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In digital image processing, image segmentation is an essential step in which an 
image is partitioned into groups of pixels. k-means clustering algorithm, which is 
often considered as fast and efficient, is one of the most widely used clustering 
algorithms to segment an image. However, as the problem size gets larger, the k-
means starts to spend a significant amount of time to process. At this point, 
parallelization techniques should be applied to reduce the required time. Designing 
an efficient parallel and distributed model is not a trivial job since it should 
correspond to the parallel computer architecture and take communication and load 
balancing among processors into account. In this study, we propose a parallel and 
distributed k-means clustering algorithm with naïve sharding centroid initialization 
for image segmentation. The proposed algorithm adopts the Message Passing 
Interface (MPI) standard to take advantage of the computational power of 
distributed computing nodes in a High-Performance Computing Cluster. We 
demonstrate the parallel scalability of the proposed algorithm using up to 128 cores 
and it achieves 104.23 times faster clustering time. 

  

DENETİMSİZ GÖRÜNTÜ BÖLÜTLEME İÇİN NAÏVE SHARDING İLE MPI KULLANARAK 
PARALEL K-MEANS KÜMELEMESİ 

 

Anahtar Kelimeler Öz 
Kümeleme, 
Görüntü Bölütleme, 
K-means Kümeleme, 
Dağıtılmış Bellek, 
Paralel İşleme. 

Dijital görüntü işlemede, görüntü bölütleme, görüntünün piksel gruplarına ayrıldığı 
önemli bir adımdır. Verimli bir kümeleme algoritması kabul edilen k-means 
algoritması, bir görüntüyü bölümlere ayırmak için en yaygın kullanılan kümeleme 
algoritmalarından birisidir. Bununla birlikte, problem boyutu büyüdükçe, k-means, 
görüntü işlemek için önemli miktarda zaman harcamaya başlar. Bu noktada, gerekli 
zamanı azaltmak için paralelleştirme teknikleri uygulanmalıdır. Verimli bir paralel 
ve dağıtılmış model tasarlamak, paralel bilgisayar mimarisini karşılayabilmesi ve 
işlemciler arasındaki iletişim ve yük dengelemesini dikkate alması nedeniyle önemli 
bir iştir. Bu çalışmada, görüntü bölütlemesi için naïve sharding kullanarak orta 
nokta belirleme ile paralel ve dağıtılmış bir k-means kümeleme algoritması 
öneriyoruz. Önerilen algoritma, Yüksek Performanslı Bilgi İşleme Kümesindeki 
dağıtılmış bilgi işleme düğümlerinin hesaplama gücünden yararlanmak için Mesaj 
Geçirme Arayüzü (MGA) standardını kullanır. 128 adede kadar çekirdek kullanarak 
104.23 kat daha hızlı kümeleme süresi sağlayan önerilen algoritmanın paralel 
ölçeklenebilirliğini gösterdik. 
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1. Introduction 
 
Image segmentation is used in many application areas such as medical imaging (Forouzanfar et al., 2010), object 
detection (Delmerico et al., 2011), image recognition (Tu et al., 2005), and traffic control (Khan et al.2010). Image 
segmentation is a task to partition an image into multiple segments. This partitioning allows us to analyze images 
more easily or use them in an effective manner. When the task is finished, the resulting segments are set of pixels 
and all pixels in the same set share certain characteristics. One way to segment an image is to use clustering 
algorithms. 
 
Clustering is a branch of machine learning, particularly a method of unsupervised learning, it splits the dataset 
into groups according to similarities. Among the unsupervised clustering algorithms, k-means is one of the most 
popular algorithms due to its simplicity and elegance. The k-means is an algorithm to cluster n objects based on 
attributes into k partitions, where k < n. Each cluster is represented by the center of the cluster. The algorithm 
converges to stable centroids of clusters. 
 
k-means clustering algorithm for image segmentation is generally used to segment the interest area from the 
background. When dealing with image segmentation, there exists a serious concern about the running time of the 
application. Images need to be processed in a reasonable time in order to use them in any area more effectively 
and efficiently. 
 
The classical k-means algorithm has 3 main steps (Jain et al., 1988). In the first step, the algorithm randomly 
chooses k data points from the input data as initial centroids which is the center of each cluster. In the second step, 
the algorithm assigns a centroid to all the data points that are the closest (i.e. the most similar) to the centroid. All 
points which are assigned to the same centroid form a cluster. In the third step, the algorithm updates centroids 
by computing the mean of all the examples in the cluster. Second and third steps are kept repeating until stable 
centroids are found. Therefore the computational complexity of one iteration of k-means algorithm is  𝑘 × 𝑛 × 𝑡, 
where n is the number of objects, t is the time of computing the Euclidean distance between 2 points and the 
asymptotic time complexity is O(ikn), where i is the number of iterations required for the convergence. 
 
While the classical k-means algorithm uses random centroid initialization, different techniques can be used as 
initial centroids directly affect the number of iterations needed to converge hence the clustering time. An effective 
alternative to random centroid initialization is the Naïve Sharding method (Mayo, 2016). It employs summation of 
attributes of each instance to sort all instances in the dataset. Then the dataset is divided into k equal pieces (i.e. 
shards). Finally, the initial centroids are chosen by getting the mean of instances in each shard. This method 
generally reduces the required iteration number and clustering time simultaneously, where its effect depends on 
the used dataset. 
 
Image segmentation task is often computationally complex, especially when segmenting into a high number of 
clusters. Therefore, using an algorithm with low time complexity thus reducing the execution time is important. 
Although the classical k-means clustering algorithm is assumed fast when compared to other clustering 
algorithms, it also needs excessive time when the size of data is enormous. One intelligent way to reduce the 
execution time of the algorithm is to use parallel programming techniques that exploit the processing power of 
multiple processing units simultaneously.  The biggest advantage of parallel programming is that it reduces the 
application solution time to a minimum time (Onder and Goksu, 2019). 
 
There are two common methods in parallel computing; shared memory computing (i.e. multi-core) and distributed 
memory computing (i.e. cluster). Distributed memory computing needs explicit message passing to share data 
between distributed nodes. The distributed memory system can have hundreds or thousands of processing units 
by combining the power of distributed nodes. In this study, we adopt distributed memory parallelism which allows 
us to write parallel programs that can run on a large number of processing units. While implementing, message 
passing interface (MPI) library is used which provides a mechanism for synchronizing processes among 
distributed computing nodes. 
 
In this study, a distributed and parallel k-means clustering algorithm to segment images based on colors is 
proposed and implemented in order to reduce the execution time of the k-means algorithm. 
 
2. Literature Survey 
 
The studies of (Olson, 1995) and (Rasmussen and Willett, 1989) were one of the first attempts to parallelize 
clustering algorithms. Parallel k-means clustering methods have been studied by many scholars (Dhillon and 
Modha, 2002; Xu and Zhang, 2004; Stoffel and Belkoniene, 1999; Zhao et al., 2009). On the other hand, in the 
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literature, there are very few studies (Kantabutra and Couch, 2000; Joshi, 2003; Zhang et al., 2011) which focus on 
parallelizing the k-means algorithm with MPI for massively parallel machines, such as high-performance 
computing (HPC) clusters. 
 
The first parallel k-means clustering algorithm that adopts MPI is proposed in (Kantabutra and Couch, 2000). 
There is also a study, (Joshi, 2003), that used a heuristic approach to choose initial centroids and implemented 
parallel k-means clustering algorithm with MPI. In (Zhang et al., 2011), they presented a parallelized k-means 
algorithm, MKmeans, which focuses on how to efficiently handle huge volumes of data by using MPI. In (Kantabutra 
and Couch, 2000; Joshi, 2003; Zhang et al., 2011), they all use data parallelism with MPI. The implications from the 
results of these studies are in common. The studies show that if the problem size is small, communication overhead 
between processors becomes dominant and the parallel algorithm does not scale up well due to the sequential 
cost of calculation of initial centroids. Although the efficiency of the algorithms is improved on larger problems, 
the achieved speedup values remain very limited (i.e. the best result among these three studies is a speedup of 
2.10). 
 
Exploiting clustering techniques is one of the most widely used methods for image segmentation. When the subject 
is applying k-means for Image segmentation, there exist some sequential implementations (Ng et al., 2006; 
Dhanachandra et al., 2015), some multi-threaded applications (Bose et al., 2013; Wang et al., 2008; Bhimani et al., 
2015) focused thread-level parallelism, and some graphics processing unit (GPU) parallelization implementations 
(Sirotkovic´ et al., 2012; Backer et al., 2013; Bhimani et al., 2015). To our knowledge, there exists only one study 
(Bhimani et al., 2015) that uses an MPI-based parallel k-means algorithm for image segmentation. 
 
A multi-threaded k-means algorithm which utilizes only thread-level parallelism for image segmentation was 
proposed in (Bose et al., 2013). In their work, the image is divided into parts which are assigned into threads. Then 
the k-means clustering algorithm is used to segment them on each thread. With 6 threads, clustering the image 
into 6 clusters on 4000*4000 image is almost 2 times faster than the single-threaded version. Also in (Wang et al., 
2008), they implemented a multi-threaded version of the k-means clustering algorithm to exploit the performance 
gain of multi-core central processing units (CPUs). They get a speedup of 3.89 with four processors. 
 
In (Sirotkovic´ et al., 2012), they implemented a parallel k-means algorithm to segment images using GPU with 
compute unified device architecture (CUDA). Their results show that execution time is improved as between 2.3 
and 600 times better than the sequential version. In (Backer et al., 2013), the GPU-based parallel k-means 
algorithm was proposed to segment images according to colors. When clustering is done, their algorithm assigns 
an average color to region features. Except for 64*64 image, their method beats the sequential CPU-based method 
for all other resolutions. Their GPU-based algorithm achieves approximately 8.6 times faster than the sequential 
CPU-based algorithm for 2048*2048 image. 
 
The first study that compares different parallel approaches by implementing OpenMP, MPI, and GPU 
parallelization is (Bhimani et al., 2015). They also focused on evaluating different means initializations in parallel. 
They get the best speed-ups from OpenMP for small images and from GPU for larger images. Their approaches give 
approximately 30 times speed-up compared to a sequential implementation of k-means. In detail, they get 29.6 
speed-up for OpenMP, 28.2 speed-up for MPI, 30.3 speed-up for CUDA implementation on the same 1164*1200 
image. 
 

3. Material and Method 
 
This section presents the proposed parallel k-means algorithm that segments images based on red-green-blue 
(RGB) values, whose color intensities ranging from 0 to 255. Furthermore, the implementation details of the 
algorithm are also presented here. 
 
In the k-means algorithm, the most computationally intensive part is defining the centroids which describe the 
clusters. At the beginning of the algorithm, the initial centroids are determined by the Naïve Sharding method and 
it is presented in Algorithm 2. The centroids are recalculated by using an objective function in each iteration. In 
this study, we used Euclidean distance (see Equation (1)) as an objective function. While there are many 
alternatives to the objective function, where it measures the distance between data points, we chose Euclidean 
distance due to our problem is related to geometrical separation rather than dependent on correlation. For 
geometrical separation, we could use another distance measurement technique like Manhattan distance, but we 
preferred to use Euclidean distance because it is generally chosen in similar studies and it is a default and most 
preferred distance function (Yildiz et al., 2019) of k-means algorithm. Furthermore, if two points are very close on 
most of the attributes but more diverse on one of them (e.g. in our problem, so similar in Red and Green, but so 
dissimilar in Blue color space), Euclidean distance will exaggerate that diversity while Manhattan distance is more 
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influenced by the closeness of other attributes. Our problem focuses on colors, where one color space can highly 
affect the actual color hence, it is so important to uncover and exaggerate the dissimilarity even only one color 
space is diverse. 
 

𝑑(𝑥, 𝑦) = √∑ (𝑥𝑖 −  𝑦𝑖)2
𝑚

𝑖=1
 

 
(1) 

 
In the Introduction section, the principal steps of the classical k-means algorithm are presented. The main 
difference between the classical k-means and the k-means that is used for image segmentation is dealing with RGB 
values of pixels while running the algorithm (i.e. equivalent to 3-dimensional data in classical k-means). 
Furthermore, at the end of the algorithm, the color values of all pixels in the same cluster are adjusted as the 
centroid’s color values, which shape the output image. 
 
Algorithm 1. Parallel k-means Clustering for process pi 

 

Input: input image, number of clusters as k 
Output: output image 
1: Choose initial k centroids by using Naïve Sharding method 
2: Divide and distribute pixels equally among all processes 
3: while not converged do 
4: Broadcast all centroids from the process p0 
5: Calculate Euclidean distance between each centroid c and each pixel 
6: Assign each pixel to the nearest cluster 
7: Reduce the sum of RGB values of all pixels in each cluster on p0 
8:  if pi = p0 then   // Master process 
9:  Update k centroids by averaging RGB values of the pixels in each cluster 

10: Check convergence 
11: end if 
12: Broadcast the convergence state from p0 
13: end while 
14: Assign each pixel to the nearest cluster considering final centroids 
15: Broadcast all centroids from p0 
16: for all k clusters do 
17: Set RGB values of all pixels in the cluster as the RGB values of the centroid c of the cluster 
18: end for 
19: Gather all resulting pixel values to p0 
20:  if pi = p0 then   // Master process 
21: Save output image 
22: end if 

 
The pseudocode of the parallel version of k-means algorithm that segments the image is shown in Algorithm 1. 
The parameter pi indicates that the rank of the process with ‘i’. In other words, 𝑝𝑖  can be referred to as ith process 
in the parallel system, similarly, p0 indicates the process with rank ‘0’ which is commonly called as the master 
process.  
 
The initial centroids are selected by using the Naïve Sharding method. Naïve Sharding centroid initialization 
method (see Algorithm 2) sorts the pixels in ascending order according to their RGB value summations and 
dividing them into shards to choose centroids rather than selecting them randomly, which is the case in the 
traditional k-means algorithm. Here, we employed a parallel merge sort algorithm to achieve a more scalable 
clustering algorithm. When computations are finished, all pixels in the same cluster are set as the centroid of that 
cluster. Consequently, the resulting image has the same color for all pixels in the same cluster. 
 
Algorithm 2. Choosing initial k centroids by using Naïve Sharding method with parallel  
Merge Sort for process pi 
 

Input: input image 
Output: chosen k centroids 
1: Divide and distribute pixels equally among all processes 
2: Calculate sum of RGB values for all pixels 
3: Sort pixels in ascending order according to sum of RGB values with parallel merge sort algorithm 
4:  if pi = p0 then   // Master process 

5: Slice the dataset into k shards evenly 
6: Find k initial centroids by averaging RGB values of the pixels in each shard 
7: Return chosen k centroids 
8: end if 
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4. Experimental Results 
 
In experiments, we use two digital images, which are shown in Figure 1. Images in Figure 1a contains 
approximately 5 million pixels (2738*1826) while images in Figure 1b contains approximately 10 million pixels 
(3873*2582). Proposed algorithm is tested on RGB images with variant number of clusters for all experiments to 
be able to compare the results more reasonably. Obtained segmented images for different number of clusters can 
be seen in Figure 1. 

Figure 1. Output images of parallel k-means algorithm for the different number of clusters. The images on the left (a) and the 
images on the right (b) have approximately 5M and 10M pixels, respectively. 

 
The experiments were conducted on Sardalya HPC Supercomputer in TUBITAK ULAKBIM High Performance and 
Grid Computing Center (TRUBA). Sardalya consists of 128 distributed nodes where each node contains two 14-
core Intel Xeon E5-2690 processors and 256GB RAM. 
 
In the strong scalability test, the problem size is fixed and the number of processes are varied. Figure 2 and 3 
display the speedup values of the algorithm for 4 different clustering problems. The experiments were conducted 
on using 6 different number of cores and the speedup is calculated as follows: 
 

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =  
𝑡𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

𝑡𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
 

 
(2) 

 
where tsequential and tparallel are the sequential execution time on 1-core and parallel execution time on multiple 
processors, respectively. 
 
As shown in Figure 2 and 3, when k is 64, the algorithm scales properly as the number of processes increases. Also, 
10M image has higher speedup values than 5M image for each corresponded number of clusters and cores. 
However, when the number of cores is 96 or 128, the algorithm gives relatively lower speedup values for clustering 
the images into 4 or 8 clusters for both images and 16 clusters for 5M image. This experimental finding is expected 
due to the nature of the proposed parallel algorithm because when the number of clusters increases, the problem 
space, which is affecting the parallel portion of the algorithm, increases but the communication overhead remains 
almost the same. In other words, when the problem space becomes smaller, the communication overhead will be 
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more apparent which leads to low parallel performance. As a performance comparison of Figure 2 and 3, the same 
rule applies here too. The algorithm achieves better speedup values for the bigger image than the smaller one 
especially on relatively larger number of processes. As shown in Figure 3, on 128 cores, the proposed algorithm 
achieves more than 104.23 times faster execution than the sequential algorithm. 
 

 
Figure 2. Speedup values for 5M image 

 

Figure 3. Speedup values for 10M image 
 

Table 1 shows a comparison of the parallel speedup of the proposed algorithm against other studies in the 
literature. We note that (Wang et al., 2008) uses k-means algorithm to cluster 8965 e-mail messages into 3 
different clusters in their provided results and (Backer et al., 2013) does not specify the number of clusters exactly 
however it is smaller than 1024 clusters and GPU-based parallelism is used. In the last column of Table 1, we depict 
the best speedup values reported by the studies. As seen in the table, the highest speedup is achieved by our 
proposed algorithm. 
 

Table 1. Comparison of speedup values of our algorithm against (Bose et al., 2013; Wang et al., 2008; Backer et al., 2013; 
Bhimani et al., 2015) 

Studies k Resolution # Cores/Threads Speedup 

(Bose et al., 2013) 6 16,000,000 6 1.94 

(Wang et al., 2008) 3 896,500 4 3.89 

(Backer et al., 2013) <1024 4,194,304 512 (CUDA) 8.66 

(Bhimani et al., 2015) 240 1,396,800 160 (MPI) 28.23 

(Bhimani et al., 2015) 240 1,396,800 2496 (CUDA) 30.26 

Our alg. 64 10,000,086 128 104.23 
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5. Result and Discussion 
 
We show the effectiveness and scalability of the proposed parallel k-means clustering algorithm that uses naïve 
sharding centroid initialization for 8 different image segmentation problems on distributed memory machines. 
The proposed parallel algorithm has O(ikn/p) average-case asymptotic time complexity where p is the number of 
processors, n is the number of objects, k is the number of clusters and i is the number of iterations required for the 
convergence. Worst-case complexity of the algorithm has not changed as the changes made to adapt the algorithm 
to MPI are constant-time operations. The proposed algorithm scales well when the problem size and the number 
of processors is large. It achieves a speedup value of 104.23 on 128 cores with respect to the sequential version. 
Our study outperforms other studies in the literature to the best of our knowledge in terms of speedup values. 
Table 1 compares those studies against our algorithm. Multi-threaded implementations (Bose et al., 2013; Wang 
et al., 2008; Bhimani et al., 2015) (i.e. the best one is (Bhimani et al., 2015) with 29.6 speedup), which use OpenMP, 
attain limited speedup values compared to our study.  The only study that uses MPI (Bhimani et al., 2015) obtains 
lower speedup values compared to ours.  
 
As future work, we consider designing a different parallel image segmentation algorithm, which may be using 
Fuzzy C-means clustering, Mean-shift algorithm, or Watershed segmentation algorithm. 
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