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ABSTRACT

This paper compares effectiveness of the different approaches of computing the tilt angle of the 
horizontal gradient amplitude and tilt angle of the analytic signal amplitude such as use of direct 
expression and frequency domain technique (also called k - function) in terms of their accuracy on 
the detection of the edges of magnetic and gravity sources. These approaches were performed on both 
synthetic magnetic and gravity data where the frequency domain technique shows improvements in 
delineation of the actual edges of the sources compared to the direct expression. Additionally, real 
magnetic data from Zhurihe (Northeast China), and real gravity data from Tuan Giao (Northwest 
Vietnam) was considered and the obtained results from applying the different approaches were 
compared with known geological structures. The results show that the boundaries detected from the 
use of the frequency domain technique are in accord with the known geological structures.
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1. Introduction

The knowledge of the edges of the potential field 
sources is important for geological interpretation 
because it could delineate subsurface geological 
structures such as contacts and faults. Many filters have 
been developed over the decades to detect the source 
edges, most of which is based on the computation 
of vertical or horizontal gradients of the field. Evjen 
(1936), Cordell and Grauch (1985), Roest et al. 
(1992), Hsu et al. (1996), Fedi and Florio (2001), Fedi 
(2002), Cella et al. (2009), and Beiki (2010) provided 
examples of the use of amplitude-based filters to 
delineate the source edges. The disadvantage of these 
filters is that they cannot balance the amplitudes of 
anomalies generated by the sources located at different 
depths (Ma et al., 2014; Pham et al., 2018a, b). 

Several authors developed phase - based methods to 
highlight the source horizontal boundaries (Miller and 
Singh, 1994; Rajagopalan and Milligan, 1995; Wijns 
et al., 2005; Cooper and Cowan, 2006; Cooper and 
Cowan, 2008; Li et al., 2012; Ma and Li, 2012). The 
major advantage of these filters is that they make it 
possible to equalize anomalies from shallow and deep 
source bodies (Oruç, 2011; Eldosouky, 2019; Pham 
et al., 2019a). However, the universal disadvantages 
of these filters are that they bring false edges in the 
output result or the obtained results depend on the 
window size used. To solve this problem, Ferreira 
et al. (2013) suggested using a modified version of 
the tilt angle, called the tilt angle of the horizontal 
gradient amplitude. Another modified version of the 
tilt angle, was also introduced by Cooper (2014a), 
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called the tilt angle of the amplitude of the analytic 
signal. Both the TTHG and TAS filters are based on the 
vertical derivative of the nonharmonic functions (the 
horizontal gradient amplitude THG and the analytic 
signal amplitude AS). Florio et al. (2006) showed that 
the vertical derivative of the analytic signal amplitude 
calculated from the frequency domain technique can 
be used to estimate the source depth, but it is not 
effective in detecting the structural index. Ferreira 
et al. (2013), Yao et al. (2015), Pham et al. (2019a) 
estimated horizontal boundaries by using the vertical 
derivative of the horizontal gradient amplitude 
calculated from the frequency domain technique. 
Cooper (2014b), Pham et al. (2019b) used a direct 
expression for computing the vertical derivative of the 
analytic signal amplitude. Yan et al. (2016) suggested 
using the frequency domain technique for computing 
the vertical derivative of the analytic signal amplitude.

In this paper, we compare the edge detection results 
of the tilt angle of the horizontal gradient amplitude 
and the tilt angle of the analytic signal amplitude by 
using the direct expression and the frequency domain 
technique. The efficacy of the approaches is tested on 
both synthetic and real magnetic and gravity data. 

2. Methods

The tilt angle of the horizontal gradient amplitude 
is given by (Ferreira et al., 2013)

 

(1)

where THG is the horizontal gradient amplitude of the 
filed F, which is given by

 
(2)

The tilt angle of the amplitude of the analytic 
signal is calculated using the following equation 
(Cooper, 2014a):

 

(3)

where AS is the analytic signal amplitude of the filed 
F, and is given by

 
(4)

The vertical derivatives of the horizontal gradient 
amplitude and the analytic signal amplitude can be 
easily estimated using the direct expressions (Cooper, 
2014b), as follows:

 
(5)

and

 
(6)

Another approach, based on the vertical derivative 
operator in frequency domain, also can be used to 
compute the vertical derivative of the horizontal 
gradient amplitude and the analytic signal amplitude. 
The definition of the vertical derivative operator is 
given by Blakely (1995) as follows:

 

(7)

where F[ ] denotes Fourier transformation, φ is the 
horizontal gradient amplitude or the analytic signal 
amplitude, e is the exponential function and k is the 
wavenumber defined as 

 
(8)

where kx and ky are the wavenumbers in the x and y 
directions, respectively. The inverse Fourier transform 
of Equation (7) provides the vertical derivative of 
the function φ. Note that the horizontal derivatives in 
Equation (1) and (3) are computed in the space domain 
using the finite difference method.

3. Theoretical Examples

In this section, we compare the edge detection 
results of the TTHG and TAS by using the direct 
expressions with the results obtained by using the 
frequency domain approach. The first model considered 
includes three magnetized prisms located at different 
depths. Figure 1a shows the 3D perspective view of 
the model. The prismatic sources have the same size 
of 30×130×5 km. The top of the sources 1A, 1B, and 
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1C are 1, 6, and 11 km, respectively. The sources have 
a magnetic declination of 0° and an inclination of 90°. 
The magnetization magnitudes of the sources 1A, 
1B, and 1C are 1, -1.2, and 1 A/m, respectively. We 
computed the magnetic anomaly produced by these 
three prismatic sources on a grid of 201×201 points 
with 1 km spacing. The magnetic anomaly of the 
model is shown in Figure 1b. Figure 2a shows TTHG 
result obtained from using the direct expression. As 
can be seen from this figure, although the use of the 
direct expression can detect all the source edges, it 
brings spurious maxima around the prismatic bodies. 
In addition, this approach also generates maximum 
values over the sources. Figure 2b shows the TTHG 
result obtained from using the frequency domain 
vertical derivative operator. We can see that, in this 
case, the TTHG cannot only highlight all the source 
horizontal boundaries, but also can avoid generating 
spurious boundaries. Figure 2c shows TAS result 
obtained from using the direct expression. As depicted 
in this figure, the use of the direct expression can 
highlight the source horizontal boundaries. However, 
this approach brings spurious maxima between the 
sources. Figure 2d shows TAS result obtained from 
using the frequency domain vertical derivative 
operator. Clearly, in this case, the TAS can detect all 
the source edges without any spurious edges.

Since the very complex nature of the geological 
phenomena, it is necessary to also test the performance 
of these approaches in a more complex model. Here, 
we consider a gravity model that includes six prismatic 

sources. Figure 3a shows the 3D perspective view of 
the model. The geometric and density parameters are 
presented in Table 1. The gravity anomaly due to the 
model is computed on a grid of 201×201 points with 
1 km spacing, and is shown in Figure 3b. Figure 4a 
shows the TTHG result obtained from using the direct 
expression. As clearly seen from this figure, the TTHG 
filter can highlight the source horizontal boundaries, 
but it produces some of the artefacts over source 2C 
and between sources 2A and 2D. Figure 4b depicts 
TTHG result by using the frequency domain approach. 
We can see that, in this case, the TTHG is effective in 
detecting all the source horizontal boundaries without 
any other spurious boundaries. Figure 4c and d depict 
TAS results obtained from using the direct expression 
and the frequency domain approach, respectively. 
For both forms of the calculations, the TAS filter 
cannot highlight the edges of the thin sources (2D and 
2E). Moreover, the use of the direct expression also 
produces a spurious boundary between sources 2A 
and 2D, and spurious minimum contours around the 
source 2B and between sources 2D and 2E.

To further test the stability of the approaches, the 
data in Figure 3b was corrupted with random noise 
with amplitude equal to 5% of the anomaly amplitude. 
Figure 5a shows noise - corrupted gravity data. 
Because the TTHG and TAS filters use second-order 
derivatives of the field, they are sensitive to noise. To 
attenuate the noise effect, an upward continuation of 
2 km was applied to the noise data prior to calculating 
the filters. Figure 5b shows the transformed field after 

Figure 1- a) Perspective view of the first model, consisting of three magnetic sources (1A, 1B and 1C) with top depths of 1 km, 6 km and 11 
km, respectively, b) synthetic magnetic field generated by the model. The black lines show actual edges of the sources.
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Figure 2- a) TTHG using the direct expression, b) TTHG using the frequency domain approach, c) TAS using the direct expression, d) TAS 
using the frequency domain. The black lines show actual edges of the sources.

Figure 3- a) Perspective view of the second model; b) synthetic gravity field generated by the model. The black lines show actual edges of the 
sources.
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the upward continuation where the effect of the high 
frequency noise was attenuated somewhat. Figure 6a 
and b display TTHG results obtained from performing 
the direct expression and the frequency domain 
approach, respectively. Clearly, both the approaches 
can delineate all the source edges, but the use of the 

direct expression brings some false maxima over 
the source 2C. Figure 6c and d displays TAS results 
obtained from using the direct expression and the 
frequency domain approach, respectively. It can be 
clearly seen that the edges of the thin sources (2D 
and 2E) could not be outlined by the TAS filter, and 

Figure 4- a) TTHG using the direct expression, b) TTHG using the frequency domain approach, c) TAS using the direct expression, d) TAS 
using the frequency domain. The black lines show actual edges of the sources.

Table 1- The geometric and density parameters of the second model.

Parameters / Prism ID 2A 2B 2C 2D 2E

x-coordinates of center (km) 80 80 90 150 170

y-coordinates of center (km) 100 100 100 100 100

Width (km) 20 40 80 4 4

Length (km) 20 40 80 160 160

Depth of top (km) 1 2 5 1.5 1

Depth of bottom (km) 2 5 8 3.5 3

Density contrast (g/cm3) -0.1 0.1 0.2 0.3 -0.2
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Figure 5- a) Synthetic gravity field generated by the second model with 5% random noise, b) synthetic gravity field after upward continuation 
of 2 km. The black lines show actual edges of the sources.

Figure 6- a) TTHG using the direct expression, b) TTHG using the frequency domain approach, c) TAS using the direct expression, d) TAS 
using the frequency domain. The black lines show actual edges of the sources.
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the use of the direct expression produces a spurious 
edge between sources 2A and 2D. Moreover, the TAS 
is more sensitive to noise than the TTHG as it uses 
second-order vertical derivative of the field, whereas 
the TTHG uses only the first-order vertical derivative.

4. Application to Real Data

In order to test the practical applicability of the 
approaches, we apply them to real magnetic data from 
Zhurihe (Northeast China), and real gravity data from 
Tuan Giao (northwest Vietnam).

Figure 7a shows the magnetic anomaly data 
reduced to the pole of the Zhurihe area (Yuan and 
Yu, 2014). The study area is 73×117 km, with an 

interval of 1 km along the east and north directions. 
Figure 7b and c show TTHG results obtained from 
using the direct expression and frequency domain 
approach, respectively. Figure 7d and e show TAS 
maps obtained from the use of the direct expression 
and frequency domain approach, respectively. Figure 
7f displays geological map of the area (modified from 
Ma et al., 2014). The continental sediments cover 
most of the Zhurihe area, except for some nearly SE 
- NW trending iron-rich sandstone dykes (Ma et al., 
2014, Zhou et al., 2017). As can be observed, the edge 
maps of the TTHG are consistent with the geology 
information (Figure 7f). In this case, the TAS is less 
effective in highlight the geological boundaries, and it 
is more sensitive to noise than the TTHG. However, it 

Figure 7- a) Magnetic anomaly data reduced to the pole of the Zhurihe area, b) TTHG using the direct expression, c) TTHG using the 
frequency domain approach, d) TAS using the direct expression, e) TAS using the frequency domain, f) geological map of the area 
(Ma et al., 2014).
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is worth noting that the use of the frequency domain 
approach for both the TTHG and TAS filters provides 
more clearly results, compared to the use of the direct 
expression.

Figure 8a shows the Bouguer gravity anomaly map 
of the Tuan Giao area (Pham et al., 2019a). The study 
area is characterized by high seismicity (Roger et al., 
2014; Duan and Duong, 2017), covering an area about 
116 km × 155 km with an interval of 1.22 km along the 
east and north directions. Figure 8b and c display TTHG 
maps obtained from the use of the direct expression 
and frequency domain approach, respectively. Figure 
8d and e display TAS results obtained from using the 
direct expression and frequency domain approach, 
respectively. Figure 8f displays geological map of 

the area (modified from Roger et al., 2012). The Tuan 
Giao area has complex SE-NW trending geological 
structures including many faults, sedimentary rocks, 
magmatic rocks, and volcanoes. We can see that, 
the horizontal boundaries detected by the TTHG are 
consistent with the geology information (Figure 8f). 
In addition, the use of the frequency domain approach 
for calculating the TTHG shows a more clearly result 
compared to the use of the direct expression. The 
TAS results by both approaches are less effective in 
detecting the geological boundaries compared to those 
obtained from the TTHG filter. However, similar to the 
TTHG case, the use of the frequency domain approach 
for calculating the TAS brings a more clearly result 
compared to the use of the direct expression.

Figure 8- a) Bouguer gravity anomaly of the Tuan Giao area, b) TTHG using the direct expression, c) TTHG using the frequency domain 
approach, d) TAS using the direct expression, e) TAS using the frequency domain, f) geological map of the area (Roger et al., 2012).
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5. Results

We tried to review the effectiveness of the use of 
the frequency domain approach and direct expression 
to compute the tilt angle of the total horizontal 
gradient and tilt angle of the analytic signal amplitude 
for detecting the source edges. Test studies were 
performed on a synthetic magnetic data, and also 
on synthetic gravity data with and without random 
noise. The obtained results showed that the use of 
the frequency domain approach is more effective in 
highlighting the geological boundaries compared 
to the use of the direct expression. Test studies also 
were performed on real magnetic data of the Zhurihe 
area (Northeast China), and real gravity data of the 
Tuan Giao area (northwest Vietnam), where edges 
obtained from using the frequency domain approach 
are in accord with the known geological structures. 
We also showed that the edges detected from the tilt 
angle of the total horizontal gradient are more clearly 
than those from the tilt angle of the analytic signal 
amplitude.
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