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Abstract

In this study we consider an e�cient sixth order-scheme for solving Banach space valued equations. The
convergence criteria in earlier studies involve higher order derivatives limiting applicability of these methods.
In this study we use the �rst derivative only in our analysis to expand the usage of these schemes. The
technique we use can be used on other schemes to obtain the same advantages. Numerical experiments
compare favorably our results to earlier ones.
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1. Introduction

Let F : D ⊂ B1 → B2 be a continuously di�erentiable nonlinear operator and D stand for an open non
empty convex compact set of B1. Here B1 and B2 stand for Banach spaces. Consider the problem of �nding
a solution x∗ of the nonlinear equation

F (x) = 0. (1)

It is desirable to obtain a unique solution x∗ of (1). But this can rarely be achieved, so most researchers and
practitioners develop iterative schemes which converge to x∗. In this paper we extend the convergence ball
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of a class of an e�cient sixth order-scheme studied in [18]. Precisely, we consider the sixth order method
de�ned in [18] for n = 1, 2, . . . , by

yn = xn −
2

3
F ′(xn)−1F (xn)

zn = xn − (9A−1n F ′(xn) +
3

2
(A−1n F ′(xn))−1 − 13

2
I)F ′(xn)−1F (xn)

xn+1 = zn − 2(3A−1n − F ′(xn)−1)F (zn), (2)

where An = F ′(xn) + F ′(yn).
The analysis in [18] uses assumptions on the sixth order derivatives of F and when B1 = B2 = Rm.

The assumptions on higher order derivatives reduce the applicability of method (2). For example: Let
B1 = B2 = R, D = [−1

2 ,
3
2 ]. De�ne F on D by

F (x) =

{
x3 log x2 + x5 − x4, x 6= 0

0, x = 0.

Then, we get
F ′(x) = 3x2 log x2 + 5x4 − 4x3 + 2x2,

F ′′(x) = 6x log x2 + 20x3 − 12x2 + 10x,

F ′′′(x) = 6 log x2 + 60x2 = 24x+ 22,

and x∗ = 1. Obviously F ′′′(x) is not bounded on D. Hence, the convergence of scheme (2) is not guaranteed
by the analysis in [18]. In this study we use only assumptions on the �rst derivative to prove our results.
The advantages of our approach include: larger radius needed on method of convergence (i.e. more initial
points), tighter upper bounds on ‖xk − x∗‖( i.e. fewer iterates to achieve a desired error tolerance). It is
worth noting that these advantages are obtained without any additional conditions [1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32].

Throughout this paper U(x, r) stand for open ball with center at x and radius r > 0 and Ū(x, r) denote
the closure of U(x, r).

Rest of the paper is organized as follows. The convergence analysis of method (2) is given in Section 2
and examples are given in Section 3.

2. Ball analysis

We consider real functions and parameters to assist us in the convergence of method (2). Assume equation

w0(t)− 1 = 0, (1)

has a real positive root denoted as r0, where for I = [0,∞), ω0 : I −→ I is continuous and increasing with
ω0(0) = 0. Moreover, consider for I0 = [0, r0) functions ω : I0 −→ I, ω1 : I0 −→ I continuous and increasing
with ω(0) = 0. De�ne functions g1, h1 on I0 as

g1(s) =
(
∫ 1
0 ω((1− τ)s)dτ + 1

3

∫ 1
0 ω1(τs)dτ)

1− ω0(s)

and
h1(s) = g1(s)− 1.

Assume
1

3
ω1(s)− 1 < 0. (2)
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The existence of roots for real functions is based on the Intermediate Value Theorem (IVT). By these
hypotheses and de�nition, we obtain h1(0) < 0 and h1(s) −→∞ with s −→ r−0 . By IVT, there exists a least
root for h1 in (0, r0) denoted by R1. De�ne function h, p on I0 as

p(s) =
1

2
(ω0(s) + ω0(g1(s)s)) .

Assume equation
p(s)− 1 = 0, (3)

has a least root in (0, r0) denoted by rp. De�ne functions q, b, g2 and h2 on the interval [0, rp) as

q(s) =
ω0(s) + ω0(g1(s)s)

4(1− p(s))
,

b(s) =
3

2

(ω1(s) + ω1(g1(s)s))(6q(s)
2 + q(s) + 1)

1− ω0(s)
,

g2(s) = g1(s) +
b(s)

∫ 1
0 ω1(τs)dτ

1− ω0(s)

and
h2(s) = g2(s)− 1.

Assume
g1(0) + b(0)ω1(0)− 1 < 0. (4)

Then, we get again using (4) and the de�nitions: h2(0) < 0 and h2(s) −→∞ as s −→ r−p . By IVT, equation
h2(s) = 0 has a least root in (0, rp) denoted by R2. Assume equation

ω0(g2(s)s)− 1 = 0 (5)

has a least root in (0, rp) denoted by r1. De�ne functions c, g3 and h3 on (0, r1) as

c(s) =
ω0(s) + ω0(g2(s)s)

(1− ω0(s))(1− ω0(g2(s)s))
+

3

2

ω0(s) + ω0(g2(s)s)

(1− ω0(s))(1− p(s))
,

g3(s) = (g1(g2(s)s) + c(s)

∫ 1

0
ω1(τg2(s)s)dτ)g1(s)

and
h3(s) = g3(s)− 1.

Assume
(g1(0) + c(0)ω1(0))(g1(0) + b(0)ω1(0))− 1 < 0. (6)

Then, we get h3(0) < 0 and h3(s) −→ ∞ as s −→ r−1 . Denote by R3 the least root of equation h3(s) = 0 in
(0, r1). Lastly, introduce a radius of convergence

R = min{Ri}, i = 1, 2, 3. (7)

Notice that then, we have for s ∈ [0, R)

0 ≤ ω0(s) < 1, 0 ≤ ω0(g2(s)s) < 1, (8)

0 ≤ p(s) < 1 (9)

and
0 ≤ gi(s) < 1, i = 1, 2, 3. (10)

Set en = ‖xn − x∗‖. The conditions (A) that follow shall be used in the ball convergence of method (2):
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(A1) Operator F : D −→ B2 is continuously di�erentiable and there exists a simple solution x∗ of equation
F (x) = 0.

(A2) There exists a continuous and increasing function ω0 on I0 with values on itself with ω0(0) = 0 such
that for all x ∈ D

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ ω0(‖x− x∗‖).

Let D0 = D ∩ U(x∗, r0), if r0 exists and is given in (1).

(A3) There exist continuous and increasing functions ω and ω1 on the interval I0 with values on interval I0
such that for each x, y ∈ I0

‖F ′(x∗)−1(F ′(y)− F ′(x))‖ ≤ ω(‖y − x‖)

and
‖F ′(x∗)−1F ′(x)‖ ≤ ω1(‖x− x∗‖).

(A4) Ū(x∗, R) ⊂ D, and items (1)-(7) are true, where R is de�ned in (7).

(A5) There exists R∗ ≥ R such that ∫ 1

0
ω0(τR∗)dτ < 1.

Under these de�nitions and conditions we present the ball convergence of method (2).

Theorem 2.1. Under the conditions (A) choose starting point x0 ∈ U(x∗, R). Then, the following items
hold for all

{xn} ⊂ U(x∗, R), (11)

lim
n−→∞

xn = x∗, (12)

‖yn − x∗‖ ≤ g1(en)en ≤ en < R, (13)

‖zn − x∗‖ ≤ g2(en)en ≤ en, (14)

‖xn+1 − x∗‖ ≤ g3(en)en ≤ en, (15)

and x∗ is the only solution of equation F (x) = 0 in the set D1 given below condition (A5), and the functions
gi, hi are de�ned previously.

Proof. Mathematical induction is used to show items (11)-(15). First we establish the existence of all
iterates in U(x∗, R). By (A1), (A2) and (1)-(3), we get for x ∈ U(x∗, R)

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ ω0(‖x− x∗‖) < ω0(r) ≤ ω0(R) < 1,

leading together with a lemma due to Banach on invertible operators [28] that F ′(x)−1 ∈ L(B2, B1) with

‖F ′(x)−1F ′(x∗)‖ ≤
1

1− ω0(‖x− x∗‖)
. (16)

Hence, if x = x0 it follows by method (2) that iterate y0 exists.
Next, we shall show that these iterates belong in the ball U(x∗, R).We can write by the second condition

in (A3) and (A1), since

F (x) = F (x)− F (x∗) =

∫ 1

0
F ′(x∗ + τ(x− x∗))dτ(x− x∗)
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that

‖F ′(x∗)−1F ′(x)‖ ≤
∫ 1

0
ω1(τ‖x− x∗‖)dτ‖x− x∗‖. (17)

By (2), (6) (for i = 0), (16) (for x = x0), (A1) the �rst condition in (A3) and the �rst substep of method
(2) (for n = 0), we get in turn that

‖y0 − x∗‖ = ‖x0 − x∗ − F ′(x0)−1F (x0) +
1

3
F ′(x0)

−1F (x0)‖

= ‖F ′(x0)−1F ′(x∗)(F ′(x∗)−1
∫ 1

0
(F ′(x∗ + τ(x0 − x∗))− F ′(x0))(x0 − x∗)dτ

+
1

3
F ′(x0)

−1F (x0)‖

≤
∫ 1
0 ω((1− τ)e0)dτe0 + 1

3

∫ 1
0 ω1(τe0)dτe0

1− ω0e0)

= g1(e0)e0 ≤ e0 < R, (18)

showing (11) for n = 0 and y0 ∈ U(x∗, R).
Next, we show A−10 exists. Indeed by (7, (9), (A2), (18), and (18), we have

‖(2F ′(x∗))−1(A0 − 2F ′(x∗))‖ ≤
1

2

(
‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖

+ ‖F ′(x∗)−1(F ′(y0)− F ′(x∗))‖
)

≤ 1

2
(ω0(e0) + ω0(‖y0 − x∗‖))

≤ 1

2
(ω0(e0) + ω0(g1(e0)e0)) = p(e0) ≤ p(R) < 1, (19)

then,

‖A−10 F ′(x∗)‖ ≤
1

2(1− p(e0))
, (20)

so z0, x1 exist by method (2) for n = 0. Then, we can write by method (2) (secod substep for n = 0)

z0 − x∗ = x0 − x∗ − F ′(x0)−1F (x0) +B0F
′(x0)

−1F (x0), (21)

where

B0 = I − 9A−10 F ′(x0)−
3

2
(A−10 F ′(x0))

−1 +
13

2
I

= −3

2
F ′(x0)

−1A0[6(A−10 F ′(x0)−
1

2
I)2

+(A−10 F ′(x0)−
1

2
I) + I]. (22)

We need the estimates

‖A−10 F ′(x0)−
1

2
I‖ =

1

2
‖(A−10 F ′(x∗))

×[F ′(x∗)
−1(F ′(x0)− F ′(x∗)) + F ′(x∗)

−1(F ′(x∗)− F ′(y0))]‖

≤ ‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖+ ‖F ′(x∗)−1(F ′(y0)− F ′(x∗))‖
4(1− p(e0))

≤ ω0(e0) + ω0(‖y0 − x∗‖)
4(1− p(e0))

≤ ω0(e0) + ω0(g1(e0)e0)

4(1− p(e0))
= q(e0), (23)
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and

‖F ′(x∗)−1A0‖ ≤ ω1(e0) + ω1(‖y0 − x∗‖)
≤ ω1(e0) + ω1(g1(e0)e0). (24)

Then, by (16) and (22)-(24), we �nd

‖B0‖ ≤
3

2
‖F ′(x0)−1F ′(x∗)‖‖F ′(x∗)−1A0‖

×[6‖A−10 F ′(x∗)−
1

2
I‖2 + ‖A−10 F ′(x0)−

1

2
I‖+ ‖I‖]

≤ 3

2

(ω1(e0) + ω1(g1(e0)e0))

1− ω0(e0)

×(6q(e0)
2 + q(e0) + 1) = b(e0). (25)

In view of (21) and (22)-(25), we can �nd

‖z0 − x∗‖ ≤ ‖y0 − x∗‖+ ‖B0‖‖F ′(x0)−1F ′(x∗)‖‖F ′(x∗)−1F (x0)‖

≤ [g1(e0) +
b(e0)

∫ 1
0 ω1(τe0)dτ

1− ω0(e0)
]e0

= g2(e0)e0, (26)

so z0 ∈ U(x∗, R) and (14) is true. Notice that by (7), (16 (for x = z0), we get F
′(z0)

−1 exists and

‖F ′(z0)−1F ′(x∗)‖ ≤
1

1− ω0(‖z0 − x∗‖)
. (27)

Next, it follows by method (2) (third step for n = 0) that we can write

x1 − x∗ = z0 − x∗ − F ′(z0)−1F (z0) + C0F
′(x∗)F

′(x∗)
−1F (z0), (28)

where

C0 = F ′(z0)
−1 − F ′(x0)−1 − 6[A−10 −

1

2
F ′(x0)

−1]

= F ′(z0)
−1(F ′(x0)− F ′(z0))F ′(x0)−1

−3A−10 [F ′(x0)− F ′(x∗) + F“(x∗)− F ′(y0)]F ′(x0)−1, (29)

leading using the triangle inequality to

‖C0F
′(x)‖ ≤ ω0(e0) + ω0(‖z0 − x∗‖)

(1− ω0(e0))(1− ω0(‖z0 − x∗‖))

+
3

2

(ω0(e0) + ω0(‖z0 − x∗‖))
(1− ω0(e0))(1− ω0(‖z0 − x∗‖))

≤ c(e0)e0, (30)

where we also use the identities

F ′(z0)
−1 − F ′(x0)−1 = F ′(z0)

−1[(F ′(x0)− F ′(x∗))
+(F ′(x∗)− F ′(z0))]F ′(x0)−1 (31)

and

A−10 −
1

2
F ′(x0)

−1 = (F ′(x0) + F ′(y0))
−1 − 1

2
F ′(x0)

−1

= A−10 (F ′(x0)−
1

2
(F ′(x0) + F ′(y0)))F

′(x0)
−1

=
1

2
A−10 [(F ′(x0)− F ′(x∗))

+(F ′(x∗)− F ′(y0))]F ′(x0)−1 (32)
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By using (28)-(31), (15) (for m = 3) and the triangle inequality we �nd

‖x1 − x∗‖ ≤ [g1(‖z0 − x∗‖) + c(e0)

∫ 1

0
ω1(τ‖z0 − x∗‖)dτ ]‖z0 − x∗‖

≤ g2(e0)e0, (33)

showing x1 ∈ U(x∗, R) as well as (15) to be true. Hence, the veri�cation of estimates (11), (12)-(15) for
n = 0 is �nished. Assuming (11)-(15) are true for j = 0, 1, 2, . . . , n− 1, and simply switching x0, y0, z0, x1 by
xj , yj , zj , xj+1 in the previous estimates, we immediately obtain that these estimates hold for j = n. Then,
the induction for these estimates is terminated. We also have in particular

‖xn+1 − x∗‖ ≤ µe0 < R, (34)

with µ = g3(e0) ∈ [0, 1), so limn−→∞ xn = x∗ and xn+1 ∈ U(x∗, R). It is left to show the uniqueness of the
solution x∗ in the set D1. Consider v ∈ D1 with F (v) = 0 and let M =

∫ 1
0 F

′(v + τ(x∗ − v))dτ. Then, by
(A1) and (A5) we obtain

‖F ′(x∗)−1(M − F ′(x∗))‖ ≤
∫ 1

0
ω0((1− τ)‖x∗ − v‖)dτ ≤

∫ 1

0
ω0(τR∗)dτ < 1,

so the invertability is implied leading together with the estimate 0 = F (x∗) − F (v) = M(x∗ − v) to the
conclusion that x∗ = v.

�

Remark 2.2. We can compute [24] the computational order of convergence (COC) de�ned by

ξ = ln

(
‖xn+1 − x∗‖
‖xn − x∗‖

)
/ ln

(
‖xn − x∗‖
‖xn−1 − x∗‖

)
or the approximate computational order of convergence

ξ1 = ln

(
‖xn+1 − xn‖
‖xn − xn−1‖

)
/ ln

(
‖xn − xn−1‖
‖xn−1 − xn−2‖

)
.

This way we obtain in practice the order of convergence without resorting to the computation of higher order
derivatives appearing in the method or in the su�cient convergence criteria usually appearing in the Taylor
expansions for the proofs of those results.

3. Numerical Examples

Example 3.1. Let us consider a system of di�erential equations governing the motion of an object and given
by

F1(x) = ex, F2(y) = (e− 1)y + 1, F3(z) = 1

with initial conditions F1(0) = F2(0) = F3(0) = 0. Let F = (F1, F2, F3). Let B1 = B2 = R3, D = Ū(0, 1), p =
(0, 0, 0)T . De�ne function F on D for w = (x, y, z)T by

F (w) = (ex − 1,
e− 1

2
y2 + y, z)T .

The Fréchet-derivative is de�ned by

F ′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .
Notice that using the (A) conditions, we get for α = 1, ω0(t) = (e−1)t, ω(t) = e

1
e−1 t, ω1(t) = e

1
e−1 . The radii

are
R1 = 0.15440695, R2 = 3.13632884,

R3 = 0.00895286 and R = R3.
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Example 3.2. Let B1 = B2 = C[0, 1], the space of continuous functions de�ned on [0, 1] be equipped with
the max norm. Let D = U(0, 1). De�ne function F on D by

F (ϕ)(x) = ϕ(x)− 5

∫ 1

0
xθϕ(θ)3dθ. (1)

We have that

F ′(ϕ(ξ))(x) = ξ(x)− 15

∫ 1

0
xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ D.

Then, we get that x∗ = 0, so ω0(t) = 7.5t, ω(t) = 15t and ω1(t) = 2. Then the radii are

R1 = 0.02222, R2 = 0.435938,

R3 = 0.0473229 and R = R1.

Example 3.3. Returning back to the motivational example at the introduction of this study, we have ω0(t) =
ω(t) = 96.6629073t and ω1(t) = 2. The parameters for method (2) are

R1 = 0.00229894, R2 = 0.0364927,

R3 = 0.000091765 and R = R3.
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