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Abstract

In this study, equation of motion for free vibration of both ends simply
supported Timoshenko beam resting on two different elastic foundation are
obtained considering P-A effects. The eigenvalues being the fundamental
frequencies of Timoshenko beam on elastic foundation and the frequency
factors related to these eigenvalues are calculated using two different
methods. Free vibration equation of Timoshenko beam is solved by using
respectively differential transform method (DTM) and transfer matrix
method (TMM), respectively. Frequency factor values obtained by both
methods depending on the beam length ratios at two different foundation
regions, the modulus of subgrade reactions and the axial load ratios are
presented in the tables.

Key words: Differential transformation method, transfer matrix method,
partial differential equation, equation of motion, Timoshenko beam, elastic
foundation.

Ozet

Bu ¢alismada, iki farkli elastik zemine oturan, iki ucu basit mesnetli,
Timoshenko kirisinin serbest titresimine ait hareket denklemi P-A etkileri
altinda elde edilmistir. Elastik zemine oturan Timoshenko kiriginin temel

* Corresponding Author: seval.catal@deu.edu.tr

49



Solution of Eigenvalue Problem of Timoshenko Beam

frekanslar1 olan 6zdegerler ve bu 6zdegerlere baglh frekans faktorleri iki
farklt yontem kullanilarak hesaplanmistir. Timoshenko kiriginin serbest
titresim denklemleri, sirasiyla diferansiyel doniisiim yontemi (DTM) ve
tasima matrisi yontemi (TMM) kullanilarak ¢oziilmiistiir. iki farkli zemin
bolgesindeki kirisin uzunluk oranlari, zemin yatak katsayisi ve eksenel
kuvvet oranlar1 bagl olarak her iki yontemle elde edilen frekans faktor
degerleri tablolarda sunulmustur.

Anahtar kelimeler: Diferensiyel donisim yontemi, tasima matrisi
yontemi, kismi diferansiyel denklem, hareket denklemi, Timoshenko kirisi,
elastik zemin.

1. INTRODUCTION

Static and dynamic analysis problems of beams resting on elastic
foundation is encountered at many engineering applications related to soil-
structure interactions in structure and geotechnical engineering like strip
foundations, railroads tracks, pipelines embedded in soil.

It is assumed in many studies related to beam on elastic foundation
problem that the soil behavior is modeled by linear-elastic spring
according to Winkler soil. Yokoyama studied the vibration of Timoshenko
beam on two-parameter elastic foundation considering both bending
moment and shear force effects [1]. Doyle et all, solved the equation of
motion of the beam on partial elastic foundation including only bending
moment effect by using separation of variables [2]. Chen examined the
static analysis using differential quadrature element method of Bernoulli-
Euler beam on elastic foundation considering only the bending moment
effect by discretizing differential equation of the beam [3]. Chen and
Huang obtained the dynamic stiffness matrix of Timoshenko beam on
viscoelastic foundation [4]. Karami studied free vibration analysis of non-
uniform Timoshenko beam resting on elastic supports by differential
quadrature element method [5]. Catal obtained the free vibration circular
frequencies of the piles partially embedded in the soil due to supporting
conditions of top and bottom ends of the pile using separation of variables
[6]. Hsu investigated vibration analysis of axially loaded clamped-free and
hinged-hinged Bernoulli-Euler beams on elastic foundation with single
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edge crack using differential quadrature method [7]. Kim obtained
dynamic stiffnes matrix of non-symmetric thin-walled beams on elastic
foundation by power series method [8]. The differential equation for
bending of Timoshenko beam resting on Kerr-type three-parameter elastic
foundation is obtained an analytically solved by Avramidis and Morfidis

[al.

The differential transform method (DTM) which was introduced by
Zhou in 1986 for the solution of initial value problems in electric circuit
analysis is based on Taylor series expansions [10]. In recent works, DTM
is applied to vibration analysis of continuous systems as beams and plates.
Jang and Chen, the differential transformation method is applied to solve a
second order non-linear differential equation that describes the under
damped and over damped motion of a system subject to external
excitations [11]. According to types of conditions at both end of a
prismatic Bernoulli-Euler beam, frequency equations and fundamental
frequencies of the beam have obtained using DTM by Malik and Dang
[12]. Chen and Ho, using differential transform technique proposed a
method to solve eigenvalue problems for the free and transverse vibration
problems of a rotating twisted Timeshenko beam under axial loading [13].
Ozdemir and Kaya, flapwise bending vibration of a rotating tapered
cantilever Bernoulli-Euler Beam is considered by using differential
transform technique [14]. Kaya and Ozgiimiis, flexural-torsional-coupled
vibration analysis of axially loaded closed-section composite Timoshenko
beam is considered by using DTM [15]. Ruotolo and Surace calculated
natural frequencies of a bar with many cracks using transfer matrix
approach and finite element method [16]. Hosking studied natural flexural
vibrations of Bernoulli-Euler beam mounted on discrete elastic supports
using transfer matrices [17]. Coupling lateral and torsional vibrations of
symmetric rotating shaft modeled by the Timoshenko beam is examined
using modified TMM by Hsieh [18]. Free vibration of semi-rigidly
connected piles embedded in soils with different subgrades problem are
taken by Yesilce and Catal [19]. Differential transform method is used for
free vibration analysis of a moving beam [20]. Demirdag and Yesilce, the
problem of free vibration equation of elastically supported Timoshenko
columns with a tip mass are solved by using differential transform method
[21].
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In this study, forth-order partial differential equations of motion for
free vibration of Timoshenko beam on two different elastic foundations are
developed considering P-A effect. These governing equations are solved
using two different methods, the first being differential transform method
(DTM) the other being transfer matrix method (TMM) approach, and
frequency factors for the first three modes of the beam are obtained and
presented in tables.

2. THE MATHEMATICAL MODEL

A Timoshenko beam with total length of L and with lengths of L; and
L, on elastic foundations respectively called as the first and the second
regions and having modulus of subgrade reactions of C,; and C,, is
presented in Figure la; whereas internal forces and deformations of
differential beam segment of the first and the second regions in Figures 1b
and c.

Elastic soil

A

y 22— Conla
Caih(x,0

Li , L2
L . [a]

T(-'sr ¥ %at) I Tcs:- Blxt)
dx,

I dx;

Figure 1b. Internal forces and deformations of segments of the beam in first and
second regions.

(b)
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The relation between the distributed forces acting on differential beam
segment of the first and the second regions and the elastic curve functions
of the beam are written as qi(X;,t) = Cs1*y(X1,t) and ga(X2,t) = Ceo*y(Xo,1)
according to Winkler hypothesis where Cy; = Ci1*b, Cs; = Cio*b, yi(Xy,1)
and y,(xp,t) are elastic curve functions respectively at the first and the
second regions, b is beam width. Equations of motion for the first and the
second regions of Timoshenko beam on elastic foundation are obtained by
using the equilibrium equations of forces and moments acting to
differential beam segments of the first and the second regions, and by
considering also P-A effect under the assumptions that cross-section and
density of the beam is constant and the beam is made of linear elastic
material, respectively as in the following [6].

54)’1(&:0{ N _szl}azh(Xl,t)_mk54Y1(X1’t)+ m 0%yy(x,1)
ox} Ely AG| o2  AG aZat>  Elx  at?

C
+|—SlY1(X1,t)=0 (0<x1<L4) 1)

Elx
54Y2(X2,t)+ N kCsp azyz(xz,t)_ika4y2(x2,t)+£62y2(x2,t)
axg El, AG 6X§ AG 8X§6t2 Ely ot
Cs2
+ﬁY2(X2,t)=0 (0<xz<Lj;) ()
X

Writing the dimensionless parameters z;, z, instead of the position
parameters Xy, X, and y1(z1,t) = ¢(zy).sin(wt + 6), Ya(z»,t) = ¢(z2).sin(wt +6)
instead of the elastic curve functions in equations (1) and (2) gives the
equation of motion for the beam at the first and the second regions as

{w (zi){n?Nr +(m“’2£1’kﬂ¢r (z1)+W¢1(zl)}Sin(mt+e>:o @)
0<z,<L,/L

{¢';'(zz)+{n2Nr +(“°2£2)“L2}¢;(z2)+“’52‘§"’2)“1¢2(z2)}8in(mt+e)=o @
0<z,<L,/L
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where ¢1(z;) and ¢,(z,) are dimensionless displacement functions of the
beam in the first and the second region, respectively; t is time variable; 0 is
phase angle; Nr = N L?/ (= EI) is the ratio of axial load N acting to the
beam to Euler buckling load; m is distributed mass of the beam; w is beam

circular frequency; k is shape factor due to cross-section area of the beam.
N is constant axial compressive force, L; and L, are length of the beam in
the first and the second region, respectively; L is total length of the beam,
A, G, E, | are respectively cross-section area, shear modulus, elastic
modulus and moment of inertia of the beam respectively.

3. DIFFERENTIAL TRANSFORMATION

The differential transformation technique, which was first proposed
by Zhou in 1986 [10], is one of the numerical methods for ordinary and
partial differential equations that use the form of polynomials as the
approximation to the exact solutions that are sufficiently differentiable.
The function that will be solved and the calculation of following
derivatives necessary in the solution become more difficult when the order
increases. This is in contrast with the traditional high-order Taylor series
method. Instead, the differential transform technique provides an iterative
procedure to obtain higher-order series; therefore, it can be applied to the
case high order.
The differential transformation of the function ¢(z) is defined as follows:

k
D(K) =1{d 6(2) } 5)
z=7

K| dz¥

Where ¢(z) is the original function and ®(K) is transformed function
which is called the T-function (it is also called the spectrum of the ¢(z) at z
= Zo, in the K domain). The differential inverse transformation of ®(k) is
defined as:

0(@) =Y (z-20) D(K) (6)
k=0
from Eq. (3) and Eq. (4) we get
= (2-20)*] d*¢(2)
k) =
(I)( ) I;) k' L de - (7)
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Equation (6) implies that the concept of the differential transformation
is derived from Taylor’s series expansion, but the method does not
evaluate the derivatives symbolically. However, relative derivative are
calculated by iterative procedure that are described by the transformed
equations of the original functions.

The basic operations of transformed functions which are given Table-
1 can be easily proofed using equations (5) and (6).

The function is expressed by finite series and equation (6) can be

n
written as¢(z):2(z—zo)k<1>(k). Equation (4) implies that
k=0

0(@) = Y. (z-20)*D(K) is negligibly small. In fact, n is decided by the

k=n+1
convergence of natural frequency in this paper.

Table 1. Some basic mathematical operations of DTM

Original function ¢(2) Transformed function ®(k)
Ad(2) ad(k)
01(2) £ ¢2(2) @4(K) + Do(K)
do(z)/dz (k+1) d(k+1)
d?9(z)/dz? (k+1)(k+2) D(k+2)
d*o(2)/dZ? (k+1)(k+2)(k+3) d(k+3)
d*o(z)/dz* (k+1)(k+2)(k+3)(k+4) O (k+4)

4. SOLUTION OF EQUATIONS OF MOTION BY DIFFERENTIAL
TRANSFORMATION METHOD

The boundary conditions of the Timeshenko beam resting on two
different elastic foundation and both ends simply supported shown in
Figure 2 are given in equations (8) - (15).
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Figure 2. Both ends simply supported beam on elastic foundation.

¢1 (Zl = O) =0 8)

¢2(22 :LZ/L)=O )

d2

LZZI) =0 —Ci¢,(z, =0) (10)
dz,

d2

LZZZ) L, — _Czd)z (Zz = Lz / L) (11)
d22 2=

¢1(21 =L, L) = d)z (22 =0) (12)

dé, (z,) do,(z,)

o = — 13
le zlz% d22 7,=0 (13)
3 3

d(l)l—(321) L +C1M L :d (I)z(fz) z:0+d¢2(22) Yo (14)
dz, A dz, |a= dz, ’ d 2
2 2

a0(z,) L +Ci, (2 =L, /L) = 470.(2,) 10 +Cy0,(2, =0) (1)
dz,” |z, dz,

By applying the DTM to equations (3),(4),(8),(10) and using the
relationship in Table-1 following equations are obtained.

o, (k+4)=—c,—1&*2 _p ©, (k) (16)
(k+3)(k+4) *(k+D)Kk+2)(k+3)(k+4)

@, (k+4)=-C, ©,(k+2) -D, ©, (K) (17)
(k+3)(k+4) 2 (K+D(k+2)(k+3)(k+4)

®,(0)=0 (18)
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®,(2)=0 (19)
y=4,{mO)EZIL4, Y being the frequency  factor. Where
M:CsE;:_‘" xzz%

ClznerJr(mmz’_A\(C:;l)kLz,Cz:ner+(mmz:(:;2)W,D1:kl—y4,D2:XZ—YA

The recurrence relations of the first region for k = 0(1)n are obtained from
equation (16) using equations (18) and (19) as follows:

®,(2K) =0

®,(5) = ;{‘ C;3(3)- D@y (1)}

04(1) = [cF -0y 10y(3 -c.0,0,0)
0, (9) :;!{(- C+ zchl}a!cD1(3) ¥ (- cp, + Df)cbl(l)} 20)
0,11 = {ct - 302D, + D2 o, (3) + ¢ - 2,07 o, 0]
1

10
0i09- [-c +acip, -3c,02 0, () +[- 4D, +3c2D2 - D} o, 0]

The recurrence relations of the second region for k = 0(1) n are obtained
from Eq. (17) as:
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q>2(4):1{—c22!®2(2)—02q>2(0)}
) (5)_f{ C,30,(3)-D,0,()}

,(6) = {(cz D, 2@, (2) +(C,D, )}, (0)}
@2(7)=ﬁ{(c§—D2)e.q>2(3 +(C,D, )0, M)}
(I)2(8):${(—C§+2C2D2)2!<D2(2)+(—C§D2+D§)®2(0)}
®,(9) = £;{( C} +2C,D, B, (3)+(-C2D, + D2 Jo, (1)
®,10)= {(c“ 3C2D, + D2, (2) +(C3D, - 2C,D2 o, (0)}

®,(11) = —{ct -3c?D, + D2 B, (3) + (C3D, - 2C,D% Jo, (1)}

i
11

D,(12) = {( C% +4C3D, —3C,D2 P, (2) + (- C2D, +3C2D% - D o, (0)

‘Hl\)"—‘

®,(13) =73

{( Cz +4C§D2 _3C2D§}3!®2(3)+(_C;D2 +3C§D§ - Di)(bz(l)} (21)

By applying the DTM to equations (9), (11), (12), (13), (14), (15) and
using the recurrence relations (20), (21) following equations are obtained

b,, @, (0) + b,,®,(1) +b,, 21D, (2) +b,,3D,(3) =0 (22)
b,,®,(0) +b,,®, (1) +b,, 21D, (2) +b,,3AD,(3) =0 (23)
b35CD1(1) + b363!q)1 (3) = d)z(O) (24)
b, @, (1) + b, 3D, (3) = D, (1) (25)
b55®1(1) + b563!q)1(3) = 3!@2(3) +C2CD2(1) (26)
De®, (D) + by 3D, (3) =21D,(2) +C,D,(0) (27)
where
n I_ 2k (_1)k k>2m k_m_l
b =1 =2 k—2mDm L
H +kz_:2(|_j (2k)! mz_:l m-1 )z P2
I_ n L 2k+1 (_1)k k>2m k_m_l
b _=2 =2 k—2mDm _m
2oL +k§(|_j (2K +1)! mzzll( m-1 }2 2 ()
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T
by =C, +[L—szz %Jr é('—_l_z)zk ((Zt))k {k?:lﬂ[k mm 12 amApm g }
e S e
b”‘“;(L) ((21k))k. {k;zzin(kmmll “sz( 1)'“}
et () (;;3;!{“2(:11 )
i
s BT e
S5 G o
b55_C1+[II'_1j gukzg[tlj ((zlk)ku{k>§+l[kmm12 kzmle+1 }
b56:1+i[LLj ((zllz)k' ki(kmmll kszl( Dm}
R I = DA SRy
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_ Ll L Ll At (_1)k &M (k-m-1 k-2mp~m m
bﬁG_(T}é{Tj (2k +1)! 2 m-1 St PreY

m=1
Substituting equations (24) and (25) into equations (26) and (27), respectively,
gives:

3D, (3) = (bgs —C,b,5) D, (1) + (bys —C,b )3 D, (3) (28)
21D, (2) = (bgs = C,035)D; (D) + (bgs — C,by)3 D, (3) (29)

Substituting equations (24),(25),(28) and (29) into equations (22) and (23),
respectively, gives:

|:Bll B, }{ 0, @ } _ {O} (30)
B, By 3!CD1(3) 0

where

B11 = bisbgs + b1abys + big (bes — C; bas) + D14 (bss — Ca bas)

Bz = b11bsg + D1obgs + D13 (bes — Co bae) + D14 (bsg — Co bag)

Ba1 = b1bgs + boobus + bys (gs — Co bs) + Doy (s — C; bys)
B2y = by1bzg + boobiug + bos (gs — Co bze) + bag (s — C; bye)

Thus, the frequency equation of the beam resting on elastic foundation is
obtained using Eq. (30) as:
0 = B11 B2z —B12 B =0 (31)

Solving (31) we get © = & ™, i = 1, 2, 3,... where ;™ is the nth estimated
o circular frequency corresponding to n, and n is indicated by

oai(n) —(oi(n_l) <g

where o; ™Y is the ith estimated circular frequency corresponding to n-1
and ¢ is a positive and small value.

5. TRANSFER MATRIX METHOD
The relations of displacement and internal force vector between the
simply supported right end and the left end of the beam in the first region,
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and between the simply supported left end and the right end of the beam in
the second region are as in the following [22].

{U( )} [H1{U(0)} (32)
Loy, L

{U( 1 )}=[H {U( . )} (33)

where {U(0)}, {U( )} {U(—)} are displacement and force vectors of

the beam respectlvely at the positions of z;=0 ,z;=L4/L , z,=L,/L and are as
in the following.

d
Uz, =0} ={0 ";17(1(” 0 T(z1=0} (34)
Ly
do(-1)
U= == 35 M@= Ta=1) @
L,
dp>(-2)
_LoyT L _La
Uz =207 =0 —p 1= 0 Tea=2p (36)

[Hi] and [H,] are transfer matrices respectively for the first and the
second regions.

¢1(z1) function in the relations (34), (35) and ¢,(z;) function in the
relation (36) are obtained according to the signs of parameters S; S, S3,S4
,Ss and Sg from the solutions of differential equations (3) and (4).
Following five conditions exist according to the signs of parameters S; S,,
S3,S4,Ss and Sg [6].

I. Condition: in the first region S$:>0,S,>0ve S3>0

$1(21) =[C5 cosh(D3z;) + C4 sinh(D32z1) + Cs cosh(D 4z1) + Cg sinh(D421)]  (37)
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(0< z;< Ly/L)
in the second region  S;>0, Ss>0 ve Sg>0
02(22) =[C7 cosh(Dsz,) + Cgsinh(Dsz,) + Cq cosh(Dgz,) + C1o sinh(Dgz)]  (38)
(0< z,< Ly/L)
I1. Condition: in the first region S;>0, S,>0ve S;<0
d1(z1) =[C3 cosh(D3z4) + C4 sinh(D3z;) + Cs cos(D4z1) + C sin(Daz1)]  (39)
(0< ;< Ly/L)
in the second region; S;>0, Ss>0 ve Sg<0

(I)Z (22) = [C7OSh(D522) + C8 sinh(D522) + Cg COS(DGZZ) + C10 sin(D622)] (40)
(O < < L2/L)

I11. Condition: in the first region  S;>0, S,<0 ve S3>0
d1(z1) =[C5 cos(D3z1) +Cy sin(D3zq) + Cs cosh(D4z;) + Cg sinh(Dyz1)]  (41)
(0< z<LyL)
in the second region; S;>0 , Ss<0 ve Sg>0
0(29)=[C7 cos(Dsz,) + Cg sin(Dsz,) + Cq cosh(Dgz,) + Cyg Sinh(Dgz)]  (42)
(0< z,< Ly/L)
IV. Condition: in the first region; S;>0 , S,<0 ve S3<0
01(21) =[C3 c08(D321) + C4 sin(D3z;) + C5 c0s(D421) + Cg Sin(Dyzy)]  (43)
(0< z;< Ly/L)
in the second region; S;>0 , Ss<0 ve Sg<0
92(22) =[C7 c0s(Ds2,) + Cg sin(Dsz,) + Cg c0s(DgZ;) + C1Sin(Dgz,)]  (44)
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V. Condition: in the first region; S;<0

$1(z1) = {Cs[cosh(riaszy) cos(ri0p21) |+ Ca[sinh(raszy) cos(rrotp21)]

+ Cg[cosh(ryoy21 ) sin(ryaip2;) |+ Cg [sinh(r oy 27 ) sin(rpoz1) |} (45)
(0< z;<Ly/L)

in the second region; S,<0

02(22) = {C7lcosh(raeg27) cos(raaiaz) ]+ Colsinh(r20321) cos(rpt2,)]

+Cg|cosh(ryaigz,)sin(rasz, ) |+ Cg[sinh(rpoisz o ) sin(ryasz,) | (46)
(0< z,< Ly/L)

where, D3 = S,°% Dy = S5°% Ds = S5°°% Dg = S B1= 7" - As B2= 7" - o
oy =sin(01/2); oy =00s(0/2); r=(-py)%%5;
ry =(=By)%?%; ag =sin(0, /2)

i 2[ [Czljz Bl)T'S ; z{ [C;jz M} ;

6, = Arct
C1 2 C,

0, = Arct

C
oy =008(02/2): :(71)2 +y* -21;8, :_?_(81)0.5;

C C C
S5 :—71+(81)°-5 'Sy =(72)2 +v% =255 =—72—(s4)°-5;

Co

= - + (84)0'5 ; 3,Cas,...,Cypare integration constants.

Se

Shear force and bending moment functions T(z;), M(z,) in the
relations (34), (35) and shear force function T(z) in the relation (36) are
obtained using the relation between the derivatives of elastic curve and the
internal forces of the beam as in the following [6].
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3 ]
Tl(zl):i—Elxa @), kEIX(csl—mwz)-N}l64’1(21)} (0< z;<LyJL)  (47)

|_3 8213- L AG L 621

El, 6%,(z,) [KEI 100,(29)
T,(z,)=1-—X2¥2Y2) P 0 o mw?) =N = 2222200 < 7, < L/l 48
2(22){L3 a e G (0< z<L/L) (48)

M1(21)={ El2 0 ¢1(21) {kElx (Cq ) - }d’l(zl)} 0< 2,<LJL)  (49)
12 oz AG

Writing the value of {U( )}form the equation (32) in equation

(33) gives
{U( )} [H{U(0)} (50)

hiy hiz hig hyg
where [H]=[Hy[H,]=| 2 "2z N2s haa

hg1 hga hgz hgg

ha1 hap hyz hyg
transforms displacements and forces in the left end of the beam in the first
region to displacements and forces in the right end of the beam in the
second region [22]. The 2x2 homogeneous matrix equations are obtained
from equation (50) according to the boundary conditions of the beam ends
as in the following.

and is 4x4 matrix that

L

doy (2 :TZ)
SR e ts
hgz hag L, 0

T(z> ZT)
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Frequency equation of the both ends simply supported beam on elastic
foundation is obtained equating the determinant of the coefficient matrix in
the matrix equation (51) to zero as in the following.

hi* hgs—hzp * i, =0 (52)

Thus, circular frequency values obtained using equation (52) is the
eigenvalues of the beam.

6. NUMERICAL ANALYSIS

Frequency factor values (y) for the first three modes of the both ends
simply supported IPB 900 steel beam resting on two different elastic
foundation are calculated considering three groups of modulus of subgrade
reactions and using DTM and transfer matrix method for parametric
studies in this paper. 1., Il. and Ill. groups of modulus of subgrade
reactions are considered as respectively C,,=70000 kN/m?, Cy= 0 KN/m?;
C4=70000 kN/m?, Cy, = 20000 kN/m? and C4;=70000 kN/m?, C,=50000
kN/m?. 0.25, 0.5, 0.75 values are taken for both N, and L,/L in the study.
Characteristics of the steel IPB 900 profile used in the numerical analysis
are presented in the following.

L=6m; | =444.1*10° m* A = 3.71*10%m%* m = 0.296 Nsec’’m* k =
2.55; E = 2.1*10® KN/m? G = 8.1*10" kN/m?

Frequency factor values are calculated according to N, Li/L and
series size (n) values using DTM and according to N, and L,/L values
using transfer matrix method; and the values obtained for respectively
Cs1=70000 kN/m?, Cg, = 0 KN/m?; C4=70000 kKN/m?, Cy, = 20000 kKN/m?
and C;= 70000 kN/m?, C, = 50000 kN/m? are presented in Tables 2, 3 and
4,

Frequency factor values for the third mode cannot be calculated for
each modulus of subgrade reaction considered in numerical analysis and n
=2 using DTM.

Frequency factor values obtained for the first mode using DTM for
series size n = 2 and n>2 are same. DTM results indicate that frequency
factor values of the first mode are very fast converging for each N, Li/L,

65



Solution of Eigenvalue Problem of Timoshenko Beam

Cq, Cs, value, and that converging speed decreases as the number of
modes increase.

It is seen from Tables-2, 3 and 4 that all frequency factors obtained
using TMM and obtained using DTM for n = 16 overlap.

7. CONCLUSION

Eigenvalues for the first three modes of the both ends simply
supported Timoshenko beam resting on two different foundations are
calculated using DTM and TMM according to the axial compressive force,
modulus of subgrade reactions and variation of L,/L values.

Frequency factor values of all modes increase for each N, and L,/L
values as the modulus of subgrade reaction Cs, increases.

Frequency factor values of all modes decrease for each Cg; and Cy,
value as L,/L value remains constant and axial compressive force
increases. This variation in frequency factors is clearer in the first and the
second modes.

Frequency factor values of all modes decrease for each Cg; and Cy,
value as N, value remains constant and L;/L value increases.
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Nr METHOD |n L./L =0.25 L./L =0.50 L./L =0.75
Y1 Y2 Y3 Y1 Y2 Y3 Y1 Y2 Y3
2 7.64419889 7.70511430 - 3.20497274 5.20944023 - 3.61614609 3.80194879 -
0.25 4 2.85668182 4.86087608 7.37156820 3.16665697 5.30849934 6.56168461 3.42784381 5.00870800 7.31811142
DTM 8 2.85533524 5.25938606 7.11325979 3.16665697 5.29980135 7.04365253 3.42756343 5.33288670 7.11461258
6 2.85533524 5.23997831 7.58061171 3.16665697 5.29980135 7.01819420 3.42756343 5.31899071 7.52173376
10 |2.85533524 5.25938606 7.03285074 3.16665697 5.29980135 7.04392576 3.42756343 5.3330889%4 7.05716515
12 | 2.85533524 5.25938606 7.03175592 3.16665697 5.29980135 7.04392576 3.42756343 5.33308894 7.05634689
14 | 2.85533524 5.25938606 7.03175592 3.16665697 5.29980135 7.04392576 3.42756343 5.33308894 7.05634689
16 | 2.85533524 5.25938606 7.03175592 3.16665697 5.29980135 7.04392576 3.42756343 5.33308894 7.05634689
TMM 2.85533524 5.25938606 7.03175592 3.16665697 5.29980135 7.04392576 3.42756343 5.33308894 7.05634689
0.50 2 7.60216188 7.66657495 - 3.04089999 5.12161446 - 3.47380137 | 3.68799472 -
4 2.61820149 4.76037741 7.32639122 2.99887466 5.22362804 6.50408792 3.29896164 4.91710281 7.27194071
6 2.61636472 5.15211344 7.53809214 2.99855399 5.21478844 6.96796560 3.29867029 5.23520708 7.47823620
DTM 8 2.61636472 5.17203665 7.06438875 2.99855399 5.21478844 6.99374437 3.29867029 5.24932480 7.06575060
10 |2.61636472 5.17222214 6.98272753 2.99855399 5.21478844 6.99401951 3.29867029 5.24950790 7.00762796
12 | 2.61636472 5.17222214 6.98162508 2.99855399 5.21478844 6.99401951 3.29867029 5.24950790 7.00680399
14 | 2.61636472 5.17222214 6.98162508 2.99855399 5.21478844 6.99401951 3.29867029 5.24950790 7.00680399
16 | 2.61636472 5.17222214 6.98162508 2.99855399 5.21478844 6.99401951 3.29867029 5.24950790 7.00680399
T™MM 2.61636472 5.17222214 6.98162508 2.99855399 5.21478844 6.99401951 3.29867029 5.24950790 7.00680399
0.75 2 7.55950928 7.62503958 - 2.84487772 5.02881718 - 3.31349707 3.56070113 -
4 2.28694654 4.65296173 7.28040504 2.79647589 5.13454723 6.44478226 3.15296865 4.81997108 7.22480869
6 2.28484344 5.05949545 7.49481821 2.79647589 5.12536669 6.91653776 3.15266371 5.14707422 7.43383694
DTM 8 2.28484344 5.08016014 7.01449108 2.79647589 5.12536669 6.94278479 3.15266371 5.16161919 7.01586294
10 |2.28484344 5.08034945 6.93140936 2.79647589 5.12536669 6.94292307 3.15266371 5.16180515 6.95690823
12 | 2.28484344 5.08034945 6.93029881 2.79647589 5.12536669 6.94292307 3.15266371 5.16180515 6.95607853
14 | 2.28484344 5.08034945 6.93029881 2.79647589 5.12536669 6.94292307 3.15266371 5.16180515 6.95607853
16 | 2.28484344 5.08034945 6.93029881 2.79647589 5.12536669 6.94292307 3.15266371 5.16180515 6.95607853
T™MM 2.28484344 5.08034945 6.93029881 2.79647589 5.12536669 6.94292307 3.15266371 5.16180515 6.95607853

Table-2: Frequency factors for the first, second and third modes of the beam resting on foundation having modulus of subgrade reaction of C;=70000 kN/m?, C,,=0

KN/m?




Nr METHOD n Ly/L=0.25 Li/L =0.50 Li/L=0.75
Y1 Y2 Y3 Y1 Y2 Y3 Y1 Y2 Y3
2 7.65702915 5.23392200 - 3.29808736 5.23392200 - 3.68569844 3.74771404 -
0.25 4 3.07579494 5.32783747 7.37182903 3.26793242 5.32783747 6.57311392 3.44295192 7.33374310 7.33374310
6 3.07454443 5.31917143 7.57959604 3.26793242 5.31917143 7.02723837 3.44267273 7.53758144 7.53758144
DTM 8 3.07454443 5.31917143 7.12150764 3.26793242 5.31917143 7.05266380 3.44267273 7.12245369 7.12245369
10 3.07454443 5.31917143 7.04515505 3.26793242 5.31917143 7.05280018 3.44267273 7.06248140 7.06248140
12 | 3.07454443 | 5.31917143 7.04419899 3.26793242 5.31917143 7.05280018 3.44267273 7.06166363 7.06166363
14 | 3.07454443 |5.31917143 7.04419899 3.26793242 5.31917143 7.05280018 3.44267273 7.06166363 7.06166363
16 |3.07454443 |5.31917143 7.04419899 3.26793242 5.31917143 7.05280018 3.44267273 7.06166363 7.06166363
TMM 3.07454443 | 5.31917143 7.04419899 3.26793242 5.31917143 7.05280018 3.44267273 7.06166363 7.06166363
0.50 2 7.61518908 | 7.65489244 - 3.14869809 5.14726067 - 3.53659534 3.64236474 -
4 2.89113998 4.81218767 7.32665396 3.11709166 5.24401236 6.51591396 3.31610680 4.92218256 7.28053713
6 2.89014220 5.18688202 7.53694296 3.11709166 5.23502350 6.97721291 3.31552696 5.24547863 7.49366236
DTM 8 2.89014220 5.20574903 7.07282925 3.11709166 5.23502350 7.00295734 3.31552696 5.26029968 7.02299166
10 2.89014220 5.20593357 6.99525785 3.11709166 5.23502350 7.00309467 3.31552696 5.26029968 6.94430923
12 2.89014220 5.20593357 6.99429464 3.11709166 5.23502350 7.00309467 3.31552696 5.26029968 6.94333887
14 2.89014220 5.20593357 6.99429464 3.11709166 5.23502350 7.00309467 3.31552696 5.26029968 6.94333887
16 2.89014220 5.20593357 6.99429464 3.11709166 5.23502350 7.00309467 3.31552696 5.26029968 6.94333887
TMM 2.89014220 5.20593357 6.99429464 3.11709166 5.23502350 7.00309467 3.31552696 5.26029968 6.94333887
0.75 2 7.57260990 7.61316681 - 2.97440886 5.05607462 - 3.37500215 3.51815860 -
4 2.66226411 4.70820093 7.28053713 2.94027257 5.15584326 6.45701504 3.17241859 4.82535219 7.24104071
6 2.66118050 5.09621668 7.49366236 2.94027257 5.14670038 6.92599249 3.17211556 5.15789366 7.45025921
DTM 8 2.66118050 5.11560583 7.02299166 2.94027257 5.14670038 6.95206547 3.17211556 5.17315149 7.02408791
10 2.66118050 5.11579370 6.94430923 2.94027257 5.14670038 6.95234203 3.17211556 5.17315149 6.96160984
12 2.66118050 5.11579370 6.94333887 2.94027257 5.14670038 6.95234203 3.17211556 5.17315149 6.96160984
14 2.66118050 5.11579370 6.94333887 2.94027257 5.14670038 6.95234203 3.17211556 5.17315149 6.96160984
16 2.66118050 5.11579370 6.94333887 2.94027257 5.14670038 6.95234203 3.17211556 5.17315149 6.96160984
TMM 2.66118050 5.11579370 6.94333887 2.94027257 5.14670038 6.95234203 3.17211556 5.17315149 6.96160984

Table-3: Frequency factors for the first, second and third modes of the beam resting on foundation having modulus of subgrade reaction of C4=70000 kN/m?,

C4,=20000 kN/m?

h
[]




Nr METHOD | N Li/L=0.25 Ly/L =0.50 Li/L=0.75
Y1 Y2 3 11 Y2 Y3 Y1 Y2 Y3
2 3.45286410 5.01472513 - 3.42307377 5.26851559 - 4.14953709 5.55713272 -
0.25 4 3.33489347 4.98003340 7.37209034 3.40025377 5.35752153 6.59007502 3.46465850 5.02059174 7.35693216
6 3.33431697 5.32151985 7.57781839 3.40025377 5.34890318 7.04078245 3.46438098 5.34350967 7.56116390
DTM 8 3.33431697 5.33829069 7.13419867 3.40025377 5.34890318 7.06602335 3.46438098 5.35877705 7.13473797
10 |3.33431697 5.33847094 7.06370735 3.40025377 5.34890318 7.06615925 3.46438098 5.35877705 7.07051611
12 | 3.33431697 5.33847094 7.06275368 3.40025377 5.34890318 7.06615925 3.46438098 5.35877705 7.06969929
14 | 3.33431697 5.33847094 7.06275368 3.40025377 5.34890318 7.06615925 3.46438098 5.35877705 7.06969929
16 | 3.33431697 5.33847094 7.06275368 3.40025377 5.34890318 7.06615925 3.46438098 5.35877705 7.06969929
TMM 3.33431697 5.33847094 7.06275368 3.40025377 5.34890318 7.06615925 3.46438098 5.35877705 7.06969929
0.50 2 4.13642195 4.99713092 - 3.29079366 5.18354559 - 3.38104217 4.96401763 -
4 3.19415832 4.88671064 7.32691669 3.26793242 5.27489710 6.53317070 3.34035617 4.92959738 7.31153345
6 3.19325542 5.23777676 7.53528309 3.26793242 5.26614332 6.99099207 3.33978963 5.26084757 7.51827860
DTM 8 3.19325542 5.25499821 7.08574343 3.26793242 5.26614332 7.01654863 3.33978963 5.27635431 7.08628654
10 |3.19325542 5.25518084 7.01421642 3.26793242 5.26614332 7.01668596 3.33978963 5.27653646 7.02121019
12 | 3.19325542 5.25518084 7.01325607 3.26793242 5.26614332 7.01668596 3.33978963 5.27653646 7.02038765
14 | 3.19325542 5.25518084 7.01325607 3.26793242 5.26614332 7.01668596 3.33978963 5.27653646 7.02038765
16 | 3.19325542 5.25518084 7.01325607 3.26793242 5.26614332 7.01668596 3.33978963 5.27653646 7.02038765
TMM 3.19325542 5.25518084 7.01325607 3.26793242 5.26614332 7.01668596 3.33978963 5.27653646 7.02038765
0.75 2 3.16403715 4.97130219 - 3.14044523 5.09433031 - 3.30571425 492170324 -
4 3.03171706 478775787 7.28093386 3.11740017 5.18836451 6.47487450 3.20017076 4.83331299 7.26518822
6 3.03076553 5.14987421 7.49199247 3.11740017 5.17927933 6.94015074 3.19987035 5.17408037 7.47463226
DTM 8 3.03076553 5.16757441 7.03627062 3.11740017 5.17927933 6.96603203 3.19987035 5.19003153 7.03681803
10 |3.03076553 5.16757441 6.96368313 3.11740017 5.17927933 6.96630812 3.19987035 5.19021654 6.97086573
12 | 3.03076553 5.16757441 6.96271563 3.11740017 5.17927933 6.96630812 3.19987035 5.19021654 6.96989918
14 | 3.03076553 5.16757441 6.96257734 3.11740017 5.17927933 6.96630812 3.19987035 5.19021654 6.96989918
16 | 3.03076553 5.16757441 6.96257734 3.11740017 5.17927933 6.96630812 3.19987035 5.19021654 6.96989918
TMM 3.03076553 5.16757441 6.96257734 3.11740017 5.17927933 6.96630812 3.19987035 5.19021654 6.96989918

Table-4: Frequency factors for the first, second, third modes of the beam resting on foundation having modulus of subgrade reaction of C;;=70000 kN/m?, C,=50000

kN/

(=]
Lo
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