A Note on Centres in a Chain of Circles

Ákos G. Horváth ${ }^{*}$
(Dedicated to the memory of Prof. Dr. Aurel BEJANCU (1946-2020))

Abstract

In this note, we study a chain of circles whose pairwise intersection points, taken in a certain order, also lie on two circles. We give a short elementary proof of the following fact. There exists a conic which touches each line connecting the centres of adjacent circles of such chain. In the case of six circles of the chain, this means that the centres of these circles form a Brianchon hexagon. We consider all cases of the possible radically distinct positions of the original chain of circles. In the case when the touching conic is unique, we find out its type.

Keywords: Chain of circles, Dao's theorem, Miquel's theorem, Brianchon hexagon, inscribed conic.
AMS Subject Classification (2020): Primary: 51F99; Secondary: 97G40.

1. Introduction

An interesting recent elementary statement on circles is Dao's theorem on six circles [3, 5, 6, 10]. This theorem states that if six triangles defined by the lines of three consecutive sides of a cyclic hexagon, then the circumcenters of these triangles are the vertices of a Brianchon hexagon [1, p. 47], that is, a hexagon whose main diagonals are concurrent (see Figure 1).

Figure 1. The configuration of Dao's Theorem

By Brianchon's theorem, the main diagonals of a hexagon circumscribed around a conic are concurrent. Hence the hexagons circumscribed around a conic are always Brianchon hexagons (see, for instance, [7, p. 36]). If we draw the six circles circumscribed the Dao's triangles, we get a closed chain of circles. Two consecutive

[^0]circles of this chain have at least one common point. This point is a vertex of the original hexagon. If other common point of these circles exists, then we call it the "second point of intersection" of the two circles.

Miquel's Six-Circles theorem [11] can be formulated in the following way: If for cyclic quadrangles $P_{1} P_{2} P_{3} P_{4}$ and $Q_{1} Q_{2} Q_{3} Q_{4}$ the quadrangles $P_{1} Q_{1} Q_{2} P_{2}, P_{2} Q_{2} Q_{3} P_{3}, P_{3} Q_{3} Q_{4} P_{4}$ are cyclic, then the last quadrangle of this type $P_{4} Q_{4} Q_{1} P_{1}$ is also cyclic. The configuration of Miquel's theorem is shown in Figure 2.

Figure 2. The configuration of Miquel's theorem
In symbols used for the configuration of Miquel's theorem, the circumcircles of the quadruples $P_{1} Q_{1} Q_{2} P_{2}$, $P_{2} Q_{2} Q_{3} P_{3}, P_{3} Q_{3} Q_{4} P_{4}$, and $P_{4} Q_{4} Q_{1} P_{1}$ form a closed chain of intersecting circles with the property that the points of intersection belong to two other circles transversal to each circle of the chain. The following extension of Miquel's theorem can be proved easily by induction [8], [9, Theorem 4.2].

Theorem 1.1. Let α and β be two circles. Let $n>2$ be an even number, and take the points P_{1}, \ldots, P_{n} on α and Q_{1}, \ldots, Q_{n} on β, such that each quadruple $P_{1} Q_{1} Q_{2} P_{2}, \ldots, P_{n-1} Q_{n-1} Q_{n} P_{n}$ is concyclic. Then the quadruple $P_{n} Q_{n} Q_{1} P_{1}$ is also concyclic.

In the case of $n=6$ the obtained configuration of circles is very similar to the configuration in Dao's theorem. Hence it is not to surprising that L. Szilassi observed that the centers of the circles form Brianchon hexagon. But he did not provide proof. On the other hand this problem without solution was published earlier in Crux Mathematicorum by Dao [4]. It is interesting that, in a later volume of Crux Mathematicorum, we can find a correction for another problem (see [2]), which contains the key statement for simply solving the problem in question.

We note that the second points of intersection in a Dao's configuration are not concyclic in general. This implies that the problem we are discussing is independent of that of Dao.

Our short paper contains a simpler and shorter proof of that the hexagon in our question is a Brianchon hexagon. This proof allows us to generalize the statement to any number of circles in the chain.

2. The main theorem

Theorem 2.1. Let $\omega(K)$ and $\omega(L)$ be two circles with respective centers K and L. Let $n, n>2$, be a natural number. Assume that the points of the sequences $P_{1}, \ldots P_{n}$ and Q_{1}, \ldots, Q_{n} belong to the circles $\omega(K)$ and $\omega(L)$, respectively, such that each of the quadrangles $P_{1} Q_{1} Q_{2} P_{2}, \ldots, P_{n-1} Q_{n-1} Q_{n} P_{n}$ is cyclic. Denote the center of the circle $c_{i}\left(O_{i}\right)$ circumscribed the quadrangle $P_{i} Q_{i} Q_{i+1} P_{i+1}, i=1, \ldots, n-1, b y O_{i}$ and assume that none of the points K and L lies on the line $O_{j} O_{j+1}, j=1, \ldots, n-2$. Let N be the common point of some line $O_{j} O_{j+1}$ and the line $K L$. Then there exists a conic γ which touches each line $O_{j} O_{j+1}$. Under the condition $n>6$, the conic γ is uniquely defined, it is:

- an ellipse with foci K and L if $K \neq L$ and the point N does not belong to the segment $K L$;
- a hyperbola with foci K and L if $K \neq L$ and the point N lies between the points K and L;
- a circle with center L if $K=L$.

Proof. We prove the theorem in three steps.

I. First assume that $n \leq 6$. Then $i \leq 5$ and $j \leq 4$, that is, there are no more than four fixed lines $O_{j} O_{j+1}$. Since the family of all conics in the plane depends on five parameters, the family of all conics touching d fixed lines, depends on $5-d$ parameters. Consequently, in the case under consideration, the family of all conics touching the lines $O_{j} O_{j+1}$ for $j=1,2,3,4$, depends on at least one parameter. Thus, when $n \leq 6$, the theorem holds.
II. Now assume that $n>6$ and $K \neq L$.

For any five lines $O_{j} O_{j+1}$, there exists a unique conic, which touches each of these lines. Let us show that such a conic is common for all lines $O_{j} O_{j+1}$.

Let the point T_{j} be the reflected image of the point K with respect to the line $O_{j} O_{j+1}$. We prove that each point T_{j} belongs to the same circle $\sigma(L)$ with centre L. To this end we consider some cyclic quadrangle $P_{j+1} Q_{j+1} Q_{j+2} P_{j+2}$ and denote the perpendicular bisectors of the segments $Q_{j+1} P_{j+1}, P_{j+1} P_{j+2}$, and $P_{j+2} Q_{j+2}$ by f, g, and h, respectively. The configuration of the theorem for the quadrangle $P_{2} Q_{2} Q_{3} P_{3}$ in the case when the conic γ is an ellipse, is shown in Figure 3.

Figure 3. The configuration of the theorem in the case when the conic γ is an ellipse.
Denote the reflections in the lines f, g, and h by symbols S_{f}, S_{g}, and S_{h}, respectively. The lines f, g, and h meet at the point O_{j+1}, in particular, they are parallel if O_{j+1} lies at infinity. Therefore, the composition of the reflections S_{f}, S_{g}, and S_{h} is also a reflection. Since the conditions $S_{f} \circ S_{g} \circ S_{h}\left(Q_{j+2}\right)=S_{f} \circ S_{g}\left(P_{j+2}\right)=$ $S_{f}\left(P_{j+1}\right)=Q_{j+1}$ hold, the composition $S_{f} \circ S_{g} \circ S_{h}$ is the reflection in the perpendicular bisector of the segment $Q_{j+1} Q_{j+2}$. At the same time $S_{f} \circ S_{g} \circ S_{h}\left(T_{j+1}\right)=S_{f} \circ S_{g}(K)=S_{f}(K)=T_{j}$. Hence $S_{f} \circ S_{g} \circ S_{h}$ is the reflection in the perpendicular bisector of the segment $T_{j} T_{j+1}$. Thus, the segments $Q_{j+1} Q_{j+2}$ and $T_{j} T_{j+1}$ have the same perpendicular bisector, denote it by t. Since the point L lies on t, the distances of points T_{j} and T_{j+1} from L are equal to each other, that is, $\left|L T_{j}\right|=\left|L T_{j+1}\right|$. Consequently, for any j the point T_{j} lies in the circle $\sigma(L)$.

Consider the triangles $K L T_{j}$. Let $\left|L T_{j}\right|=2 a$ and $|K L|=2 c$, respectively. By the assumption of the theorem, the point L does not lie in the perpendicular bisector $O_{j} O_{j+1}$ of the segment $K T_{j}$. Consequently, $a \neq c$ and by Pasch's axiom the line $O_{j} O_{j+1}$ passes through a point of the segment $K L$, or through a point of the segment $L T_{j}$. Let N_{j} and M_{j} be the common points of the line $O_{j} O_{j+1}$ with the lines $K L$ and $L T_{j}$, respectively. Then the following assertions are equivalent.

1. The point N_{j} does not belong to the segment $K L$.
2. The point M_{j} belongs to the segment $L T_{j}$.

3. The inequality $a>c$ holds.

Since the numbers a and c are constant in our task, the equivalence of the assertions (1), (3) implies that each of the points N_{j} can be taken as the point N in the formulation of the theorem. Thus the type of the desired conic γ is not depend on the choice of the number j.

Based on the equality $\left|M_{j} K\right|=\left|M_{j} T_{j}\right|$ and the equivalence of the assertions (1)-(3), we obtain the following metric characteristics of the point M_{j}.

If $a>c$, that is, the point N_{j} does not belong to the segment $K L$, then for any j the point M_{j} satisfies the equality $\left|M_{j} K\right|+\left|M_{j} L\right|=2 a$.

If $a<c$, that is, the point N_{j} lies between the points K and L then for any j the point M_{j} satisfies the equality $\left|\left|M_{j} K\right|-\left|M_{j} L\right|\right|=2 a$.

According to these characteristics and the classical definitions of conics, each point M_{j} lies in a conic ω with foci K, L and the orthotomic circle $\sigma(L ; 2 a)$ (see, for instance, [7, pp. 12,33]). This conic is an ellipse or hyperbole if and only if $a>c$ or $a<c$, respectively. The line $O_{j} O_{j+1}$ is the perpendicular bisector of the segment $K T_{j}$ and passes through the point M_{j} of the line $L T_{j}$. Therefore, it forms equal angles with the focal segments $M_{j} K$ and $M_{j} L$ of the point M_{j}. Consequently, for any j the line $O_{j} O_{j+1}$ is the tangent of the conic ω in the point M_{j}. Thus the conic ω is the desired conic γ. This proves the statement of the theorem in the case, when $n>6$ and $K \neq L$.
III. Finally, assume that $n>6$ and $K=L$.

In this case the circles $\omega(K)$ and $\omega(L)$ are concentric. Hence the perpendicular bisectors of the segments $P_{i} P_{i+1}$ and $Q_{i} Q_{i+1}$ coincide and go through the point $K=L$ (see Figure 4). Keeping the notations of the previous step, we find that the symmetries composition $S_{f} \circ S_{g} \circ S_{h}$ transferes the point T_{j+1} to the point T_{j} and leaves L invariant.

Figure 4. The configuration of the theorem in the case when $n=6$ and $K=L$.
Consequently, $\left|L T_{j}\right|$ is a constant, that is, all points T_{j} lie in the same circle with center L. The investigated lines $O_{i} O_{i+1}$ are perpendicular bisectors of the radiuses of this circle. Hence, they are tangents of the circle with center L and radius $\left|L T_{j}\right| / 2$. Thus under the conditions $n>6$ and $K=L$ the conic γ is a circle.

The proof of the theorem now is complete.
Remark 2.1. We excluded in the theorem that case, when at least one of the points K and L lies on some line $O_{j} O_{j+1}$. Note that in this case the conic γ degenerates into a pair of lines and is defined ambiguously.
Remark 2.2. If the number n in Theorem 2 is even, then due to Theorem 1 the quadrangle $P_{n} Q_{n} Q_{1} P_{1}$ is also cyclic. Denote the center of the circle circumscribed this quadrangle by O_{n}. By Theorem 2 there exists a conic, wich is circumscribed of a polygon $O_{1} O_{2} \ldots O_{n}$. Consequently, under the condition $n=6$, this polygon is a Brianchon hexagon as we noted in the introduction.
Remark 2.3. Observe that in the case, when K is an inner point of the circle $\sigma(L)$ containing the points T_{i}, the conic γ is an ellipse. If the point K is an outer point of $\sigma(L)$, then the conic γ is a hyperbola. The case that the conic is a parabola occurs when one of the given circles $\omega_{1}(K)$ and $\omega_{2}(L)$ degenerates into a line. Here we present this statement without proof, showing it in Figure 5.

Figure 5. The configuration of the theorem in the case when the circle $\omega(L)$ degenerates into a line and the conic γ is parabola.

3. Acknowledgement

I would like to express my thanks to Prof. Lyudmila Romakina who helped me with an accurate discussion.

References

[1] Bakers, H. F.:The principles of Geometry. Vol I Foundations, Cambridge at the University Press, (1929).
[2] Bataille, M. : Correction of the problem 3945 Proposed by J. Chris Fisher. Crux Mathematicorum. 41/5, May Solutions 221 (2015).
[3] Cohl, T.: A purely synthetic proof of Dao's theorem on six circumcenters associated with a cyclic hexagon. Forum Geom. 14, 261-264 (2014).
[4] Dao, O.T.: Problem 3845. Crux Mathematicorum. 39, Issue May (2013).
[5] Dergiades, N.: Dao's Theorem on Six Circumcenters associated with a Cyclic Hexagon. Forum Geom. 14, 243-246 2014).
[6] Dung, N.T.: A simple proof of Dao's theorem on sic circles. Global Journal of Advanced Research on Classical and Modern Geometries. 6/1, 58-61 (2017).
[7] Glaeser, G, Stachel, H. and Odehnal, B.: The Universe of Conics. SpringerSpektrum, Springer-Verlag Berlin Heidelberg, (2016).
[8] Gévay, G.: An extension of Miquel's six-circles theorem. Forum Geometricorum. 18, 115-118 (2018).
[9] Gévay, G.: Resolvable configurations. Discrete Applied Mathematics. 266, 319-330 (2019).
[10] Ngo, O. D.: Some problems around the Dao's theorem on six circumcenters associated with a cyclic hexagon configuration. International Journal of Computer Discovered Mathematics. 1/2, 40-47 (2016).
[11] Miquel, A.: Theoremes sur les intersections des cercles et des spheres. Journal de mathematiques pures et appliquees Ire serie. 3, 517-522 (1838).

Affiliations

Ákos G.Horváth

Address: Budapest University of Technology and Economics, Mathematical Institute, Dept. of Geometry, H1521 Budapest, Hungary.
e-mail: ghorvath@math.bme.hu
ORCID ID:0000-0003-2371-4818

[^0]: Received: 04-June-2020, Accepted : 26-February-2021

 * Corresponding author

