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ABSTRACT 

Real world optimization problems involve multiple conflicting objectives (such as minimizing 
cost while maximizing the quality of a product) and are subject to constraints (such as physical 
feasibility or budget limitations) which makes them interesting to solve. Over the last decades, 
evolutionary algorithms have been largely used in solving optimization problems in various fields of 
science. The aim of this study is to evaluate the performance of a constrained version of the Non-
dominated Sorting Genetic Algorithm 2 (NSGA 2), a multi-objective evolutionary optimization 
algorithm, written in MATLAB. The developed NSGA 2 is compared, in terms of convergence and 
diversity of the obtained solutions, to a number of popular constrained multi-objective evolutionary 
algorithms from the literature. Widely used four benchmark problems (including CONSTR, OSY, SRN, 
and TNK problems) with varying difficulty and type of constraints are reviewed and used. The NSGA 2 
obtained the lowest values of inverse generational distance (IGD) values for almost all the problems. 
These results show that the developed constrained NSGA 2 is an effective technique and is competitive 
to the other optimization methods in the literature. 

Keywords: Genetic algorithms, Evolutionary algorithms, Non-dominated Sorting Genetic 
Algorithm 2, Multi-objective optimization, constrained multi-objective optimization. 
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1. INTRODUCTION 
Solving multi-objective optimization problems have interested researchers in all the 

fields of science over the last decades. Real world optimization problems usually involve 
multiple objectives and are subject to constraints. Multi-objective optimization problems have 
multiple solutions which produce trade-offs between the objectives. A multi-objective 
optimization problem can be mathematically formulated, without loss of generality, as follows: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐹𝐹(𝑥𝑥) = �𝑓𝑓1(𝑥𝑥), … ,𝑓𝑓𝑚𝑚(𝑥𝑥)� 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 𝑔𝑔𝑖𝑖(𝑥𝑥) ≥ 0,   𝑚𝑚 = 1, … , 𝑞𝑞 
𝑥𝑥 ∈ ℝ𝑛𝑛 

A solution 𝑥𝑥 is feasible if it satisfies all the constraints simultaneously. 

A solution 𝑥𝑥1 is said to dominate a solution 𝑥𝑥2 if both of the following conditions are 
true: 

• For all the objectives 𝑓𝑓𝑖𝑖(𝑥𝑥1) ≤ 𝑓𝑓𝑖𝑖(𝑥𝑥2)      
• There exists at least one objective where 𝑓𝑓𝑖𝑖(𝑥𝑥1) < 𝑓𝑓𝑖𝑖(𝑥𝑥2) 
A solution is said to be non-dominated if it is not dominated by any other solution. The 

set of non-dominated solutions is referred to as the Pareto optimal set, the image of this set in 
the objective space is called the Pareto front 

In multi-objective optimization our goal is to find as many pareto optimal solutions as 
possible. classical methods work with a single solution which will require multiple runs while 
expecting to find a different solution each time. Evolutionary algorithms work with a population 
of solutions so multiple pareto solutions can be found on a single run which make them suitable 
to solve this type of problems. Over the last decades a variety of constrained evolutionary 
algorithms have been presented. We can cite the following algorithms: Adaptive tradeoff model 
(ATM) by (Wang, Cai, Zhou, & Zeng, 2008), Infeasibility Driven Evolutionary Algorithm 
(IDEA) by (Ray, Singh, Isaacs, & Smith, 2009), Self- adaptive penalty (SP) by (Woldesenbet, 
Yen, & Tessema, 2009), the MOEA/D-IEpsilon by (Fan et al., 2016) and the non-dominated 
sorting genetic algorithm (NSGA 2) by (Deb, Pratap, Agarwal, & Meyarivan, 2002) which we 
will be using in our study. 

In this study a constrained NSGA 2 was written in Matlab. A sensitivity analysis was 
performed to determine the best parameters for the algorithm. In the end the performance of the 
algorithm was evaluated against other algorithms from the literature.  

2. MATERIALS AND METHODS 
Before describing the main loop of the NSGA 2, we are going to present the main 

procedures of the algorithm: non-dominated sorting, crowding distance, the crowded 
comparison operator and the constraint handling technique.  

2.1 Non-Dominated Sorting 
This method was first introduced by (Deb et al., 2002). The objective of this procedure 

is to sort the population into different nondomination levels. In the beginning we define and 
calculate two substances: 

• For each solution p we calculate the number of solutions dominating p and we note 
it as np the domination count. 

• All the solutions that the solution p dominates are grouped in a set Sp noted as 
domination set of p. 
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Solutions with a domination count np=0 will form the first nondominated front. For each 
solution p of this front we reduce the domination count of the members of its domination set by 
one. Elements whose domination count became zero are put in separate set Q, this set is the 
second nondominated front. Q undergoes the same procedure to identify the third front. this 
operation is repeated until all the fronts are determined. 

2.2 Crowding Distance (Diversity Preservation) 
Solutions obtained by the evolutionary algorithm are desired to be diverse and well 

dispersed along the Pareto front. to preserve diversity in the obtained solutions (Deb et al., 
2002) introduced a parameterless diversity preservation technique. In this technique each 
solution is assigned a crowding distance which can be calculated as follows: 

• For each objective function we sort the population in an ascending order, and assign 
an infinite distance value to the boundary solutions,  

• For the in-between solutions we attribute the absolute normalized difference of 
function values of the two neighboring solutions. This is repeated for all the objective 
functions, 

• The crowding-distance is the sum of distances calculated for each objective function. 
It is beneficial to note that a solution with a bigger crowding-distance is less crowded 

by other solutions. 
After the assignment of the crowding distance, every two solutions can be compared 

using the crowded-comparison operator as follows: 

• If they have different nondomination ranks, the one with smaller rank is selected, 
• If they have the same nondomination rank, the one with the bigger crowding distance 

is selected. 
2.3 Constraint Handling 
constraint handling is critical in solving constrained optimization problems. To handle 

the constraints a penalty function based technique is widely used, it converts the problem to an 
unconstrained optimization problem by adding a penalty to the objective function value for 
every constraint violation. The quality of obtained results depends highly on the choice of the 
penalty values. Other efficient methods have been successfully applied such as the Ray-Tai-
Seow’s method (Ray, Tai, & Seow, 2001) and the Constrained tournament method (Deb et al., 
2002). In our study we are going to use the latter, this method is applied in the binary tournament 
selection process where the following rules are followed: 

• If both solutions are feasible select the solution with better fitness, 
• If one is feasible and the other is not select the feasible one, 
• If both solutions are infeasible select the solution with smaller constraint violation, 
2.4 Genetic Operators (Selection, Crossover, Mutation) 
Selection operator chooses the chromosomes that will generate the next generation. 

Various selection methods have been presented in the literature: Roulette Wheel Selection, 
Tournament Selection, Rank Selection. 

chromosomes selected by the selection process undergo crossover to provide child 
chromosomes, which might have better fitness values. In the crossover process two individuals 
are selected and some parts of these individuals are exchanged to create new individuals called 
child chromosomes. A variety of crossover techniques have been presented in the literature: 
one-point crossover, uniform crossover, two point crossover for the binary representation of 
chromosomes. random crossover, arithmetic crossover, BLX-alpha crossover, simulated binary 
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crossover for real presentation of chromosomes. 
Mutation operator modify a gene of a chromosome randomly, it is applied with a low 

probability. This operator introduces new material to the population and prevents premature 
convergence. 

These genetic operators have been detailed by (Kalyanmoy, 2001) and (Goldberg, 
1989). 

2.5 Test problems  
To test the performance of the elaborated algorithm we are going to use the following 

benchmark problems: 
Osy proposed by (Osyczka & Kundu, 1995), the Pareto front is a concatenation of five 

regions which lies on the intersection of certain constrains, which requires the algorithm to 
maintain solutions at the different regions which makes the problem difficult to solve. The 
Pareto front of the problem is shown in figure 1. 

Figure 1. Osy problem's Pareto Front 

 
 

𝑂𝑂𝑂𝑂𝑂𝑂:

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓1(𝑥𝑥) = −(25(𝑥𝑥1 − 2)2 + (𝑥𝑥2 − 2)2 + (𝑥𝑥3 − 1)2 + (𝑥𝑥4 − 4)2 + (𝑥𝑥5 − 1)2)
𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓2(𝑥𝑥) = 𝑥𝑥12 + 𝑥𝑥22 + 𝑥𝑥32 + 𝑥𝑥42 + 𝑥𝑥52 + 𝑥𝑥62                                                                     

𝑂𝑂𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 𝑥𝑥1 + 𝑥𝑥2 − 2 ≥ 0                                  
6 − 𝑥𝑥1 − 𝑥𝑥2 ≥ 0            
2 − 𝑥𝑥1 + 𝑥𝑥1 ≥ 0           

2 − 𝑥𝑥1 + 3𝑥𝑥2 ≥ 0             
4 − (𝑥𝑥3 − 3)2 − 𝑥𝑥4 ≥ 0                        
(𝑥𝑥5 − 3)2 + 𝑥𝑥6 − 4 ≥ 0                        

0 ≤ 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥6 ≤ 10          
1 ≤ 𝑥𝑥3, 𝑥𝑥5 ≤ 5      

0 ≤ 𝑥𝑥4 ≤ 6
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TNK proposed by (Tanaka, Watanabe, Furukawa, & Tanino, 1995), the fact that the 
Pareto front is composed of disconnected sets and lies on a non linear constraint surface makes 
it difficult to find solutions spread across the entire Pareto front. The Pareto front of the problem 
is shown in figure 2. 

Figure 2. TNK  problem's Pareto Front 

 
 

        𝑇𝑇𝑇𝑇𝑇𝑇:

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓1(𝑥𝑥) = 𝑥𝑥1                                                            
𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓2(𝑥𝑥) = 𝑥𝑥2                                                            

𝑂𝑂𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 𝑥𝑥12 + 𝑥𝑥22 − 1 − 0.1cos (16arctan (
𝑥𝑥1
𝑥𝑥2

)) ≥ 0

                                                (𝑥𝑥1 − 0.5)2 + (𝑥𝑥2 − 0.5)2 ≤ 0.5
0 ≤ 𝑥𝑥1 ≤ 𝜋𝜋
0 ≤ 𝑥𝑥2 ≤ 𝜋𝜋

                                                      

 
SRN proposed by (Srinivas & Deb, 1994) , the constraints of this problem eliminate a 

part of the unconstrained Pareto-Optimal front which make it difficult to solve. The Pareto front 
of the problem is shown in figure 3. 
  



 ALIOUI & ACAR / An Evaluation of a Constrained Multi-Objective Genetic Algorithm 

Journal of Scientific Perspectives, Volume:4, Issue:2, Year:2020 

142 

Figure 3 SRN problem's Pareto Front 

 
 

           𝑂𝑂𝑆𝑆𝑇𝑇:

⎩
⎪⎪
⎨

⎪⎪
⎧𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓1(𝑥𝑥) = 2 + (𝑥𝑥1 − 2)2 + (𝑥𝑥2 − 1)2

𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓2(𝑥𝑥) = 9𝑥𝑥1 − (𝑥𝑥2 − 1)2                  
𝑂𝑂𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 𝑥𝑥12 + 𝑥𝑥22 ≤ 225               

𝑥𝑥1 − 3𝑥𝑥2 + 10 ≤ 0           
−20 ≤ 𝑥𝑥1 ≤ 20
−20 ≤ 𝑥𝑥2 ≤ 20

                                                                               

 
CONSTR-Ex proposed by (Deb et al., 2002), in this problem the Pareto front is a 

concatenation of the first constraint boundary and a some part of the unconstrained pareto front. 
The Pareto front of the problem is shown in figure 4. 
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Figure 4 CONSTR-EX problem's Pareto Front 

 
 

𝐶𝐶𝑂𝑂𝑇𝑇𝑂𝑂𝑇𝑇𝑆𝑆:

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓1(𝑥𝑥) = 𝑥𝑥1                                              

𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓2(𝑥𝑥) =
1 + 𝑥𝑥2
𝑥𝑥1

                                      

                      𝑂𝑂𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 𝑥𝑥2 + 9𝑥𝑥1 ≥ 6                     
                    −𝑥𝑥2 + 9𝑥𝑥1 ≥ 1 
                      0.1 ≤ 𝑥𝑥1 ≤ 1
                          0 ≤ 𝑥𝑥2 ≤ 5

 

 
2.6 Performance Criteria 
In multi-objective optimization we aim to have solutions as close to the Pareto optimal 

front and spread as possible along the obtained nondominated front. To evaluate the 
performance of our algorithm we have used the inverse generational distance (IGD). This metric 
is able to assess the convergence and the diversity of the obtained solutions simultaneously. It 
is defined as the average of the minimum Euclidean distance between elements of the obtained 
non dominated front and the optimal Pareto front. A small value of the generational distance 
means a better convergence toward the Pareto optimal front and a diverse set. 

3. RESULTS AND DISCUSSION 
To select parameters of the algorithm (crossover probability, crossover technique, 

mutation probability, population size) a sensitivity analysis has been performed and the 
following parameter values have been selected: 

• Crossover probability: 0.9 
• Crossover technique: Blx-α and α=0.5 
• Mutation probability: 0.05 
• Population size: 150 
• Iterations number: 1000 
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Real Pareto front values of the used problems were obtained from  (Coello, Lamont, & 
Van Veldhuizen, 2007). The algorithm was run 30 independent times. Results obtained by the 
NSGA 2 are illustrated in figure 5 we can conclude that the algorithm converged for all the four 
problems. 

Figure 5 Real Pareto Front vs Obtained Pareto Front 

 
Table 1 shows the mean and variance of the inverse generational distance obtained by 

(Fan et al., 2017) and those we obtained by the algorithm we developed for the resolution of 
the four problems.  
Table 1 Performance of the algorithms in terms of the mean and standard deviation values of IGD 

  
ATM CMOEA/D IDEA MOEA/D-

CDP 
MOEA/D-
SR 

NSGA-II-
CDP 

SP MOEA/D-
IEpsilon 

Our 
NSGA II 

CONTR mean 1.22E-02 2.33E-02 1.09E-02 2.33E-02 4.52E-02 1.36E-02 1.22E-02 1.28E-02 5.18E-03 

variance 3.69E-03 5.28E-05 2.72E-04 5.70E-05 7.17E-03 7.74E-03 6.31E-03 1.29E-03 1.78E-07 

OSY mean 1.16E+01 1.16E+01 2.75E+00 1.20E+01 1.92E+01 1.14E+01 1.15E+01 4.31E+00 1.10E+00 

variance 1.04E+00 3.79E+00 1.73E+00 4.77E+00 4.13E+00 1.35E+00 8.60E-01 8.67E-01 1.19E-02 

SRN mean 5.08E-01 1.05E+00 6.53E-01 1.08E+00 1.06E+00 5.13E-01 5.11E-01 3.56E-01 1.73E-01 

variance 1.15E-02 5.59E-02 2.37E-02 4.58E-02 5.71E-02 1.78E-02 1.31E-02 8.26E-03 1.11E-03 

TNK mean 4.33E-03 2.52E-03 2.52E-03 2.53E-03 2.69E-02 8.09E-03 4.12E-03 1.82E-03 3.18E-03 

variance 1.01E-03 4.13E-05 7.43E-05 3.60E-05 3.25E-03 4.47E-03 9.48E-04 4.47E-05 6.07E-08 

 
 



 ALIOUI & ACAR / An Evaluation of a Constrained Multi-Objective Genetic Algorithm 

Journal of Scientific Perspectives, Volume:4, Issue:2, Year:2020 

145 

The NSGA 2 outperformed the other algorithms for all the problems except for the TNK 
where the MOEA/D-IEpsilon (Fan et al., 2016) had the best IGD. This indicates that the NSGA 
2 is still a powerful tool in constrained optimization problems. 
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