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Abstract: In this study, a multi-objective optimization method was used to improve the mechanical 

properties and manufacturing conditions of reinforced polyamide 66+PA6I/6T polymer based on 

injection molding process parameters. For that purpose, the combined approach of response surface 

methodology (RSM) and Grey Wolf Optimization (GWO) was proposed to minimize and model the 

quality parameters such as warpage, volumetric shrinkage, and cycle time of the polymer. In the study, 

Moldflow Insight software was used to simulate and obtain the numerical objective results based on 

design parameters including fiber ratio, mold temperature, melt temperature, injection pressure, and 

injection time. Based on optimized design parameters, a test specimen was produced in an injection 

molding machine to obtain and compare the tensile test results. The Box-Behnken method was applied 

for the experimental design of the numerical analysis, and the analysis of variance (ANOVA) method 

was used to investigate the effect of design parameters on the objective parameters in molding. 

According to the numerical results, it was found that both RSM and GWO methods gave better results 

than the quality results obtained by the recommended process parameter results as well as these results 

were consistent with the ANOVA results. It was determined that the RSM was more effective than the 

GWO method for this experimental design. Also, it was concluded that according to the experimental 

tensile test results, the best tensile test result was obtained by 60% fiber reinforcement, and the tensile 

module value increased by 39,4% for this addition ratio based on the optimized process parameters. 

 

Keywords: Grey wolf optimization; Injection molding; RSM; tensile strength 

 

RSM ve Grey Wolf Optimizasyonu Kullanılarak Enjeksiyon Kalıplanmış 

PA66+PA6I/6T Kompozitinin Mekanik Özelliklerinin Deneysel Olarak 

İncelenmesi 
 

Öz: Bu çalışmada, takviyeli poliamid 66+PA6I/6T polimerinin enjeksiyon kalıpçılık proses parametreleri 

temel alınarak, mekanik özellik ve üretim koşullarının iyileştirilmesi için multi-objective optimizasyon 

metodu kullanılmıştır. Bu amaçla,  polimerin kalite parametreleri olan çarpılma, hacimsel büzülme ve çevrim 

süresini minimize edip modellemek için bütünleşik RSM ve GWO optimizasyon yaklaşımı önerilmiştir. 

Çalışmada, tasarım parametreleri olan lif oranı, kalıp sıcaklığı, eriyik sıcaklığı, enjeksiyon basıncı ve 

enjeksiyon süreci gözönüne alınarak nümerik çıktı sonuçlarının elde edilmesi ve simülasyon işleminde  

Moldflow Insight yazılımı kullanılmıştır. Optimizasyonu yapılmış tasarım parametreleri gözönüne alınarak 

çekme test sonuçlarının elde edilmesi ve karşılaştırılması için plastik enjeksiyon makinesinde bir test 

numunesi hazırlanmıştır. Sayısal analiz için Box-Behnken deneysel tasarım metodu ve kalıplama işlemindeki 
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tasarım parametrelerinin kaliteye olan etkilerini incelemek için ANOVA metodu uygulanmıştır. Elde edilen 

sayısal sonuçlara göre RSM ve GWO yöntemlerinin her ikisinin de, tavsiye edilen proses değerleriyle elde 

edilmiş kalite sonuçlarına göre daha iyi sonuçları verdikleri görülmüştür, aynı zamanda bu sonuçlar ANOVA 

sonuçlarıyla da uyumludur. Yürütülen bu deneysel tasarım için RSM’ nin GWO metodundan daha etkili 

olduğu gözlenmiştir. Ayrıca yürütülen deneysel çekme test sonuçlarına göre, % 60 lif takviyesinin en iyi 

çekme test sonuçları verdiğini ve optimizasyonu yapılmış olan bu proses parametreleri ile % 60’lık bu lif 

katkı oranı için elastik modül değerinde % 39,4 lük bir artış olduğu gözlenmiştir. 

Anahtar Kelimeler: Grey wolf optimizasyonu; Enjeksiyon kalıpçılık; RSM; çekme mukavemeti 

 

1. Introduction  

 

There are limited studies on reinforced polyamide 66+PA6I/6T composite that has been 

increasingly used in recent years in the fields of application such as metal replacement, 

electronic and defense industry due to its superior properties such as good mechanical properties, 

thermal performance, and resistance to chemicals. It is especially important to minimize 

warpage, shrinkage, and residual stress which reduces the performance of the final product after 

the addition of fiber to this polymer in the plastic injection production method. Because, the 

addition of fiber directly affects the polymer's properties and injection molding parameters as 

well as the strength, quality, and manufacturing cost of product [1,2,3]. On the other hand, since 

the plastic injection molding is a nonlinear phenomenon, it is difficult to determine the optimum 

process parameters. Thus, FEA software is used to predetermine and simulate polymer defects 

such as warpage, volumetric shrinkage, and unfilled mold as a result of non-uniform heat 

transfer [4,5]. Possible product defects and mechanical properties and cycle time of product are 

mostly affected by heat transfer [6]. Thus, simulation coupled with new optimization techniques 

has been increasingly used to determine the optimum process parameters [7].  RSM and GWO 

methods are also used for this purpose. The RSM is a mathematical and statistical-based 

technique used for modeling and optimization purposes. Using this method, the output responses 

are drawn as surfaces and it is possible to express these surfaces in terms of input design 

variables. These surfaces can be also used in optimization tasks intended for obtaining optimum 

designs [8,9]. The GWO method is a new meta-heuristic global optimization technique based on 

the behavior of grey wolves in nature [10]. The reported literature on polymer composites has 

mainly focused on the elucidation of the relationship between optimum processing conditions 

and mechanical properties [11,12]. 

 

In a study carried out by Imihezri et al. [13], Autodesk Moldflow® software was used to analyze 

the design of automotive clutch pedals composites using 30% glass-fiber-reinforced polyamide 

6,6. Two types of ribs were compared to determine the one with a lower weight, mold 

manufacturing cost, and injection pressure. In another study carried out by Kurtaran and 

Erzurumlu [14] the warpage optimization was studied using finite element (FE) analysis, 

response surface methodology (RSM), and genetic algorithm (GA). By using RSM, a predictive 

model was created for warpage. To determine the optimum process parameter values, RSM was 

combined with a GA method. A response surface model of process parameters in plastic 

injection molding was presented in a study performed by Chen et al. [15]. According to the 

results, the proposed model can provide improved stability in the injection molding process.  A 

hybrid optimization method was presented by Yin et al. [16] for the optimization of the injection 

molding process parameters. A multi-objective optimization model was developed based on 

orthogonal test design, neural network, and GA.  
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In a study conducted by Sadabadi and Ghasemi, the impacts of injection molding process 

parameters such as packing pressure, injection flow rate, and mold wall temperature were 

investigated using short fiber reinforced polystyrene composites which likely affect fiber 

orientation and tensile modulus of injection molded parts [17]. In other studies on conventional 

polymers and fiber-reinforced composites, the relationship between injection molding processing 

parameters and the shrinkage and warpage defects was evaluated [18,19]. Likewise, shrinkage 

and warpage defects were significantly affected by hold pressure, injection pressure, and cooling 

time [20]. In a study on glass fiber reinforced plastic composites, it was shown that when hold 

time is decreased, the warpage increases by 30%, while the warpage reduces by 60% when the 

mold temperature is decreased [21]. 

 

In this paper, the multi-objective optimization problem of injection molding of the fiber-

reinforced composite was studied systematically. For this purpose, the combination approach of 

response surface methodology (RSM) and Grey Wolf (GW) optimization technique was 

proposed to minimize and model the quality parameters such as volumetric shrinkage and cycle 

time of the polyamide 66+PA6I/6T composite through FEA. Based on the optimized design 

parameters, a polymer test specimen was produced and tested experimentally for its tensile 

properties. 

 

2. Material and Methods  

 

This study presents a multi-objective optimization method. With the RSM and GWO methods 

preferred for this purpose, it was aimed to minimize warpage and volumetric shrinkage values 

between which there is a direct interaction as well as cycle time that is a decisive factor for 

product cost/efficiency. The addition of fiber to the polymer in question also makes the product's 

quality and mechanical behavior more complicated. Therefore, it is important to provide the 

optimum injection molding conditions reliably and efficiently. In the study, after the optimum 

process conditions were provided, a test specimen was produced and then the stress-strain curves 

were systematically studied and interpreted. 

 

2.1 Experimental Design 

 

The test material in the study is Polyamide 66+PA6I/6T (EMS Grovery Ltd, trade name: Grivory 

GV-2H-4H-6H). Where, 2H - 4H, and 6H designations represent the glass-fibre reinforcement 

by 20%, 40% and 60%, respectively. The properties of this polymer are given below (Table 1).  

The mold material is Tool steel P-20. The applied standard for tensile testing geometry is ISO 

572-2. The geometry and the meshed simulation model of the polymer are shown in Figure 1. In 

the mesh generation, Dual Domain mesh type with the global edge length on the surface of 3.07 

mm; 1830 triangle elements and average aspect ratio of 1.61 was used. The test specimens were 

produced in Arburg 320 K injection molding machine with technical data shown in Table 2.  

 

Firstly, 5 design parameters (fiber ratio, mold temperature, melt temperature, injection pressure, 

injection time) were determined. In the study, the Moldflow Plastic Insight software (MPI) 

program was used for the finite element analysis. By taking into consideration the recommended 

values in the database of this program, the value ranges for these parameters were created. 

Accordingly, fiber ratio ranged from 20% to 60%, mold temperature ranged from 80°C to 

120°C, melt temperature ranged from 275°C to 295°C, injection pressure ranged from 80 MPa to 
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120 MPa and injection time ranged from 0.5 s to 1.5 s. The factors and levels of the design 

parameters are shown in Table 3. 

After the parameter value ranges were determined, the RSM Box-Behnken method was applied 

to save time and reduce the number of experiments. Using this method, the design of 5 factors, 

each with 3 levels, was made and 46 trials were conducted. Using this method the relationship 

between input and output variables was expressed as a quadratic mathematical equation. A 

variance analysis was carried out using the ANOVA method thus the effect of input parameters 

on the output as well as the reliability of the model were tested. In light of the mathematical 

equation obtained, the parameter optimization process was made using the GWO method. 

Further, in the light of optimal design parameter combinations obtained, test specimens were 

produced in the plastic injection machine and the experimental stress-strain graphs were created 

in the tensile tester to make necessary comparations and interpretations. 

 

Figure 1. Geometric model and mesh model of the plastic part. 

Table 1.  Material Properties used in the study 

 Poliamid 66+PA6I/6T 

Trade name Grivory GV-2H 

Solid density (g/m
3
) 1,2865 

Melt density (g/m3) 1,0683 

Maximum shear rate (s
-1

) 60000 

Maximum shear stress (MPa) 0,5 

Elastic modulus (MPa) 7302 

Poisson ratio 0,387 

  

Table 2.  Injection molding machine properties 
                                                           

 Arburg Allrounder 320K 

Maximum clamp force (tonne) 70 

Screw diameter (mm) 40 

Maximum injection rate (cm
3
/s) 200 

Maximum hydraulic pressure (MPa) 13.9 

Maximum injection stroke (mm) 235 

    

Table 3.  Factors and levels of Box-Behnken design of experiment (BB-DOE) 
 

Factors 
Levels 

L1 (-1) L2 (0) L3 (+1) 

Fiber ratio ; % 20 40 60 

Mold temperature (T); °C 80 100 120 

Melt temperature (T); °C 275 285 295 

Injection pressure (P); MPa 80 100 120 

İnjection time (t); s 0,5 1 1,5 
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3. Results and discussion 

 

3.1 Response Surface Method 

 

Response surface methodology is a set of statistical and applied mathematical techniques used 

for establishing empirical models between quality (objective) characteristics and independent 

variables (design variables). Using the RSM helps to reduce the cost of expensive analytical 

methods (e.g. finite element method) and their associated numerical noise. The correlation of the 

model used in the RSM is a complete second-order correlation model. The second-order model is 

expressed as Equation (1):  

       (1) 

Where βo,  βi,  βii and βij are constant value, linear effect, second effect and reciprocal effects of 

the regression coefficient, respectively. xi and xj are independent coded variables. The matrix form 

of Equation (1) can be expressed in the form of Equation (2): 

                        (2) 

Equation (2) can be solved using the least square method to obtain correlation coefficients. 

 

3.2 Analysis of variance 

 

The ANOVA was used to determine the statistically significant parameters affecting the quality 

characteristics in the designed experimental study. Using the ANOVA method, the effects of 

fiber ratio, mold temperature, melt temperature, injection pressure, and injection time on 

warpage, volumetric shrinkage, and cycle time were analyzed based on the orthogonal 

experimental results (Table 4). The warpage, volumetric shrinkage and cycle time results 

obtained by the ANOVA method are shown in Table 5 and Table 6, respectively. Accordingly, 

the main factors having a significant effect on these three quality characteristics were identified. 

Based on the P-value results, the output parameters were prioritized as follows: 

 

For Warpage: A > AB > A
2
 > B, for Shrinkage; A > A

2
 > E > E

2 
> C and for Cycle time; A > B 

> C > AB 

 

As shown in Table 5, it can be concluded that the most important parameters are A and B for 

warpage; A, E, and C for shrinkage and A, B and C for cycle time according to their P-values of 

less than 0.05. Furthermore, as can be shown in Table 6, the R
2
 values for them were 99.96%, 

99.13%, and 97.44% respectively, and the reliability of the prediction model can be further 

tested by the R
2
 method. The adjusted R-squared values of three response surface models were 

found to be 99.92%, 98.43%, and 95.40%, respectively. Hence, the three prediction models for 

W, V, and C can be used to describe the corresponding design variables and three objectives 

with good precision.   
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Table 4.  Experimental results for quality characteristics 

Fiber ratio  B- Mold temperature  C- Melt temperature D- Injection pressure  E- Injection time 

 A B C D E Warpage  (mm) Shrinkage (%) Cycle time (s) 

 20 80 285 100 1 0,7469 16,59 19,7748 
2 60 80 285 100 1 0,2212 11,48 17,2681 
3 20 120 285 100 1 0,8408 16,61 26,7714 

4 60 120 285 100 1 0,2212 11,48 17,2681 

5 40 100 275 80 1 0,4288 12,13 17,2718 
6 40 100 295 80 1 0,4321 12,79 20,7690 

7 40 100 275 120 1 0,4288 12,13 17,2718 
8 40 100 295 120 1 0,4321 12,79 20,7690 

9 40 80 285 100 0,5 0,4018 10,98 16,6358 

10 40 120 285 100 0,5 0,4707 10,78 22,6349 
11 40 80 285 100 1,5 0,3991 12,43 16,4116 

12 40 120 285 100 1,5 0,4456 12,45 22,4049 
13 20 100 275 100 1 0,7803 16,18 20,7750 

14 60 100 275 100 1 0,2082 11,19 12,7738 
15 20 100 295 100 1 0,7974 17,00 24,7720 

16 60 100 295 100 1 0,2082 11,77 16,2681 

17 40 100 285 80 0,5 0,4267 10,71 19,1353 
18 40 100 285 120 0,5 0,4271 10,89 19,1353 

19 40 100 285 80 1,5 0,4271 12,44 18,9078 
20 40 100 285 120 1,5 0,4271 12,44 18,9078 

21 40 80 275 100 1 0,4011 12,12 14,7735 

22 40 120 275 100 1 0,4517 12,14 20,2697 
23 40 80 295 100 1 0,4004 12,79 18,2687 

24 40 120 295 100 1 0,4717 12,80 24,7650 
25 20 100 285 80 1 0,7823 16,60 22,7730 

26 60 100 285 80 1 0,2080 11,48 14,7691 
27 20 100 285 120 1 0,7823 16,60 22,7730 

28 60 100 285 120 1 0,2080 11,48 14,7691 

29 40 100 275 100 0,5 0,4255 10,56 17,1370 
30 40 100 295 100 0,5 0,4485 11,19 20,6335 

31 40 100 275 100 1,5 0,4242 12,10 16,9111 
32 40 100 295 100 1,5 0,4293 12,77 20,9040 

33 20 100 285 100 0,5 0,8048 14,90 22,6365 

34 60 100 285 100 0,5 0,2107 11,47 14,6349 
35 20 100 285 100 1,5 0,7758 16,57 22,9119 

36 60 100 285 100 1,5 0,2067 11,47 14,7097 
37 40 80 285 80 1 0,4023 12,46 16,2724 

38 40 120 285 80 1 0,4533 12,47 22,7675 
39 40 80 285 120 1 0,4023 12,46 16,2724 

40 40 120 285 120 1 0,4533 12,47 22,7675 

41 40 100 285 100 1 0,4269 12,46 19,2694 
42 40 100 285 100 1 0,4269 12,46 19,2694 

43 40 100 285 100 1 0,4269 12,46 19,2694 
44 40 100 285 100 1 0,4269 12,46 19,2694 

45 40 100 285 100 1 0,4269 12,46 19,2694 

46 40 100 285 100 1 0,4269 12,46 19,2694 
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Table 5.  ANOVA  results for warpage (1),  volume shrinkage (2),  cycle time  

 

 Sum of Squares df F-values 

 1 2 3 1 2 3 1 2 3 

Model 1,4 145,22 427,33 20 20 20 2783,66 141,66 47,65 

A 1,33 96,19 230,48 1 1 1 52964,56 1876,65 514,05 

B 0,0117 0,0008 120,84 1 1 1 465,99 0,0148 269,52 

C 0,0003 1,79 56,12 1 1 1 12,55 34,9 125,17 

D 1,00E-08 0,002 0 1 1 1 0,0004 0,0395 0 

E 0,0004 7,83 0,0165 1 1 1 16,25 152,69 0,0369 

AB 0,0022 0,0001 12,24 1 1 1 87,58 0,002 27,29 

AC 0,0001 0,0144 0,0632 1 1 1 2,9 0,281 0,1409 

AD 0 0 0 1 1 1 0 0 0 

AE 0,0002 0,6972 0,0101 1 1 1 6,21 13,6 0,0224 

BC 0,0001 0 0,2501 1 1 1 4,26 0,0005 0,5577 

BD 0 0 0 1 1 1 0 0 0 

BE 0,0001 0,0121 8,41E-06 1 1 1 4,98 0,2361 0 

CD 0 0 0 1 1 1 0 0 0 

CE 0,0001 0,0004 0,0616 1 1 1 3,18 0,0078 0,1374 

DE 4,00E-08 0,0081 0 1 1 1 0,0016 0,158 0 

A² 0,0451 24,41 0,2141 1 1 1 1793,54 476,3 0,4774 

B² 0,0001 0,0051 3,69 1 1 1 4,59 0,0994 8,22 

C² 0 0,0074 0,6186 1 1 1 1,96 0,1449 1,38 

D² 0 0,0128 0,2923 1 1 1 0,7932 0,2502 0,6519 

E² 7,27E-06 4,53 0,5012 1 1 1 0,2887 88,47 1,12 

Residual 0,0006 1,28 11,21 25 25 25       

Lack of 

Fit 
0,0006 1,28 11,21 20 20 20       

Error 0 0 0 5 5 5       

Cor. Total 1,4 146,5 438,54 45 45 45       

 

 

Table 6.  R
2
 results for warpage, volume shrinkage and cycle time 

Source      Std. Dev.        R² Adjusted R²     Predicted R²     PRESS 

Warpage       0,0050        0,9996  0,9992     0,9982      0,0025 

Shrinkage       0,2264        0,9913  0,9843     0,9650      5,13 

Cycle time       0,6696        0,9744  0,9540     0,8978      44,84 
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3.3 Establishment of the Response Surface Model 

 

The final equation for warpage, shrinkage, and cycle time in terms of coded factors obtained 

from the regression of values are as follows : 

         W = 0,4269 - 0,28865 A + 0,027075 B + 0,00444375 C - 0,00505625 E  - 0,023475

        AB  +  0,00625 AE + 0,005175 BC - 0,0056 BE + 0,0719208 AA + 0,0036375 BB 

            S = 12,46 – 2,45187 A + 0,334375 C +0,699375 E – 0,4175 AE + 1,6725 AA 

           C = 19,2694 – 3,79542 A +2,74823 B +1,87285 C – 1,74915 AB + 0,649871 

 

 

Figure 2. The plot of predicted warpage as a function of (a) mold temperature and fiber ratio     

(b) melt temperature and fiber ratio 

 

 

Figure 3. The plot of predicted shrinkage as a function of (a) mold temperature and fiber ratio   

(b) melt temperature and fiber ratio 
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Figure 4. The plot of predicted cycle time as a function of (a) mold temperature and fiber ratio  

(b) melt temperature and fiber ratio 

 

According to the mathematical equation and interaction graphics obtained by using the RSM 

as shown in Figure 2, 3 and 4, it can be concluded that the minimum warpage, shrinkage, and 

cycle time values can be obtained for minimum melt temperature, injection pressure and 

injection time (for experimental design value ranges in Table 3) and the best result is obtained 

by a fiber ratio of 60%. 

 

3.4 Grey Wolf Optimization (GWO) 

 

The GWO algorithm developed by Mirjalili et al [10]. simulates the hunting strategy and 

leadership hierarchy of grey wolves in the wild. Grey wolves at the top of the food chain 

usually live in a pack. To simulate the leadership hierarchy, four types of grey wolves namely 

alpha (α), beta (β), delta (δ), and omega (ω) are included. The fittest solution is considered as 

the alpha (α) to mathematically model the social hierarchy of wolves in GWO. Therefore, the 

second-best solution is defined as beta (β), and the third-best solution is defined as delta (δ). 

And the remaining possible solutions are assumed to be omega (ω). Hunting, chasing, and 

tracking for prey, encircling prey, and attacking prey which constitutes three main steps of 

GWO algorithm are employed while designing GWO. The encircling behavior seen in grey 

wolves while hunting can be modeled by the following equations: 

       (3) 

                                                          (4) 

where t is the current iteration, D, A, and C are coefficient vectors, Xp and X are the position 

vector of prey and grey wolf, respectively. The vectors A and C are calculated as follows: 

              (5) 

                                                                                                    (6) 

where components of a linearly reduce from 2 to 0 in the course of iterations and r1, r2 are 

random vectors in [0, 1]. The hunting is usually carried out under the leadership of alpha 

wolves but sometimes beta and delta wolves may also participate in hunting. Delta and omega 

wolves are responsible for taking care of wounded wolves in the herd. Thus, because alpha 

wolves have better knowledge about the possible location of prey, we select them as the 
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candidate solution. The grey wolves attack the prey until it stops moving and then finish the 

hunt.  

 

In this study, the GWO was used in optimization of the design parameters based on the 

relationship models established using the response surface method. Three optimization 

objectives included warpage, volumetric shrinkage and cycle time. The selected design 

parameters were fiber ratio (A), molding temperature (B), melting temperature (C), injection 

pressure (D) and injection time (E). The multi-objective optimization model can be defined as 

follows: 

Find A, B, C, D and E 

Minf(x) = (warpage, volumetric shrinkage and cycle time) 

Subjected constraints :   warpage  <   0.25  mm   

       shrinkage <   12 % 

       cycle time <   25 s 

20% < Cf  < 60% 

80 °C <  Tmo < 120 °C 

275 °C <  Tme < 295 °C 

80 MPa < Pinj < 120 MPa 

0.5 s < tinj  < 1.5 s 

 

For the GWO method, number of variables (dim) = 4, maximum number of generations 

(Maximum iterations) = 100, number of search agents = 20, the lower bound of variables 

lb=[−1,−1,−1,−1,-1], the upper bound of variables ub=[1,1,1,1,1].  Matlab software was used 

to obtain convergence curves in the optimization process. 

Table 7.  Pseudocode of the grey wolf optimizer. 

Initialize the grey wolf population    (  = 1, 2, . . . ,  ) 

Initialize a, A, and C 

Calculate the fitness of each search agent 

   = the best search agent 

   = the second-best search agent  

   = the third-best search agent  

                while (t < Max number of iterations) 

                                for each search agent 

                                              Update the position of the current search agent by the above equations  

                               end for 

                               Update a, A, and C 

                               Calculate the fitness of all search agents 

                               Update   ,   , and    

                                     = +1 

                 end while 

return    
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Figure 5.  Grey wolf optimization results for a) warpage  b) shrinkage  c) cycle time 

Table 8.  Optimized condition obtained by applying the desirability function approach. 

 

  

Figure 6. Moldflow simulation of predicted values (a)  warpage  (b) volumetric shrinkage 

 

3.5 Tensile Test Results 

 

The tensile test was carried out in INSTRON 4411 tensile tester. The tensile tests were 

performed in a climate-controlled environment where the ambient temperature was kept at 20 

+/- 3 . The test specimens were held for at least two days before the tensile testing. Five test 

samples were used in each testing set. 

As can be seen in Figure 7, the addition of fiber to the polymer caused a significant increase 

in tensile module value. This increased rate is higher in the strain range of 0% and 0.5% and it 

was also observed that for each fiber ratio, the tensile modulus values obtained by 

optimization show better performance compared to the values obtained by the recommended 

design parameters.  

 

 

Method 

Fiber 

ratio 

Mold 

temperature 

Melt 

temperature 

Injection 

pressure 

Injection 

time 
Warpage   Shrinkage  

Cycle 

time  

 (%) (°C) (°C) (MPa) (s) (mm) (%) (s) 

RSM 60 88 275 80 0,5 0,205 10,321 12,873 

GWO 60 92 275 80 0,5 0,20634 10,3435 13,2306 

Recommended 60 100 290 120 1 0,209 11,62 15,269 
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Figure 7.   Tensile test results 

4. Conclusion 

 

In this study, the effect of five parameters on warpage, volumetric shrinkage, and cycle time 

of polyamide 66+PA6I/6T injection molded part was determined using the RSM and GWO 

methods. After the design variables were optimized, the interaction between these optimized 

design variables was investigated based on the objective values and tensile modulus of the 

polymer composite. A plastic test specimen was tested based on the design parameters. The 

selected design parameters included fiber ratio, melt temperature, mold temperature, injection 

pressure, and injection time. It was observed that the stress-strain curves obtained by the 

analysis program were compatible with the experimental stress-strain curves obtained in light 

of these results. 

 

The effect of design parameters on quality characteristics in fiber-reinforced composite 

material injection molding was studied using the ANOVA method based on the experiment 

design and Moldflow (MPI) numerical simulation. The RSM was used in the determination of 

optimum design parameter values. The experiment confirmed that the results obtained by the 

proposed method are better than those obtained by GWO. It was shown that the residual stress 

on the test specimens decreased according to the numerical values obtained by the 

optimization of design parameters using both methods. Finally, the test specimen produced in 

the injection machine based on the optimized design parameter values was subjected to tensile 

testing, and it was concluded that according to the results obtained experimentally, both 

optimization methods could improve the tensile modulus of the polymer.  
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