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Abstract

P.K. Das and G.C. Nayak [3] introduced the concept of generalized variational like inequalities in H-spaces
in the presence of T -η-invex function. There the existence theorems of mixed generalized variational like
inequalities are studied in H-spaces and also in Riesz spaces in the presence of T -η-invex function. In the
present note, we extend their results to partial KKM spaces, which contain H-spaces as very particular
subclass.
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1. Introduction

The KKM theory is originated from the celebrated Knaster-Kuratowski-Mazurkiewicz (simply KKM)
theorem in 1929. In 1961-1984, Ky Fan investigated various results in the theory on Hausdor� topological
vector spaces. His results were elaborated and extended by many authors for various types of general spaces.
Since 2006, such results have been uni�ed and abstracted by Park's KKM theory on abstract convex spaces.
For the history of such research, see [11].

For a long period, H-spaces (or c-spaces) due to Horvath [4] had been an interesting area of research
domain for studying variational type inequality and other topics. However, it is well-known that certain
results on H-spaces can be extended to more general spaces belonging abstract convex spaces; see Park
[10,11,13,14].

Very recently, P.K. Das and G.C. Nayak [3] introduced the concept of generalized variational like inequal-
ities in H-spaces in the presence of T -η-invex function. There the existence theorems of mixed generalized
variational like inequalities are studied in H-spaces and also in Riesz spaces in the presence of T -η-invex
function.
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In the present note, we extend their results to partial KKM spaces, which contain H-spaces as a very
particular subclass. Actually, we can show that their results can be extended to more general and more clear
versions.

2. Abstract convex spaces

Recall the following in [6-14] and the references therein.

De�nition 2.1. Let E be a topological space, D a nonempty set, ⟨D⟩ the set of all nonempty �nite subsets
of D, and Γ : ⟨D⟩ → 2E a multimap with nonempty values ΓN := Γ(N) for N ∈ ⟨D⟩. The triple (E,D; Γ)
is called an abstract convex space whenever the Γ-convex hull of any D′ ⊂ D is denoted and de�ned by

coΓD
′ :=

⋃
{ΓN : N ∈ ⟨D′⟩} ⊂ E.

A subset X of E is called a Γ-convex subset of (E,D; Γ) relative to some D′ ⊂ D if for any N ∈ ⟨D′⟩, we
have ΓN ⊂ X, that is, coΓD

′ ⊂ X.
In case E = D, let (E; Γ) := (E,E; Γ).

De�nition 2.2. Let (E,D; Γ) be an abstract convex space and Z be a topological space. For a multimap
F : E ⊸ Z with nonempty values, if a multimap G : D ⊸ Z satis�es

F (ΓN ) ⊂ G(N) :=
⋃
y∈N

G(y) for all N ∈ ⟨D⟩,

then G is called a KKM map with respect to F . A KKM map G : D ⊸ E is a KKM map with respect to
the identity map 1E .

De�nition 2.3. A multimap F : E ⊸ Z to a set Z is called a K-map if, for a KKM map G : D ⊸ Z with
respect to F , the family {G(y)}y∈D has the �nite intersection property. We denote

K(E,Z) := {F : E ⊸ Z | F is a K-map}.

Similarly, when Z is a topological space, a KC-map is de�ned for closed-valued maps G, and a KO-map

for open-valued maps G. In this case, we denote F ∈ KC(E,Z) [resp. F ∈ KO(E,Z)].

De�nition 2.4. The partial KKM principle for an abstract convex space (E,D; Γ) is the statement 1E ∈
KC(E,E); that is, for any closed-valued KKM map G : D ⊸ E, the family {G(y)}y∈D has the �nite
intersection property. The KKM principle is the statement 1E ∈ KC(E,E) ∩ KO(E,E); that is, the same
property also holds for any open-valued KKM map.

An abstract convex space is called a (partial) KKM space if it satis�es the (partial) KKM principle,
respectively.

Recall that a topological space X is homotopically trivial if for any natural number n and any continuous
function f : ∂∆n → X, de�ned on the boundary of the standard n-dimensional simplex ∆n, there exists its
continuous extension g : ∆n → X.

De�nition. A triple (X ⊃ D; Γ) is called an H-space if X is a topological space and Γ = {ΓA} a family
of contractible subsets of X indexed by A ∈ ⟨D⟩ such that ΓA ⊂ ΓB whenever A ⊂ B ∈ ⟨D⟩. If D = X,
(X; Γ) := (X,X; Γ) is called a c-space by Horvath [4] or an H-space by Bardaro - Ceppitelli [1, 2].

In case Γ is a family of homotopically trivial sets, then (X ⊃ D; Γ) will be called a Horvath space which
is more general than H-spaces and becomes clearly the well-known G-convex spaces due to Park [14].

Now the following diagram for triples (E,D; Γ) is well-known:

Simplex =⇒ Convex subset of a t.v.s. =⇒ Lassonde type convex space
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=⇒ Horvath space =⇒ G-convex space =⇒ ϕA-space =⇒ KKM space

=⇒ Partial KKM space =⇒ Abstract convex space.

Note that some subclasses of abstract convex spaces have large numbers of examples; see Park [13,14].
Now we prepare to introduce one of the most general forms of the KKM theorem.
Consider the following related four conditions for a map G : D ⊸ Z with a topological space Z:

(a)
⋂

y∈D G(y) ̸= ∅ implies
⋂

y∈D G(y) ̸= ∅.

(b)
⋂

y∈D G(y) =
⋂

y∈D G(y) (G is intersectionally closed-valued ).

(c)
⋂

y∈D G(y) =
⋂

y∈D G(y) (G is transfer closed-valued).

(d) G is closed-valued.

Note that Luc et al. showed (a) ⇐= (b) ⇐= (c) ⇐= (d), and not conversely in each step.

The following is one of the most general KKM type theorems in [7] for abstract convex spaces:

Theorem C. Let (E,D; Γ) be an abstract convex space, Z a topological space, F ∈ KC(E,D,Z), and

G : D ⊸ Z a map such that

(1) G is a KKM map w.r.t. F ; and

(2) there exists a nonempty compact subset K of Z such that either

(i) K = Z;
(ii)

⋂
{G(y) | y ∈ M} ⊂ K for some M ∈ ⟨D⟩; or

(iii) for each N ∈ ⟨D⟩, there exists a Γ-convex subset LN of E relative to some D′ ⊂ D such that

N ⊂ D′, F (LN ) is compact, and

F (LN ) ∩
⋂
y∈D′

G(y) ⊂ K.

Then we have

F (E) ∩K ∩
⋂
y∈D

G(y) ̸= ∅.

Furthermore,

(α) if G is transfer closed-valued, then F (E) ∩K ∩
⋂
{G(y) | y ∈ D} ≠ ∅; and

(β) if G is intersectionally closed-valued, then
⋂
{G(y) | y ∈ D} ≠ ∅.

From now on, we are mainly concerned with the partial KKM spaces of the form (E; Γ) for the simplicity.

3. Various coercivity conditions

In this section, we consider some particular cases of the coercivity condition (iii) in Theorem C.
The following is a simpli�ed form of (iii) in case X = E = D = Z and F = 1E :

(A) Let (X; Γ) be a partial KKM space having a compact subset K ⊂ X. For each N ∈ ⟨X⟩, there exists

a compact Γ-convex subset LN ⊂ X relative to some D ⊂ X such that N ⊂ D and

LN ∩
⋂
y∈D

G(y) ⊂ K.

The following is an H-space version of (A):
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(B) Let (X; {ΓA}) be an H-space having a compact subset K ⊂ X. For each N ∈ ⟨X⟩, there exists a

compact Γ-convex subset LN ⊂ X relative to some D ⊂ X such that N ⊂ D, (LN , {ΓA ∩D}) is an H-space,

and

LN ∩
⋂
y∈D

G(y) ⊂ K.

A subset Y ⊂ X is said to be weakly H-convex if ΓA ∩ Y is nonempty and contractible for every �nite
subset A ⊂ Y. This is equivalent to saying that the pair (Y, {ΓA ∩ Y }) is an H-space.

A subset L ⊂ X is said to be H-compact if there exists a compact and weakly H-convex set Y ⊂ X such
that L ∪A ⊂ Y for every �nite subset A ⊂ X.

In view of such de�nitions, the following follows from (B):

(C) Let (X; {ΓA}) be an H-space having a compact subset K ⊂ X and an H-compact subset L ⊂ X, such

that for each weakly H-convex subset Y with L ⊂ Y ⊂ X, we have

Y ∩
⋂
x∈Y

G(x) ⊂ K.

Proof of (B)⇐=(C): For each N ∈ ⟨X⟩, since L is H-compact, there exists a compact weakly H-convex
set Y ⊂ X such that L ∪ N ⊂ Y . If we let LN := Y,D := Y , LN is a compact Γ-convex subset of X
relative to D ⊂ X and for each N ⊂ D, (LN , {ΓA ∩D}) is an H-space. Y ∩

⋂
x∈Y G(x) ⊂ K clearly implies

LN ∩
⋂

y∈D G(y) ⊂ K.

(D) Let (X; {ΓA}) be an H-space having a compact subset L ⊂ X and an H-compact subset K ⊂ X, such

that for each weakly H-convex set D with K ⊂ D ⊂ X, we have

D ∩
⋂
x∈D

G(x) ⊂ L.

Note that (D) is the avatar of (C) by changing the symbols.

The following result of Theorem C has fundamental importance in partial KKM spaces:

Theorem 3.1. Let (X; Γ) be a partial KKM space and G : X ⊸ X a KKM multimap such that

(a) for each x ∈ X, G(x) is closed,
(b) the condition (A) holds.

Then,
⋂

x∈X G(x) ̸= ∅.

Corollary 3.2. ([1], Theorem 1, p.486) Let (X, {ΓA}) be an H-space and G : X ⊸ X an H-KKM multimap

such that

(a) for each x ∈ X, G(x) is compactly closed,

(b) the condition (D) holds.

Then,
⋂

x∈X G(x) ̸= ∅.

Compactly closedness is a closedness in some weak topology, so we may take this topology as the topology
of given partial KKM space X; see Park [12].

4. Generalized Variational Like Inequalities in Partial KKM Spaces

In this section we follow Section 3 of [3] and present an application of Theorem 3.1. In fact we establish an
inequality associated with the variational inequality or variational type inequality and prove certain results
in partial KKM spaces instead of H-spaces.
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Let X be a topological vector space, let (Y, P ) be an ordered topological vector space equipped with
closed convex pointed cone P with intP ̸= ∅. Let K be a convex set in X, let T : K → L(X,Y ) be any map,
and let η : X ×X → Y be a vector-valued function as in [5]. For y ∈ X, we set Ky as the smallest convex
set containing K and y.

4.1 GVLIP in partial KKM spaces

The generalized variational like inequality problem is to �nd x0 ∈ K such that for all x ∈ K,

⟨T (x0), η(x0, x)⟩ /∈ −intP.

To prove the existence of the above problem, we show the following result.

Theorem 4.1. Let (X; Γ) be a partial KKM space and let f : X × X → Y be a mapping satisfying the

following conditions:

(a) For every (x, u) ∈ X ×X,
f(x, u) + f(u, x) ≥ 0.

(b) For every u ∈ X, the set

{x ∈ X : f(x, u) ̸≤ 0}

is Γ-convex.
(c) For every x ∈ X, the set

G(x) := {u ∈ X : f(x, u) ≥ 0}

is closed.

(d) For every x ∈ X, f(x, x) = 0.
(e) The coercivity condition (A): There exists a compact subset K ⊂ X. For each N ∈ ⟨X⟩, there exists

a compact Γ-convex subset LN ⊂ X relative to some D ⊂ X such that N ⊂ D and

LN ∩
⋂
y∈D

G(y) ⊂ K.

Then there is an x0 ∈ X such that f(x, x0) ≥ 0 for every x ∈ X.

Proof. Since the conclusion claims that
⋂

x∈X G(x) ̸= ∅, we only have to show that the closed valued map
G : X ⊸ X is KKM. The coercivity condition to apply Theorem 3.1 is also assumed. If G is not a KKM
map, there is an A ∈ ⟨X⟩ such that ΓA ̸⊂

⋃
x∈AG(x).This means some y ∈ ΓA satis�es f(x, y) ̸≥ 0 for all

x ∈ A. Therefore, A ⊂ {x ∈ X : f(x, y) ̸≥ 0} ⊂ {x ∈ X : f(y, x) ̸≤ 0} by the condition (a), The condition
(b) implies the �nite set A belongs to a Γ-convex set, so ΓA ⊂ {x ∈ X : f(y, x) ̸≤ 0}, particularly, f(y, y) ̸≤ 0
which contradict to the condition (d).

Corollary 4.2. Let (X; {Γ}) be an H-space and let f : X ×X → Y be a mapping satisfying the following

conditions:

(a) For every (x, u) ∈ X ×X,
f(x, u) + f(u, x) ≥ 0.

(b) For every u ∈ X, the set

{x ∈ X : f(x, u) ̸≤ 0}

is H-convex.

(c) For every x ∈ X, the set

{u ∈ X : f(x, u) ≥ 0}

is compactly closed.

1. For every x ∈ X, f(x, x) = 0.



W. Lee, Results in Nonlinear Anal. 3 (2020), 59�67 64

2. There exists a compact set L ⊂ X and an H-compact set K ⊂ X such that for every y ∈ X \ L, there
is x ∈ Ky with f(x, y) ̸≥ 0.

Then there is x0 ∈ X such that f(x, x0) ≥ 0 for every x ∈ X.

This is a corrected form of Theorem 3.1 of Das and Nayak [3] for H-spaces, which is a particular case
of ([2], Theorem 3, p.53). Since the set Ky is the smallest H-convex set containing K and y, the second
condition implies our coercivity condition (D).

The following result gives an application of Theorem 4.1.

Theorem 4.3. Let (X; Γ) be a partial KKM space and Y be a Riesz space. Let (Y, P ) be an ordered

topological vector space equipped with closed convex pointed cone P with intP ̸= ∅. Let K be a convex set in

X. Assume that T and η satisfy the following conditions:

(a) For every (x, u) ∈ X ×X,

⟨T (u), η(u, x)⟩+ ⟨T (x), η(x, u)⟩ /∈ −intP.

(b) For every u ∈ X, the set

{x ∈ X : ⟨T (u), η(u, x)⟩ /∈ intP}

is Γ-convex.
(c) For every x ∈ X, the set

G(x) := {u ∈ X : ⟨T (u), η(u, x)⟩ /∈ −intP}

is closed.

1. For every x ∈ X, ⟨T (x, x), η(x, x)⟩ /∈ −intP ∪ intP.
2. The coercivity condition (A): There exists a compact subset K ⊂ X. For each N ∈ ⟨X⟩, there exists

a compact Γ-convex subset LN ⊂ X relative to some D ⊂ X such that N ⊂ D and

LN ∩
⋂
y∈D

G(y) ⊂ K.

Then there is an x0 ∈ X such that ⟨T (x0), η(x0, x)⟩ /∈ −intP for every x ∈ X.

Proof. De�ne a map f : K × K → Y by f(x, u) := ⟨T (u), η(u, x)⟩. We can see that f satis�es all the
conditions of Theorem 4.1 in an ordered topological vector space (Y, P ). So, there exists an x0 ∈ X such
that f(x, x0) = ⟨T (x0), η(x0, x)⟩ /∈ −intP for every x ∈ X.

As a Corollary, we obtain the following H-space version of Das and Nayak ([3], Theorem 3.2).

Corollary 4.4. Let (X, {ΓA}) be an H-space and Y be a Riesz space. Let (Y, P ) be an ordered topological

vector space equipped with closed convex pointed cone P with intP ̸= ∅. Let K be a convex set in X, with

0 ∈ K. Assume that X is Hausdor�. Assume that T and η satisfy the following conditions:

(a) For every (x, u) ∈ X ×X,

⟨T (u), η(u, x)⟩+ ⟨T (x), η(x, u)⟩ /∈ −intP.

(b) For every u ∈ X, the set

{x ∈ X : ⟨T (u), η(u, x)⟩ /∈ intP}

is H-convex.

(c) For every x ∈ X, the set

{u ∈ X : ⟨T (u), η(u, x)⟩ /∈ −intP}

is compactly closed.
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1. For every x ∈ X, ⟨T (x, x), η(x, x)⟩ /∈ −intP ∪ intP.
2. There exists a compact set L ⊂ X and an H-compact set W ⊂ X such that for every y ∈ X \ L, there

is a x ∈ Wy = W ∪ {y} with ⟨T (y), η(y, x)⟩ /∈ intP.
Then there is x0 ∈ X such that ⟨T (x0), η(x0, x)⟩ /∈ −intP for every x ∈ X.

As an extension of the above problem, we consider a variational-like inequality problems as in [3]:
The generalized variational like inequality problem is to �nd x0 ∈ Kh such that

⟨T (x0),
x0u

η(x0, u)
⟩ /∈ −intP,

and
⟨T (x0),

x0v

η(x0, v)
⟩ /∈ −intP,

or �xed x ∈ Kh and u, v ∈ Kh.

Theorem 4.5. Let (X; Γ) be a partial KKM space. Assume that X is Hausdor�. Let M be a subset of

X ×X having the following properties:

(a) For each x ∈ X, (x, x) ∈ M.
(b) For each t ∈ X, the set M(t) = {x ∈ X : (x, t) ∈ M} is closed in X.

(c) For each x ∈ X, the set N(x) = {t ∈ X : (x, t) /∈ M} is Γ-convex.
(d) There exists a compact subset K ⊂ X. For each N ∈ ⟨X⟩, there exists a compact Γ-convex subset

LN ⊂ X relative to some D ⊂ X such that N ⊂ D and

LN ∩
⋂
t∈D

M(t) ⊂ K.

Then there exists x0 ∈ X such that {x0} ×X ⊂ M.

Proof. By considering M as a set-valued map, it has non-empty closed values by (a) and (b). We only
have to show that M : X ⊸ Xis a KKM map. To the contrary, if it is not a KKM map. Then there exists
a �nite set A ⊂ X such that ΓA ̸⊂

⋃
t∈AM(t). Thus there exists some u ∈ ΓA such that (u, t) ̸∈ M for all

t ∈ A, which means A ⊂ N(u). Since N(u) is Γ-convex by (c), we have u ∈ ΓA ⊂ N(u), that is (u, u) ̸∈ M ,
which contradicts to (a).

In theH-space case, if we change the condition (d) as the coercivity condition (D), we obtain the following
Corollary.

Corollary 4.6. Let (X, {ΓA}) be an H-space. Assume that X is Hausdor�. Let M be a subset of X × X
having the following properties:

(a) For each x ∈ X, (x, x) ∈ M.
(b) For each t ∈ X, the set M(t) = {x ∈ X : (x, t) ∈ M} is closed in X.

(c) For each x ∈ X, the set N(x) = {t ∈ X : (x, t) /∈ M} is H-convex.

(d) There exists a compact set L ⊂ X and an H-compact set W ⊂ X such that for each weakly H-convex

set D with W ⊂ D ⊂ X, ⋂
t∈D

({x ∈ X : x ∈ M(t)} ∩D) ⊂ L.

Then there exists x0 ∈ X such that {x0} ×X ⊂ M.

The following result is slightly di�erent form of Theorem 4.5.

Theorem 4.7. Let (X; Γ) be a partial KKM space and R be a Riesz space. Let K be a convex set in X.

Assume that X is Hausdor�. Let for any �xed y ∈ X, f : Ky × Ky → R be a continuous map having the

following properties:
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(a) For each x ∈ X, f(x, x) ≥ 0.
(b) For every v ∈ Ky, the set {x ∈ Ky : f(x, v) ≥ 0} is closed in X.

(c) For every x ∈ Ky, the set {v ∈ Ky : f(x, v) < 0} is Γ-convex.
(d) For any �xed y ∈ X outside a compact subset K ⊂ X, and for each N ∈ ⟨X⟩, there exists a compact

Γ-convex subset LN ⊂ X relative to some D ⊂ X such that N ⊂ D and

LN ∩
⋂
v∈D

{x ∈ Ky : f(x, v) ≥ 0} ⊂ K,

Then, there exists x0 ∈ Ky such that f(x0, x) ≥ 0 for all x ∈ Ky.

Proof. For any �xed y ∈ X, let M be the set {(x, u) : f(x, u) ≥ 0} ⊂ Ky ×Ky. By (a), M is nonempty.
For each u ∈ Ky, M(u) := {x ∈ Ky : (x, u) ∈ M} is closed by (b). For each x ∈ Ky, N(x) := {u ∈ Ky :
(x, u) ̸∈ M} is Γ-convex by (c). The condition (d) completes all the conditions of Theorem 4.5 and therefore,
there exists an x0 ∈ Ky such that {x0} ×Ky ⊂ M , that is, for all x ∈ Ky, f(x0, x) ≥ 0.

Das and Nayak made an H-space version [3, Theorem 3.4] with the concept of H∗-concavity in condition
(c). Since this condition used only to show that N(x) in the above proof is H-convex, we have the following;

Corollary 4.8. Let (X, {ΓA}) be an H-space and R be a Riesz space. Let K be a convex set in X. Assume

that X is Hausdor�. Let for any �xed y ∈ X, f : Ky ×Ky → R be a continuous map having the following

properties:

(a) For each x ∈ X, f(x, x) ≥ 0.
(b) For every v ∈ Ky, the set {x ∈ Ky : f(x, v) ≥ 0} is compactly closed in X.

(c) For every x ∈ Ky, the set {v ∈ Ky : f(x, v) ≤ 0} is H∗-concave on K.

(d) For any �xed y ∈ X, there exists a compact set L ⊂ X and an H-compact set W ⊂ X, such that for

each weakly H-convex set D with

W ⊂ D ⊂ X,
⋂
v∈D

({x ∈ Ky : f(x, v) ≥ 0} ∩D) ⊂ L.

Then, there exists x0 ∈ Ky such that f(x0, x) ≥ 0 for all x ∈ Ky.

4.2 Uniqueness Principle

The following result characterizes the uniqueness of the solution of the variational-like inequality problem:

To �nd x0 ∈ K such that
f(x0, x) /∈ −intP

for all x ∈ K obtained as in the former Theorems.

Theorem 4.9. Let (X,Γ) be a partial KKM space and let (Y, P ) be an ordered topological vector space

equipped with closed convex pointed cone P with int P ̸= ∅. Let K be a Γ-convex set in X. Let f : K×K → Y
be a continuous map such that

(a) f(x, u) + f(u, x) /∈ intP for all x, u ∈ K,

(b) f(x, u) + f(u, x) =P 0 implies x = u.
Then if the above variational-like inequality problem is solvable, then it has a unique solution.

Proof. Let x1, x2 ∈ K solve the variational-like inequality, then we have f(x1, x) ̸∈ intP and f(x2, x) ̸∈
intP . By substitution, we see that f(x1, x2) and f(x2, x1) is not in intP , so f(x1, x2) + f(x2, x1) ̸∈ intP .
This combined with (a) gives f(x1, x2) + f(x2, x1) =P 0 which implies x1 = x2 by (b).

This proof is from Das and Nayak [3]. It does not require any properties of the underlying space X and
the convex set K. So it can be applied almost variational problems discusssed in this paper including Das
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and Nayak's result specially. Note that their requirements X is Hausdor� and 0 ∈ K are not necessary and
an abstract convex space needs not contain 0 or to be Hausdor�.

Corollary 4.10. Let (X, {ΓA}) be an H-space and let (Y, P ) be an ordered topological vector space equipped

with closed convex pointed cone P with int P ̸= ∅. Let K be a convex set in X, with 0 ∈ K. Assume that X
is Hausdor�. Let f : K ×K → Y be a continuous map such that

(a) f(x, u) + f(u, x) /∈ intP for all x, u ∈ K,
(b) f(x, u) + f(u, x) =P 0 implies x = u.
Then if the problem, �nd x0 such that f(x0, x) /∈ −intP for all x ∈ K, is solvable, then it has a unique

solution.
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