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Abstract- The focus of this study is on the modeling and optimisation of percentage elongation and average deflection using 

injection moulded high density polyethylene-Sawdust composite. The HDPE material and sawdust were mixed together to form 

a homogenous mixture with various percentage composition by volume as obtained by the central composite design (CCD). The 

response surface methodology (RSM) and artificial neural networks (ANN) were used to determine the effect of the interaction 

of temperature and percentage by volume of material on the mechanical properties of the produced HDPE-sawdust composite. 

Models were developed for predicting the mechanical properties percentage elongation and average deflection) for the produced 

composites. The models were validated using coefficient of determination (R2). The coefficient of determination (R2) obtained 

ranged from 0.9213 (92.13%) to 0.981 (98.10%) which indicates a good fit was achieved between the model and experimental 

results. The optimization results for HDPE-Sawdust composites shows that the percentage elongation and average deflection 

were minmized with values of 90.98% and 2.46cm obtained at barrel temperature of 164.64 oC and polymer level of 68.54%. 

Keywords- Central composite design Composite Modeling High density polyethylene Sawdust percentage elongation. 

Özet - Bu çalışmanın odak noktası, enjeksiyonla kalıplanmış yüksek yoğunluklu polietilen-Talaş kompozit kullanılarak yüzde 

uzama ve ortalama sapmanın modellenmesi ve optimizasyonu üzerinedir. HDPE malzemesi ve talaş, merkezi kompozit tasarım 

(CCD) ile elde edildiği gibi hacimce çeşitli yüzde bileşimleriyle homojen bir karışım oluşturmak için birlikte karıştırıldı. Yanıt 

yüzey metodolojisi (RSM) ve yapay sinir ağları (YSA), üretilen HDPE-talaş kompozitinin mekanik özellikleri üzerindeki 

malzeme hacmi ile sıcaklık ve yüzde etkileşiminin etkisini belirlemek için kullanıldı. Üretilen kompozitler için mekanik 

özellikleri yüzde uzama ve ortalama sapma) tahmin etmek için modeller geliştirilmiştir. Modeller, belirleme katsayısı (R2) 

kullanılarak doğrulanmıştır. Elde edilen belirleme katsayısı (R2) 0,9213 (% 92,13) ile 0,981 (% 98,10) arasında değişmekte olup, 

bu da model ile deneysel sonuçlar arasında iyi bir uyum sağlandığını göstermektedir. HDPE-Talaş kompozitleri için 

optimizasyon sonuçları, 164,64 oC namlu sıcaklığında ve% 68,54 polimer seviyesinde elde edilen yüzde uzama ve ortalama 

sapmanın% 90,98 ve 2,46 cm değerleri ile minimuma indirildiğini göstermektedir. 

Anahtar Kelimeler- Merkezi kompozit tasarım Kompozit Modelleme Yüksek yoğunluklu polietilen Talaş yüzdesi uzaması. 
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1. Introduction

The demand for new materials with higher specifications has 

led to the concept of combining different materials to form a 

single material called composite. Such composite materials 

result in high performance, and high flexibility in design that 

cannot be attained by the individual constituents. Moreover, 

it has been shown that technological development depends 

on the progress in the field of material sciences [1]. 

The mechanical properties of composite panels wet to 

depend on the density variations that occur through the pan 

thickness. They then proposed an analytical tool to predict 

density profile as a function of the manufacturing processes. 

A multilayer description of the density and moisture gradients 

resulting from the felting process provided input for the mode 

Inputs for the pressing process included plate temperature 

and press closing rate. The model they developed simulated 

the physical and mechanical processes that occur in the press 

and mat system [2]. 

 The modeling and optimization of some mechanical 

properties of injection moulded HDPE sawdust composite, 

some of the properties they worked on includes tensile 

strength, proof stress, flexural strength and flexural modulus 

were examined and optimized [3], however our focus in this 

study is percentage elongation and average deflection of 

HDPE sawdust composite. 

2. Materials and Methods

2.1 Material 

The following materials were used for this work: 

High density polyethylene (HDPE) in powder form was used 

for this study.  Sawdust (from Mahogany tree) Based on it’s 

was readily availability and mechanical properties desired). 

Two stage-screw plunger Injection machine Fox and offord, 

120 tons two stage-screw plunger, A toggle clamp attached 

to the injection end of injection moulding. MONSANTO 

TENSOMETER, Type ‘W’ Serial No. 8991, The mould was 

made of Silicon – killed forging quality steel AISI type H140 

treated to 252 –302 Brine 11.  Such steel was used for moulds 

that require high quality parts, long production runs and is s 

safe to use at high clamping pressures. The following are the 

dimension of the mould used: 

2.2 Modelling 

2.2.1 Design of Experiment 

For this study, a two-variable central composite design 

(CCD) was used to plan the experiments, develop statistical 

models for predicting the chosen responses and to optimise 

the responses and factors. The CCD is a very versatile 

experimental design method. The design points are made up 

of 2n factorial points as well as star points. The star points 

are particularly necessary for estimating the curvature of the 

response surface especially for nonlinear models. The CCD 

is the only response surface design that can be used for 

planning experiments with two factors [4]. 

2.2.2 Modelling using Response Surface Methodology 

(RSM) 

Response surface methodology RSM is a practical 

mathematical and statistical tool that can be employed for 

analyzing the effects of several independent factors on the 

treatment process in order to obtain the maximum benefit 

from the process. Recently, several water and wastewater 

treatment processes have been optimized for treatment 

different type of wastewaters via RSM including; textile dye 

wastewater, tannery wastewater, industrial paint wastewater, 

landfill leachate, olive oil wastewater, and palm oil mill 

effluent [5]. 

2.2.3 Determination of Optimal Training Algorithm 

It is not usually possible to determine beforehand, the best 

algorithm to use for training a proposed neural network. 

Thus, it is usually necessary to iteratively test several training 

algorithms to determine the one most suitable for a particular 

network [6]. The same thing applies to the network 

architecture. Hence, in this work, two networks architectures 

were considered and trained using different training 

algorithms to determine the one that will be most suitable to 

model the responses. The network architectures evaluated 
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were the multilayer normal feed forward (MNFF) and 

multilayer full feed forward (MFFF) while the training 

algorithms evaluated were incremental back propagation 

(IBP), batch back propagation (BBP), quick propagation 

(QP), generic algorithm (GA), and Levenberg-Marquardt 

(LM) algorithm. The results showed that the best network 

was a multilayer normal feed forward neural network trained 

with the incremental back propagation algorithm. This was 

found to be suitable for predicting all the responses. The 

decision to select this network architecture and training 

algorithm was because it resulted in the highest R2 value and 

lowest RMSE value for the responses under consideration. 

2,2,4 RSM and ANN Data Verification 

The predictive capability RSM and ANN was 

evaluated by comparing the results predicted by the RSM and 

ANN models with the experimental data. The extent of fit 

between the experimental and model predicted results was 

evaluated using some statistical tools such as the coefficient 

of determination (R2 value), root mean square error (RMSE), 

and absolute average deviation (AAD). These terms are 

defined as shown in Equations (1) to (3) [7]. 
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Where, n is the number of points 

ypredis the predicted value obtained from the model 

yexpis the actual value 

yave,exp is the average of the actual values. 

The coefficient of determination is used as a measure of the 

degree of fit between the model results and the experimental 

results [8]. Generally, the closer the R2 value is to 1, the better 

the level of fit between the experimental results and model 

predictions [9]. RMSE and AAD are statistical parameters 

for expressing the deviation between the experimental results 

and the model predictions. Generally, it is desired that the 

RMSE and AAD between predicted and experimental results 

be as small as possible [10]. 

4 3. RESULTS AND DISCUSSION 

3.1. Determination of Appropriate Model 

As alluded to in the previous chapter, different statistical 

models were examined with the intention of selecting the one 

most appropriate to represent the process under 

consideration. Amongst the models examined were the 

linear, two-factor interaction (2FI), quadratic and cubic 

models. Table 1 shows the results of this exercise. The 

decision to choose or discard a model was taken based on the 

values of statistical parameters like standard deviation, 

coefficient of determination (R2 value), p value, F value etc.

Table 1: Summary of model fit results (HDPE-Sawdust composite) 

    Percentage elongation 

Source 
Standard 

deviation 
R² 

Adjusted 

R² 
Predicted R² PRESS F-value p-value Remark 

Linear 3.91 0.8542 0.8251 0.7235 289.46 18.31 0.0071 
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2FI 4.12 0.8542 0.8057 0.6068 411.69 21.98 0.0052 

Quadratic 1.98 0.9737 0.9550 0.8417 165.77 5.51 0.0664 Suggested 

Cubic 1.52 0.9890 0.9737 0.6176 400.38 4.57 0.0993 Aliased 

    Average deflection 

Source 
Standard 

deviation 
R² 

Adjusted 

R² 
Predicted R² PRESS F-value p-value Remark 

Linear 0.15 0.8555 0.8266 0.5436 0.40 2.21 0.2315 

2FI 0.16 0.8571 0.8095 0.7120 0.45 2.61 0.1867 

Quadratic 0.14 0.9097 0.8452 0.7450 0.71 2.26 0.2234 Suggested 

Cubic 0.15 0.9270 0.8249 -1.5776 4.00 4.71 0.0957 Aliased 

Table 1 shows the statistical results for the HDPE-sawdust 

composite. As seen from the results, the quadratic model was 

chosen as the most appropriate model to predict the 

responses. This decision was reached based on the statistical 

parameters backing up the quadratic model.  Among a 

number of alternatives, the model chosen should be the one 

with the desirable statistical parameters such as high R2 

value, low standard deviation, and low PRESS. The quadratic 

model was found to have the highest R2 values for all the 

responses as shown in Table 1 for the HDPE composite.  

3.2 Statistical Analysis of Models 

Statistical analysis of the quadratic model was carried out. 

This was done by fitting the quadratic model to the 

experimental data obtained for all the responses. There was a 

total of 13 experimental runs (HDPE composite). After 

fitting the quadratic model to the experimental data, the 

model parameters were estimated to obtain the final model 

equations in terms of actual experimental factors. The model 

equations for the respective responses and the different 

composite materials are summarised as follows. The 

equations represent percentage elongation and average 

deflection, as a function of temperature (X1) and level of 

polymer (X2). 

HDPE-Sawdust composite: 

−= − + + − −2 21562.08 0.17 47.13 0.00040 0.00031 0.341 2 1 2 1 2 X X X X X XPercentage elongation  (4)

−= − − + +2 233.29 0.045 0.69 0.00020 0.000081 0.00411 2 1 2 1 2 X X X X X XAverage deflection (5) 

Equations 4 and 5 were used to predict the percentage 

elongation and average deflection, for the HDPE composite 

and the results are shown in Tables 2 for percentage 

elongation. 
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Table 2: Experimental and RSM predicted results for percentage elongation and average deflection (HDPE-sawdust composite) 

Run 

Factors Response 

Coded values Actual values Percentage elongation (%) Average deflection (cm) 

X1 X2 X1 X2 Experiment Predicted Experiment Predicted 

1 1 1 235.36 68.54 90.20 92.27 2.50 2.55 
2 -1 1 164.64 68.54 88.50 90.98 2.30 2.46 
3 0 0 200.00 65.00 84.80 85.70 2.80 2.76 
4 -1 -1 164.64 61.46 70.10 69.78 3.20 3.32 
5 1 -1 235.36 61.46 72.00 71.27 3.30 3.31 
6 0 0 200.00 65.00 86.30 85.70 2.60 2.76 
7 0 0 200.00 65.00 84.20 85.70 2.90 2.76 
8 -1.414 0 150.00 65.00 85.10 83.94 3.10 2.93 
9 1.414 0 250.00 65.00 86.50 85.91 3.00 2.99 
10 0 -1.414 200.00 60.00 61.20 62.30 3.50 3.44 
11 0 0 200.00 65.00 87.00 85.70 2.80 2.76 
12 0 0 200.00 65.00 86.20 85.70 2.70 2.76 
13 0 1.414 200.00 70.00 95.00 92.15 2.40 2.29 

3.3 Analysis of Variance of Models 

The fit of the statistical models representing the responses 

was assessed using analysis of variance (ANOVA). For the 

results presented, model terms with p values less than 0.05 is 

an indication that that term is significant. That means that 

changes in the values of the actual physical factor represented 

by that model term significantly affect the response in 

question. On the other hand, when the p value of any model 

term is greater than 0.05, it shows that the model term is not 

significant and changes in the values of the actual physical 

factor represented by that model term does not  

significantly affect the response in question [11]. This 

suggests that the response models were significant and can 

be used for predictive purposes [12]Furthermore, the "lack of 

fit" p value for all the response models were greater than 0.05 

indicating that the lack of fit was not significant. Significant 

lack of fit is not desirable as it implies that the model does 

not fit the experimental data. 

The other statistical parameters that were used to assess the 

significance and fit of the response models are presented in 

Table 3. the models were characterised by high R2 value and 

adjusted R2 value. The R2 value is used as an indication of 

model fit. The ideal R2 value is unity in which case there is 

perfect fit between the experimental data and the model 

prediction. For the results reported in Table 4, the closeness 

of the R2 value to unity indicates that the models were able 

to adequately represent the actual relationship between the 

variables considered in this study. Furthermore, the adjusted 

R2 values obtained were within reasonable agreement with 

the corresponding R2 values further confirming the fit of the 

models. 

The models displayed very minimal standard deviation 

compared to the mean. This means that there was very little 

dispersion about the mean for the data predicted by the 

models [13]. This further corroborates the significant fit of 

the models. The coefficient of variation (C.V) obtained for 

the models were relatively small in magnitude. The 

coefficient of variation indicates the degree of precision with 
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which the runs were carried out. A low value of C.V suggests 

a high reliability and reproducibility of the results [13]. The 

adequate precision values obtained were all greater than the 

recommended minimum value of 4 [14, 15] reported that the 

adequate precision measures the signal to noise ratio and a 

value greater than 4 is generally desirable and this means that 

the models can be used to navigate the design space. 

Table 3: Statistical information for ANOVA for quadratic 

models 

Parameter HDPE composite 

Percentage 

elongation 

Average 

deflection 

R2 0.9737 0.9097 

Adjusted R2 0.9550 0.8452 
Mean 82.85 2.85 

Standard 

deviation 
1.98 0.14 

C.V % 2.39 4.96 
Adeq. Precision 22.257 11.971 

3.4 Model Diagnostics 

Model diagnostics was carried out to further assess the 

adequacy of the quadratic models developed to represent the 

responses and the results are presented in Figure 1. 

Figures 1 shows the normal probability plots representing all 

the responses for the HDPE composites. This is an important 

plot which is used to determine whether the residuals follow 

a normal distribution. A desirable situation is when a normal 

distribution of the residuals is obtained and this is usually 

when all the points cluster around the straight line. Indeed, 

this was the case for the results presented in Figures 1 thus 

showing that the residuals followed a normal distribution.

3.5 Validation of RSM Model Results 

Figure 2 shows the parity plot for the HDPE-sawdust 

composites. This is a plot of the predicted response values 

versus the experimental response values. The purpose of this 

plot is to determine the predictive capacity of the models. The 

purpose is also to detect a value, or group of values, that are 

not easily predicted by the model. Comparison of the 

experimental values of the response and those predicted by 

the statistical models as shown in Figures 2 showed that there 

was an acceptable level of fit between the experimental and 

model predicted results. This is evident from the fact that the 

data points all clustered around the 45o diagonal line showing 

that there was minimal deviation between experimental and 

predicted values thus indicating optimal fit of the model. 

(a) (b) 

Figure 1: Normal probability plot for (a) percentage elongation (b) average deflection for HDPE-sawdust composite 
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(a) (b) 

Figure 2: RSM parity plot for (a) percentage elongation (b) average deflection for HDPE-sawdust composite 

3.6 Validation of ANN Model Results 

Validation of the ANN model was done by comparing the 

ANN predicted results with those obtained from the actual 

experiments and the results are presented for all the responses 

and composite materials in Table 4. It can be seen from the 

results presented that the values predicted by the ANN model 

were very close to the experimental values indicating validity 

and reliability of the ANN model. 

Table 4: Experimental and ANN predicted results for percentage elongation (HDPE composite) 

Run 

Factors Response 

Coded values Actual values Percentage elongation (%) Average deflection (cm) 

X1 X2 X1 X2 Experiment Predicted Experiment Predicted 

1 1 1 235.36 68.54 90.20 90.20 2.50 2.50 
2 -1 1 164.64 68.54 88.50 88.50 2.30 2.30 
3 0 0 200.00 65.00 84.80 85.70 2.80 2.76 
4 -1 -1 164.64 61.46 70.10 70.10 3.20 3.20 
5 1 -1 235.36 61.46 72.00 72.00 3.30 3.30 
6 0 0 200.00 65.00 86.30 85.70 2.60 2.76 
7 0 0 200.00 65.00 84.20 85.70 2.90 2.76 
8 -1.414 0 150.00 65.00 85.10 85.09 3.10 3.10 
9 1.414 0 250.00 65.00 86.50 86.49 3.00 3.00 
10 0 -1.414 200.00 60.00 61.20 61.20 3.50 3.50 
11 0 0 200.00 65.00 87.00 85.70 2.80 2.76 
12 0 0 200.00 65.00 86.20 85.70 2.70 2.76 
13 0 1.414 200.00 70.00 95.00 95.00 2.40 2.40 
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Figure 3 shows the parity plot of the responses for the HDPE-

sawdust composite. It is a plot of the predicted response 

values versus the experimental response values. The purpose 

is to detect a value, or group of values, that are not easily 

predicted by the model. Comparison of the experimental 

values of the response and those predicted by the ANN model 

showed that there was an acceptable level of fit between the 

experimental and model predicted results. This is evident 

from the fact that the data points all clustered around the 45o 

diagonal line showing that there was minimal deviation 

between experimental and predicted values thus indicating 

optimal fit of the model. Comparing these results with those 

presented in Figure 2 for the RSM prediction, it can be seen 

that the data points in Figure 3 clustered around the 45o 

diagonal line closer than for the RSM results. This is an 

indication that the ANN model has better predictive 

capability compared to the RSM model. 

(a)  (b) 

Figure 3: ANN parity plot for (a) percentage elongation (b) average deflection for HDPE-sawdust composite 

The goodness of fit statistics for the models representing 

tensile strength, proof stress, percentage elongation, average 

deflection, flexural strength and flexural modulus for the 

three composite materials are presented in Table 5. The 

values obtained indicate an excellent fit between the 

experimental and model predicted results. This is seen in the 

very high R2 and adjusted R2 values as well as the very small 

magnitude RMSE and AAD. 

Table 5: Goodness of fit statistics for ANN 

Parameter 

HDPE composite 

Percentage 

elongation 

Average 

deflection 

R2 0.9949 0.9665 

Adjusted R2 0.9913 0.9426 
RMSE 0.5177 0.0510 
AAD 0.0028 0.0080 
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3.7 Comparison of RSM and ANN Performance 

The accuracy RSM and ANN in predicting percentage 

elongation and average deflection is directly related to their 

predictive capability. The model with the better predictive 

capability will be able to predict the responses with a higher 

accuracy. The predictive capability of RSM and ANN was 

assessed using R2 value, adjusted R2 value, root mean square 

error (RMSE) and absolute average deviation (AAD) as 

shown in Table 6 for the HDPE-Sawdust composite. A good 

and accurate model prediction is usually characterised by 

high values of the R2 value and adjusted R2 value as well as 

very low RMSE and AAD. A comparison of the predictive 

capability of RSM and ANN as observed from the R2 value, 

adjusted R2 value, root mean square error and absolute 

average deviation shows that ANN performed better than 

RSM. This is because ANN gave very high R2 values and 

adjusted R2 values as well as very low RMSE and AAD 

values compared with RSM as shown in Table6. 

Table 7: Comparison of RSM and ANN predictive 

performance (HDPE composite)  

Parameters 
% elongation Aver. Deflection 

RSM ANN RSM ANN 

R2 0.9737 0.9949 0.9097 0.9665 

     Adj. R2 0.9550 0.9913 0.8452 0.9426 

RMSE 1.1717 0.5177 0.0835 0.0510 

AAD 0.0095 0.0028 0.0206 0.0080 

4 Conclusion 

In this study central composite design was used to determine 

the various compositions (percentage volume) of the HDPE-

sawdust composite at given temperatures. The composite was 

produced using the injection moulding process. Models were 

developed for predicting the mechanical properties 

(percentage elongation and average deflection) for the 

produced composites. The models were validated using 

coefficient of determination (R2). The coefficient of 

determination (R2) obtained ranged from 0.9213 (92.13%) to 

0.981 (98.10%) which indicates that a substantial good fit was 

achieved by the model developed. Of the two methods 

examined artificial neural networks gave the optimal result. 
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