Green's equivalences. Hence, there exist $r+1$ \mathcal{D}-classes in $I_{n, r}$ as follows:
$D_{k}=\left\{\alpha \in I_{n, r}: \mathrm{h}(\alpha)=k\right\}$ for $0 \leq k \leq r$.
Let $\alpha \in D_{k}$ with $\operatorname{dom}(\alpha)=\left\{a_{1}<\cdots<a_{k}\right\}(1 \leq k \leq r-1)$. Then, as usual, α can be written in the following tabular form:
$\alpha=\left(\begin{array}{llll}a_{1} & \cdots & a_{k} & X_{n} \backslash \operatorname{dom}(\alpha) \\ a_{1} \alpha & \cdots & a_{k} \alpha & -\end{array}\right)\left(\right.$ shortly $\alpha=\left(\begin{array}{ccc}a_{1} & \cdots & a_{\mathrm{k}} \\ a_{1} \alpha & \cdots & a_{\mathrm{k}} \alpha\end{array}\right)$).
Since $1 \leq k \leq r-1 \leq n-2$, there exist two distinct elements $a, a^{\prime} \in X_{n} \backslash\left\{a_{1}, \ldots, a_{k}\right\}$ and there exists $b \in X_{n} \backslash\left\{a_{1} \alpha, \ldots, a_{k} \alpha\right\}$. Then consider the maps
$\beta=\left(\begin{array}{llll}a_{1} & \cdots & a_{k} & a \\ a_{1} & \cdots & a_{k} & a\end{array}\right)$ and
$\gamma=\left(\begin{array}{llll}a_{1} & \cdots & a_{k} & a^{\prime} \\ a_{1} \alpha & \cdots & a_{k} \alpha & b\end{array}\right)$.
Then we have $\beta, \gamma \in D_{k+1}$ and $\alpha=\beta \gamma$, that is $D_{k} \subseteq\left\langle D_{k+1}\right\rangle$. Thereby, $I_{n, r}=\left\langle D_{r}\right\rangle$. Furthermore, it is easy to see that a non-empty subset A of $I_{n, r}$ is a generating set of $I_{n, r}$ if and only if $D_{r} \subseteq\langle A\rangle$ for $1 \leq r \leq n-1$. Moreover, it is well known that $\mathrm{h}(\rho \sigma) \leq$ $\min \{\mathrm{h}(\rho), \mathrm{h}(\sigma)\}$ for $\rho, \sigma \in I_{n}$, and so we may consider only the subsets of D_{r} to generate $I_{n, r}$.

Theorem 2.1. For $1 \leq r \leq n-1 D_{r} \subseteq\left\langle S_{n} \cup\{\xi\}\right\rangle$ where
$\xi= \begin{cases}{[12]} & \text { for } n=2 \text { and } r=1 \\ {[12][3] \cdots[n]} & \text { for } n \geq 3 \text { and } r=1 \\ (12)[r+1] \cdots[n] & \text { for } n \geq 3 \text { and } 2 \leq r \leq n-1 .\end{cases}$

Proof. Let $\alpha \in D_{r}$ for $n \geq 2$ and $1 \leq r \leq n-1$ and suppose that $\operatorname{dom}(\alpha)=$ $\left\{a_{1}, \ldots, a_{r}\right\}, X_{n} \backslash \operatorname{dom}(\alpha)=\left\{a_{r+1}, \ldots, a_{n}\right\}$, and that $X_{n} \backslash \operatorname{im}(\alpha)=\left\{b_{1}, \ldots, b_{n-r}\right\}$. Then we have $\alpha=\beta \xi \gamma$ where
$\beta=\left(\begin{array}{cccccc}a_{1} & \cdots & a_{\mathrm{r}} & a_{\mathrm{r}+1} & \cdots & a_{\mathrm{n}} \\ 1 & \cdots & r & r+1 & \cdots & n\end{array}\right) \in S_{n}$
for $1 \leq r \leq n-1$;
$\gamma= \begin{cases}\left(\begin{array}{ll}1 & 2 \\ b_{1} & a_{1} \alpha\end{array}\right) \in S_{2} & \text { for } n=2 \text { and } r=1 \\ \left(\begin{array}{ccccc}1 & 2 & 3 & \cdots & n \\ b_{1} & a_{1} \alpha & b_{2} & \cdots & b_{n-1}\end{array}\right) \in S_{n} & \text { for } n \geq 3 \text { and } r=1\end{cases}$
and
$\gamma=\left(\begin{array}{llllllll}1 & 2 & 3 & \cdots & r & r+1 & \cdots & n \\ a_{2} \alpha & a_{1} \alpha & a_{3} \alpha & \cdots & a_{r} \alpha & b_{1} & \cdots & b_{n-r}\end{array}\right) \in S_{n}$
for $n \geq 3$ and $2 \leq r \leq n-1$.
Corollary 2.2. For $1 \leq r \leq n-1 \quad S I_{n, r}=\langle(12),(12 \ldots n), \xi\rangle$ where $\xi \in D_{r}$ is the map defined in Theorem 2.1.

Proof. The result follows from the facts $I_{n, r}=\left\langle D_{r}\right\rangle, D_{r} \subseteq\left\langle S_{n} \cup\{\xi\}\right\rangle$ and $S_{n}=$ $\langle(12),(12 \ldots n)\rangle$.

Recall the following well-known property: Let S be a finite semigroup and let T be a subsemigroup of S such that $S \backslash T$ is an ideal of S. It is well-known that if $S=\langle A\rangle$, for any $\emptyset \neq A \subseteq S$, then $T=\langle T \cap A\rangle$, and so any generating set of S must contain at least one extra element in addition to any generating set of T. Therefore, $\operatorname{rank}(S) \geq \operatorname{rank}(T)+1$. Similarly, \quad qrank $(S) \geq$ qrank $(T)+1$ when S and T are generated by their own quasi-idempotents.

Corollary 2.3. For $n \geq 2$ and $1 \leq r \leq n-1 \quad \operatorname{rank}\left(S I_{n, r}\right)=\left\{\begin{array}{ll}2, & n=2 \\ 3, & n \geq 3\end{array}\right.$.
Proof. Clearly $S I_{n, r} \backslash S_{n}=I_{n, r}$ is an ideal of $S I_{n, r}$, and so $\operatorname{rank}\left(S I_{n, r}\right) \geq \operatorname{rank}\left(S_{n}\right)+1$. Then the result follows from Corollary 2.2 since $\operatorname{rank}\left(S_{2}\right)=1$ and $\operatorname{rank}\left(S_{n}\right)=2$ for $n \geq$ 3.

As in [3], for any m-tuple $\left(b_{1}, b_{2}, \ldots, b_{m}\right)(2 \leq m \leq n)$ let
$\left[\left[b_{1}, \ldots, b_{m}\right]\right]= \begin{cases}\left(b_{1} b_{m}\right)\left(b_{2} b_{m-1}\right) \cdots\left(b_{\frac{m}{2}} b_{\frac{m}{2}+1}\right) & \text { if } m \text { is an even number } \\ \left(b_{1} b_{m}\right)\left(b_{2} b_{m-1}\right) \cdots\left(b_{\frac{m-1}{2}} b_{\frac{m+3}{}}^{2}\right) & \text { if } m \text { is an odd number }\end{cases}$
where $\left(b_{i} b_{j}\right)$ denotes a 2 -cycle for $1 \leq i, j \leq k$, also let $\sigma, \rho \in Q\left(S_{n}\right)$ be the maps with one of the following n-many forms:

- $\sigma=[[1, \ldots, k+1]][[k+2, \ldots, n]]$,
$\rho=[[1, \ldots, k+2]][[k+3, \ldots, n]] \quad(1 \leq k \leq n-4$ and $n \geq 5)$;
- $\sigma=[[1, \ldots, n-2]](n-1 n)$,
$\rho=[[1, \ldots, n-1]] ;$
- $\sigma=[[1, \ldots, n-1]]$,
$\rho=[[1, \ldots, n]] ;$
- $\sigma=[[1, \ldots, n]]$,
$\rho=[[2, \ldots, n]] ;$
- $\sigma=[[2, \ldots, n]]$,
$\rho=(12)[[3, \ldots, n]]$.
Then recall from Theorem 1 and Corollary 2 given in [3] that, for $n \geq 4, S_{n}=\langle(12), \sigma, \rho\rangle$ for each $\sigma, \rho \in Q\left(S_{n}\right)$ with one of the n-many forms given above, and that
qrank $\left(S_{n}\right)= \begin{cases}1 & \text { for } n=2 \\ 2 & \text { for } n=3 \\ 3 & \text { for } n \geq 4\end{cases}$
Moreover, notice that the map ξ defined in Theorem 2.1 is a quasi-idempotent in D_{r}, say $\xi \in Q\left(D_{r}\right)$. Then we have the following corollary.

Corollary 2.4. For $1 \leq r \leq n-1 \quad$ qrank $\left(S I_{n, r}\right)=\left\{\begin{array}{ll}2 & \text { for } n=2 \\ 3 & \text { for } n=3 . \\ 4 & \text { for } n \geq 4\end{array}\right.$.
Proof. Clearly $S I_{2,1}=\langle(12), \xi\rangle, S I_{3, r}=\langle(13),(23), \xi\rangle$ for $1 \leq r \leq 2$ and $S I_{n, r}=$ $\langle(12), \sigma, \rho, \xi\rangle$ for $n \geq 4$ and $1 \leq r \leq n-1$ where $\xi \in Q\left(D_{r}\right)$ is the map defined in Theorem 2.1 and $\sigma, \rho \in Q\left(S_{n}\right)$ are one of the n-many forms given above. Then the result follows from the fact qrank $\left(S I_{n, r}\right) \geq$ qrank $\left(S_{n}\right)+1$ since $S I_{n, r} \backslash S_{n}=I_{n, r}$ is an ideal of $S I_{n, r}$.

Corollary 2.5. For $1 \leq r \leq n-1 \operatorname{rerank}\left(S I_{n, r}: S_{n}\right)=\operatorname{reqrank}\left(S I_{n, r}: S_{n}\right)=1$.

3. Certain ranks of $\boldsymbol{A} I_{n, r}$

Theorem 3.1. For $n \geq 3$ and $1 \leq r \leq n-1 D_{r} \subseteq\left\langle A_{n} \cup\{\xi\}\right\rangle$ where
$\xi= \begin{cases}{[12][3] \cdots[n]} & \text { for } n \geq 3 \text { and } r=1 \\ (12)[r+1] \cdots[n] & \text { for } n \geq 3 \text { and } 2 \leq r \leq n-1 .\end{cases}$
Proof. Let $\alpha \in D_{r}$ for $n \geq 3$ and $1 \leq r \leq n-1$. From the proof of Theorem 2.1 we have $\alpha=\beta \xi \gamma$ where β, γ are the permutations defined in the proof of Theorem 2.1. Then we have $\alpha=\beta^{\prime} \xi \gamma^{\prime}$ where

$$
\begin{align*}
& \beta^{\prime}= \begin{cases}\beta & \text { if } \beta \in A_{n} \\
\beta(n-1 n) & \text { if } \beta \notin A_{n}\end{cases} \tag{37}\\
& \gamma^{\prime}= \begin{cases}\gamma & \text { if } \gamma \in A_{n} \\
\gamma\left(b_{1} b_{2}\right) & \text { if } \gamma \notin A_{n}\end{cases} \tag{38}
\end{align*}
$$

for $n \geq 3$ and $r=1$, and we have
$\alpha= \begin{cases}\beta^{\prime} \xi \gamma^{\prime} & \text { if } \beta, \gamma \in A_{n} \text { or } \beta, \gamma \notin A_{n} \\ \beta^{\prime} \xi^{2} \gamma^{\prime} & \text { otherwise, }\end{cases}$
where
$\beta^{\prime}= \begin{cases}\beta & \text { if } \beta \in A_{n} \\ \beta(12) & \text { if } \beta \notin A_{n}\end{cases}$
$\gamma^{\prime}= \begin{cases}\gamma, & \text { if } \gamma \in A_{n} \\ (12) \gamma, & \text { if } \gamma \notin A_{n}\end{cases}$
for $n \geq 3$ and $2 \leq r \leq n-1$.
Corollary 3.2. For $n \geq 3$
$A I_{n, r}= \begin{cases}\langle(123), \xi\rangle & \text { for } n=3 \text { and } 1 \leq r \leq 2 \\ \langle(123),(12 \ldots n), \xi\rangle & \text { for an odd number } n \geq 4 \text { and } 1 \leq r \leq n-1 \\ \langle(123),(23 \ldots n), \xi\rangle & \text { for an even number } n \geq 4 \text { and } 1 \leq r \leq n-1\end{cases}$
where $\xi \in D_{r}$ is the map defined in Theorem 3.1.
Proof. The result follows from the fact $D_{r} \subseteq\left\langle A_{n} \cup\{\xi\}\right\rangle$ since $A_{3}=\langle(123)\rangle$ and A_{n} is
generated by two elements:
(123) and $\begin{cases}(12 \ldots n) & \text { if } n \text { is odd } \\ (23 \ldots n) & \text { if } n \text { is even }\end{cases}$
for $n \geq 4$.
Similarly, notice that the map ξ defined in Theorem 3.1 is a quasi-idempotent, say $\xi \in$ $Q\left(D_{r}\right)$. Then we have the following corollary.

Corollary 3.3. $\operatorname{rank}\left(A I_{n, r}\right)=\left\{\begin{array}{ll}2 & \text { for } n=3 \text { and } 1 \leq r \leq 2 \\ 3 & \text { for } n \geq 4 \text { and } 1 \leq r \leq n-1\end{array}\right.$.
Proof. Clearly $A I_{n, r} \backslash A_{n}=I_{n, r}$ is an ideal of $A I_{n, r}$ and so $\operatorname{rank}\left(A I_{n, r}\right) \geq \operatorname{rank}\left(A_{n}\right)+1$. Then the result follows from Corollary 3.2 and the fact $\operatorname{rank}\left(A_{n}\right)=\left\{\begin{array}{ll}1, & n=3 \\ 2, & n \geq 4\end{array}\right.$.

As in [3], for any m-tuple $\left(b_{1}, b_{2}, \ldots, b_{m}\right)(4 \leq m \leq n)$ let
$\left[\left[b_{1}, b_{2}, \ldots, b_{m}\right]\right]^{\#}= \begin{cases}\left(b_{1} b_{m}\right)\left(b_{2} b_{m-1}\right) \cdots\left(b_{\frac{m-2}{}}^{2} \frac{b_{m+4}}{2}\right), & \text { if } m \text { is an even number } \\ \left(b_{1} b_{m}\right)\left(b_{2} b_{m-1}\right) \cdots\left(b_{\frac{m-3}{2}} \frac{b_{m+5}}{2}\right), & \text { if } m \text { is an odd number }\end{cases}$
where $\left(b_{i} b_{j}\right)$ denotes a 2 -cycle for $1 \leq i, j \leq m$. Also, recall from Theorem 3 given in [3] that $A_{n}=\langle\lambda, \mu, \psi\rangle$ where
$\lambda= \begin{cases}(13)[[4, \ldots, n]]^{\#} & \text { if } n \equiv 0 \bmod 4 \\ (12)[[4, \ldots, n]] & \text { if } n \equiv 1,2 \bmod 4 \\ (12)[[4, \ldots, n]]^{\#} & \text { if } n \equiv 3 \bmod 4\end{cases}$
$\mu= \begin{cases}(23)\left(\frac{n+2}{2} \frac{n+6}{2}\right) & \text { if } n \equiv 0 \bmod 4 \\ (13)[[4, \ldots, n]] & \text { if } n \equiv 1,2 \bmod 4 \\ (13)\left(\frac{n+3}{2} \frac{n+5}{2}\right) & \text { if } n \equiv 3 \bmod 4\end{cases}$
$\psi= \begin{cases}(1 n)(23)[[4, \ldots, n-1]] & \text { if } n \equiv 0 \bmod 4 \\ (14)(23)[[5, \ldots, n]] & \text { if } n \equiv 1 \bmod 4 \\ (24)[[5, \ldots, n]] & \text { if } n \equiv 2 \bmod 4 \\ (14)[[5, \ldots, n]] & \text { if } n \equiv 3 \bmod 4\end{cases}$
and that qrank $\left(A_{n}\right)=3$ for $n \geq 5$.
Corollary 3.4. For $n \geq 5$ and $1 \leq r \leq n-1 \quad \operatorname{qran} k\left(A I_{n, r}\right)=4$.

Proof. Clearly $A I_{n, r}=\langle\lambda, \mu, \psi, \xi\rangle$ for $n \geq 5$ and $1 \leq r \leq n-2$ where $\lambda, \mu, \psi \in$ $Q\left(A_{n}\right)$ are quasi-idempotents given above. Then the result follows from the fact $\operatorname{qrank}\left(A I_{n, r}\right) \geq \operatorname{qrank}\left(A_{n}\right)+1$ since $A I_{n, r} \backslash A_{n}=I_{n, r}$ is an ideal of $A I_{n, r}$.

Corollary 3.5. For $n \geq 3$ and $1 \leq r \leq n-1 \operatorname{rerank}\left(A I_{n, r}: A_{n}\right)=1$; and for $n \geq 5$ and $1 \leq r \leq n-1 \operatorname{reqrank}\left(A I_{n, r}: A_{n}\right)=1$.

References

[1] Ayık, G., Ayık, H., Howie, J. M., On factorisations and generators in transformation semigroup, Semigroup Forum, 70, 225-237, (2005).
[2] Ayık, G., Ayık, H., Howie, J. M., Ünlü, Y., Rank properties of the semigroup of singular transformations on a finite set, Communications in Algebra, 36, 2581-2587, (2008).
[3] Bugay L. Quasi-idempotent ranks of some permutation groups and transformation semigroups, Turkish Journal of Mathematics 43, 2390-2395, (2019).
[4] Ganyushkin, O., Mazorchuk, V., Classical Finite Transformation Semigroups, London, Springer-Verlag, (2009).
[5] Garba, G.U., On the idempotent ranks of certain semigroups of order-preserving transformations, Portugaliae Mathematica, 51, 185-204, (1994).
[6] Garba, G. U., Imam, A. T., Products of quasi-idempotents in finite symmetric inverse semigroups, Semigroup Forum, 92, 645-658, (2016).
[7] Howie, J. M., Fundamentals of Semigroup Theory. New York, Oxford University Press, (1995).
[8] Levi, I., McFadden, R. B., S_{n}-Normal semigroups, Proceedings of the Edinburgh Mathematical Society, 37, 471-476, (1994).
[9] Yiğit, E., Ayık, G., Ayık, H., Minimal relative generating sets of some partial transformation semigroups, Communications in Algebra, 45, 1239-1245, (2017).
[10] Zhao, P., Fernandes, V. H., The ranks of ideals in various transformation monoids, Communications in Algebra, 43, 674-692, (2015).

[^0]: * Leyla BUGAY, Itanguler@cu.edu.tr, http://orcid.org/0000-0002-8316-2763

