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HERMITE-HADAMARD-FEJER INEQUALITIES FOR DOUBLE
INTEGRALS

Hiiseyin BUDAK and Mehmet Zeki SARIKAYA
Department of Mathematics, Faculty of Science and Arts, Diizce University, Diizce, TURKEY

ABSTRACT. In this paper, we first obtain Hermite-Hadamard-Fejer inequali-
ties for co-ordinated convex functions in a rectangle from the plane R2. More-
over, we give the some refinement of these obtained Hermite-Hadamard-Fejer
inequalities utilizing two mapping. The inequalities obtained in this study
provide generalizations of some result given in earlier works.

1. INTRODUCTION

The Hermite-Hadamard inequality discovered by C. Hermite and J. Hadamard
(see, e.g., [8], [22, p.137]) is one of the most well established inequalities in the theory
of convex functions with a geometrical interpretation and many applications. These
inequalities state that if f : I — R is a convex function on the interval I of real
numbers and a,b € I with a < b, then

f(“”’)s ! a/bf(w)daxsw- 1)

2 b—a 2

Both inequalities hold in the reversed direction if f is concave. We note that
Hermite-Hadamard inequality may be regarded as a refinement of the concept of
convexity and it follows easily from Jensen’s inequality. Hermite-Hadamard in-
equality for convex functions has received renewed attention in recent years and a
remarkable variety of refinements and generalizations have been studied (see, for
example, [4], [9)- [11], [14], [21], [25], [29], |30], [32]).

The most well-known inequalities related to the integral mean of a convex func-
tion are the Hermite Hadamard inequalities or its weighted versions, the so-called
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Hermite-Hadamard-Fejér inequalities, In |13], Fejer gave a weighted generalization
of the inequalities as the following:

Theorem 1. f:[a,b] — R, be a convex function, then the inequality
b b

r(*57) [ otaras < /b f@gae < LD [y

2

a a

a+b

holds, where g : [a,b] — R is nonnegative, integrable, and symmetric about v = 3

(i.e. g(x) =gla+b—x)).

A formal defination for co-ordinated convex function may be stated as follows:
Definition 2. A function f : A — R is called co-ordinated convexr on A, for all
(x,u), (y,v) € A and t,s € [0,1], if it satifies the following inequality:

fz+(1—1) y,su+(1—35) ) (3)

< ts f(@u) (1 =) f(z,0) + (1 =) f(y,u) + (1 = t)(1 = 5)f(y, v).
The mapping f is a co-ordinated concave on A if the inequality holds in
reversed direction for all ¢,s € [0,1] and (z,u), (y,v) € A.
In |7], Dragomir proved the following inequalities which is Hermite-Hadamard
type inequalities for co-ordinated convex functions on the rectangle from the plane
R2,

Theorem 3. Suppose that f : A — R is co-ordinated convex, then we have the
following inequalities:

b d
a+b c+d 1 1 c+d 1 a+b
< = - -
f(Q, 2) < 3 b_a/f<x, 2)dw+d_c/f<27y>dy

b d
Wl(d—c)//ﬂx’y) dydzx (4)

IN

b b
1 1 1
1 b_a/f(x,c)dw—km/f(x,d)d:ﬂ

IA

d d
1 1
+ E/f(a,y)dy—&-ﬁ/f(b,y)dy

fla,c) + f(a,d) + f(bc) + f(b,d)
4

The above inequalities are sharp. The inequalities in hold in reverse direction

if the mapping f is a co-ordinated concave mapping.

<
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Over the years, many papers are dedicated on the generalizations and new ver-
sions of the inequalities using the different type convex functions. For the other
Hermite-Hadamard type inequalities for co-ordinated convex functions, please refer

o ([1), 18], Bl , (6], [23], [24), [20], [26], [27], [31])

Alomari and Darus proved the following Hermite-Hadamard-Fejér inequalities

for double integrals in [2]:

Theorem 4. Let p: A :=[a,b] x [¢,d] — R be a positive, integrable and symmetric
about “* and C"z'—d. Let f : A — R be a co-ordinated convexr on A, then we have
the following Hermite-Hadamard-Fejer type inequalities

b d
[ I y)p(e,y)dydz

a+b c+d )
)dyd
f( )//px y e f;fcdp(x,y)dyd:c

fla,¢) + fla,d) + f(b,c) + f(b,d)
< 1 .

Moreover, Farid et al. established a weighted version of the inequalities
in [12]. Please see ( [15]- [19], [28]) for other papers focused on Hermite-Hadamard-
Fejér inequalities for co-ordinated convex functions.

The aim of this paper is to establish a new weighed generalizations of Hermite-
Hadamard type integral inequalities . The results presented in this paper provide
extensions of those given in [2], |7] and [12].

We will use the following lemma to proof of main result:

A

Lemma 5. [2] Let f : [a,b] X [¢,d] — R be a co-ordinated convex function and let
a <y <x1 < Ty < Yo < bwith 11 + 32 =y1 + o,

c<wi <wv <wvy <wy < d with vy + v = wy + ws.

Then for the convex partial mappings f, : [a,b] — R, fy(z) = f(z,y) for all
x € [a,b] and f,[c,d] = R, f.(y) = f(z,y) for ally € [c,d], the following hold:

f($175)+f(37273)Sf(y1,5)+f(y273)7 Vs € [C7d] (5)
and
f(t?v1)+f(t?v2) Sf(tawl)+f(t7w2)’ vt € [avb]' (6)

2. HERMITE-HADAMARD-FEJER INEQUALITIES

Lets start the following Hermite-Hadamard-Fejer inequalities:

Theorem 6. Let p: A :=[a,b] x [¢,d] — R be a positive, integrable and symmetric
about ”’T'H’ and C';—d. Let f : A — R be a co-ordinated convexr on A, then we have
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the following Hermite-Hadamard-Fejer type inequalities

(%5 ,C;d)/b/dpw,y)dyd:c ™
[ 7 (2 ) (920 ) | b aya
[l (=55 o (5579)

/b /d f(z,y)p(z, y)dydx

IN

IN
| =

IA

b d
1 [ [0+ £ + faw) + 0w g)duds

b d
o S+ f(a,d)If(b,C)-Ff(b,d) / / p(z, y)dyds.

Proof. Since f is co-ordinated convex on A, if we define the mappings f, : [¢,d] —

R, fz(y) = f(mv y) and p : [Cv d} — R, pm(y) = p(xv y)a then fm(y) is convex on [Cv d}

and p,(y) is positive, integrable and symmetric about C"Q'd for all z € [a,b]. If we

apply the inequality for the convex function f,(y), then we have

d d d
1 (50) [t < [ stmtway < ZOTED [ a9
That is,
p d d p d
(2 55%) [otenar < [ rpto.ay < LEOELED oy,
9)
Integrating the inequality @ with respect to x from a to b, we obtain
b d b d
[ (=50 poiie < [ [ sty (10)
<

b d
5 [ [ 1.0+ fe.d)pla,y)dyda.

Similarly, as f is co-ordinated convex on A, if we define the mappings f, : [a,b] — R,
fy(z) = f(z,y) and py : [a,b] — R, py(x) = p(z,y), then f,(z) is convex on [a, b]
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and p, (z) is positive, integrable and symmetric about %2 for all y € [c, d] . Utilizing

the inequality (2 for the convex function f,(x), then we obtain the inequality
b

b
Ty (a;_b> /py( d$</fy z)py(z )dm< +f?/ /py (11)

b b

(”b )/p < [ 1o (12)

a

i.e.

b
< f(a,y)—;f(b,y) /p(%y)dm

a

Integrating the inequality with respect to y on [c,d], we get

// < /b/df(x,y)p(w7y)dydx (13)

b d
< 5 [ [ @)+ £0.0) plev)duda.

> (e, y)dyds

IN

Summing the inequalities and , we obtain the second and third inequalities

in .

Since f (QTH’, y) is convex on [c, d] and p,(y) is positive, integrable and symmetric

about #, using the first inequality in , we have
b d ;i ;i b
a+b c+ a+
(525 [ s [ (0] nawas (14

Integrating the inequality with respect to « on [a,b], we get

b d b d
f(a;b,c;d)//p(w7y)dydw<//f(a;b,y> p(x,y)dydz. (15)

Since f (z, %) is convex on [¢,d] and py(x) is positive, integrable and symmetric
about “7”’, utilizing the first inequality in , we have the following inequality

f(aer,Cer)/b/dp(x,y)dydm</b/df(:r,c
2 2 a ¢ _a c

From the inequalities and , we have the first inequality in .

d> p(x,y)dydz. (16)
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For the proof of last inequality in (7)), using the second inequality in (2) for the
convex functions f(z,c) and f(z,d) on [a,b] and for the symmetric function p,(z),
we obtain the inequalities

b

b
[ sy yn < LD [ ), (17)

2
and
/ a,d) + f(b,d) |
[t ap@ar < LDIED [y s (18)

Similarly, applying the second inequality in for the convex functions f(a,y) and
f(b,y) on [¢,d] and for the symmetric function p,(y), we have

d d

[ ety < LEDTIED ) (19)
and

; be)+ f(bd) |

[ty < LEDTICD [ )y (20)

[a,b], then summing the resulting inequality we obtain the last inequality in
This completes the proof. (I

Integrating the inequalities and on [¢,d] and inequalities and (20 on
(i)

Remark 7. Under assumptions of Theorem@ with p(x,y) = 1, the inequalities @
reduce to inequalities proved by Dragomir in [7].
Remark 8. Let g1 : [a,b] — R and ¢; : [¢,d] — R be two positive, integrable and

“T‘H’ and #7 respectively. If we choose p(x,y) = % for all
(x,y) € A in Theorem@ then we have the following inequalities

a+b c+d
f< et )
b

d
1(1 c+d 1 a+b
3o 1 (55w s g [1(%500) st

a

symmetric about

IN

b d
1
G1G> / / [, 9)g1(2)g2(y) dydee

IN
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b d
< 1lg [+ fwdlae / (0:0) + F(0,)] 92(0)dy
o flao)+ fla,d) + f(be) + f(b,d)
- 4
where
b d
G, = /gl(x)dx and Gy = /gg(y)dy

which is the same result proved by Farid et al. in [12].

3. REFINEMENTS OF THE HERMITE-HADAMARD-FEJER INEQUALITIES

In this section, using two mappings we establish the refinements of the Hermite-
Hadamard-Fejer inequalities:

Theorem 9. Let p: A := [a,b] X [¢,d] — R be a positive, integrable and symmetric
about %*b and C;—d. Let f: A — R be a co-ordinated convexr on A and define the
mappings A1 and As by

Ai(t,s) = //[ <m+ 1t)a;—b’c—|2—d>

et dﬂ p(z, y)dydx

As(t,s) = //{ (ta:—i— l—t)a;b,y)

)] i

+f <a+b sy + (1 —s)

and

it (amra 0

Then the functions Ay and Ay are co-ordinated convex functions on [0, 1]2, non-
decreasing on [0, 1]2 and we have the following refinement of Hermite-Hadamard-

Fejer inequalities
; p b d
f<a+ €t )//pxydydx (21)

S Al(tvs)
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(TR Cs) -

A2 (t, S)

b d
S//f p(z,y)dydz.

Moreover we have

IN

b d
inf A1<t,s>=A1<o,o>=f(“+b,c+d) [ [ avas, e
(t,s)€[0,1]2 2 2
sup At s) = A1(1,1) (23)
(t,5)€[0,1]?
c+d at+b
= //[ ( )+f< 5 ,yﬂp(:v,y)dydx,
inf Ag(t,s) = AQ(0,0) (24)
(t,s)€l0,1]?
1 ry d b
c—+ a +
and
b d
sup  Natos) = Aa(L1) = [ [ Flo (e p)dyda, (25)
(t,s)€[0,1]? s

Proof. Fix s € [0,1] and let ¢1,t5 € [0,1] and «, 8 > 0 with o + 8 = 1. Then by
using the co-ordinated convexity of f we have

Al(atl + ﬂtg, 8)
b d

- ;//[f ((atl+Btz)w+(1—(at1+ﬂt2))a;b’c;d>

c+d

v (S5t (1= 9550 | pte s
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- ;/b/d[f(a(twﬂl—tl)a;b)+ﬁ(t2m+<1—t2>“j”),cgd)

v (S5 st (1= 9550 | pte s

2
1] b c+d b ctd
- 5// ozf(tla:+<1—t1)&_2F s >+/3f(t233+(1—t2)a_2|_ C; )
| L
b d b d
_ %// f<t1m+(1t1)a; C; >
+f (a;b,ser (1 —S)C;dﬂ p(z,y)dydx
5 b d ) ;
a+ c—+
+2//[f(f2$+(1—t2) 55 )
+f<a“2Lb sy+(1—s )} (z,y)dyda

= ali(ty,s) + BAi(t2, 5).
Similarly, if ¢ € [0,1], then for s1,s2 € [0,1] and a, 8 > 0 with a + 8 = 1, we can
also obtain
Al(t, asy + 582) < OéAl(t, 81) + 6A1(t, 82)
which gives that A; is co-ordinated convex function on [0,1]%.
Fix s € [0,1] and let 0 < ¢; <ty <1 with z = “7“’. Then, we have

b b
t2x+(1—t2)a—; < tat(1-t)2E (26)
b
< tl(a+bfx)+(1ft1)a;
b
< tg(a+b—x)+(1—t2)a;

and
a+b

(t1x+(1—t1) >+<t1(a+b—x)+(1—t1)“;b> (27)
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= (t2x+(1—t2)a;b>+<t2(a+b—x)+(1—t2)a;b),

From the inequality of Lemma [ since p is positive, integrable and symmetric

to “—er we obtain

Al(th )

- //{ <t1m+ 17t1)a;rb C;d>

+f( ar sy +(1- )T)}p(w,y)dydx

a+b
2

= 3 [Tlmrammmgtet)

wr (s 0= 9 550 )t ayas

2

+b

;//d{ <t1 (a+b—a)+ (1—1:1)“‘2”) ng>
oh

d)} pla+b—z,y)dydx

+f( 3 ser(lfs)CJr

NIRRT
( a+b c+d>
(5

a

vl

N =

_ 1—
+b .T ( tl) B D)

c+d
5y + (1 — 5)2” p(z,y)dydx

b

IN
DO =

j[ (1 -2, 5

a+b c+d>

“rb-% (1—2)

)

2
b
a—|— ysy+(1—s >} (z,y)dydx
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STRIICEE

+f (a+b sy+(1—s)° ks dﬂ p(z, y)dydzx

2

/d|:f<t2(a—|—b—x) (1_t2)a—2|-b cgd)

C

b d
+f (a; sy +(1— S)CJQF)} pla+b—x,y)dyds

= 5[ [I{erammtege)

a C

b d
+f (a; sy+(1— S)C;ﬂ p(z,y)dydx
- Al(tQ,s),

wich gives that A;(¢,.) is non-decreasing on [0, 1]. Similar way, we can also prove
that A1(., s) is non-decreasing on [0, 1] by the assumption ¢ € [0, 1] is fixed and by
using the @ of Lemma Therefore A; is co-ordinated monotonic non-decreasing
on [0,1]?.

It can easily shown that Ay is co-ordinated convex function on [0, 1]2 similar to
proof of co-ordinated convex1ty of Ay. To prove that A2 is co-ordinated monotonic
non-decreasing on [0, 1] , consider the assumptions (26)) and . Using the in-
equality of Lemma we have

Ag(tl,s)
b d

- ;//[f <t1x+(1—t1)a;b,y>+f<m78y+(1—8)(?1>}?(xvy)dydx

a

- ;//{ <t1x+ (1—t) ;b,y>+f(x78y+(1—8)0?i>}p(%y)dyd$
jh/[ <t1 (a+b—z)+ (1—t1)a;b7y)

+f (a—i—b—m,sy—}—(l—s)c—;d)]p(a—l—b—x,y)dydx
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- //{ <t1x+ (1—t1) ;b,y>+f(t1(a+b—a:) (1—t1)a;b,y>

+f(x7sy+<1—s>c§d)+f(a+b—x,sy+<1—s>c+d)}p(x,mdydx
(l;—bd

< 5 [ [l{eera-w52) i (naro-0 0w ty)

i (w0 =955 )t g (a0t (- 9550 ) e ndydo

a+b

//{ (a4 =5 20) 47 (s (1= 955 ) | oo
//{ (tz (a+b—2x)+ (1_t2)a—2|—b,y>

d)] pla+b—z,y)dydzx

N =
)

Q

N | =

+f <a+bx,sy+(ls)0;r

- //{ <t2x+ (1 —ty) ;b,y>+f(z,sy+(1—s)cgd>}p(xvy)dydw

= As(t2,s).

This finishes the proof that As(t,.) is non-decreasing on [0, 1]. Similarly, we can
also obtain that As(.,s) is non-decreasing on [0, 1] by the assumption ¢ € [0, 1] is
fixed and by using the @ of Lemma Thus, Therefore Ay is also co-ordinated
monotonic non-decreasing on [0, 1]*.

The proofs of the equalities — are obvious from that A; and Ay are co-
ordinated monotonic non-decreasing on [0, 1]*.

The proof of the Theorem [Jis completely completed. O

Corollary 10. Under assumptions of Theorem |9 with p(z,y) = then

we have the mappings 1 and o defined by

1
(b—a)(d—c)’

b
1 1 a+b c+d
Wlts) = 5 ba/f(tw—i—(l—t) e )dm

a
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d
1 a+b c+d
+d_c/f< 5 sy +(1—s)— )dy]

and

+f (m,sy—i— (1 —S)C;d>} dydz.

Then, the functions 1 and Qg are co-ordinated convex functions on [0, 1]27 non-

decreasing on [0, 1]2 and we have the following refinement of Hermite-Hadamard-
Fejer inequalities

a+b c+d
(550 (28)

IA
[N
1
fwy
| | =
S
@\c_
&,’
/~
)
o |+
QU
~—
QU
3]
_|_
U
| —
&H
7/~
IS
| +
S
N
~——
Q
N
| E—

I
Q
[ V)
=
z

< Ml(dc)jc/df(w,y)dydx.

Moreover we have

a+b c+d
inf Q t, =0Q 070 = ’ )
(t,s)12[0,1]2 1(t:9) 1(0,0) f( 2 2 )
sup  Q(t,s) = Q(1,1)
(t,5)€[0,1)
1 1 b d 1 . b
c+ a+
inf Qa(t,s) = 95(0,0)

(t,5)€[0,1]?
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b d
1 1 c+d 1 a+b
T2 b—a/f(x’ 2 )dm—’_d—c/f( 2 ,y)dy

a

and

b od
1
sup  Qao(t,s) = Qa(1,1) = 7//]" x,y)dydz.

w20 o-aa—a/ )@
The inequalities (28) was first given by Ali et al. in [5].

The following Corollary give the refinements of the inequalities obtained by Farid
et al. in [12].

Corollary 11. Let g; : [a,b] — R and ¢; : [¢,d] — R be two positive, integrable

and symmetric about GTH’ and C‘;‘i, respectively. If we choose p(x,y) = %

for all (z,y) € A in Theorem@ then we have the mappings Q3 and 4 defined by

b
1
/f(t:v+(1—t)a+b,c+d>dx
1 2 2

d
1 b d
+G/f(aJr ,ser(1*5)CJr >dy
2

Qg(t,s) =

DN | =

2 2

and

b d
b d
Q4(t,s)201(;2//[]”<tx+(1t)a;r,y>+f<z,sy+(1s)cg ﬂdydx.

Then the functions Q3 and 4 are co-ordinated convex functions on [0,1]27 non-

decreasing on [0, 1]2 and we have the following refinement of Hermite-Hadamard-
Fejer inequalities

a+b c+d
(550 (29)
< QB(tvs)

IN
N =
Q\H
_

@\@

\
N
8
o |+

QL
~—

U

8

_|_
Q\H
no
\
\‘s
N

Q

2| 4
ﬂ@‘
<
N—_

QU
<

IA
0
s
0
=z
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1 b d
< .
< GlGQ//f(x,y)dydx

Moreover we have

(t,s)€[0,1]?

b
11 c+d 1 a+b
inf  Qu(t,s) = 2,00,0) = = | — ,d+/( ,)d
oot 4(t,s) = Q4(0,0) 5 Gl/f<:v 5 ) Tt a; Fl=—g—v)dy

and

d
111 c+d 1 a+b
sup Qg(t,s) = 93(1, 1) = 5 C;T f (l‘, 2> dx + Gig /f (2,y> dy
- d

inf  Q3(t,s) = Q3(0,0) = f( 2 7 2

a+b c+d
(t,5)€[0,1]2 ) ’

B b

a [

b d
swp  (t.s) =) = oo [ [ fap)dude.
(t,s)€[0,1]? G1Gs s
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