Ordu Üniv. Bil. Tek. Derg., Cilt:3, Sayı:2, 2013, 50-57/Ordu Univ. J. Sci. Tech., Vol:3, No:2, 2013, 50-57

SPACELIKE-TIMELIKE BERTRAND E R Ç FT NE A T (C^*) SAB T POL E R S N N KÜRESEL NVOLÜTLER

Süleyman ENYURT^{*}, Ömer Faruk ÇALI KAN

Department of Mathematics, Faculty of ArtsandSciences, Ordu University, Ordu, 52000

ÖZET

Bu çalı mada (r, r^*) spacelike-timelike Bertrand e ri çiftinin Frenet çatıları arasındaki geçi ba ıntısı bulunarak, r^* e risinin te etler göstergesi ile binormaller göstergesinin, (C^*) sabit pol e risinin birer küresel involütleri oldu u gösterildi.

Anahtar Kelimeler: Lorentz Uzayı, Spacelike-Timelike Bertrand E ri Çifti, Küresel nvolütler

Mathematics Subject Classification (2000): 53A04, 53B30

SPHERICAL INVOLUTES OF THE FIXED POLE CURVE (C^*) ON THE SPACELIKE-TIMELIKE BERTRAND CURVE COUPLE

ABSTRACT

In this paper, it has been showed that every single indicatrix of tangents and indicatrix of binormals of the curve, Γ^* are spherical involutes of the fixed pole curve, (C^*) by finding a transition link of the spacelike-timelike Bertrand curve through Frenet frames.

*Keywords:*Lorentz Space, Spacelike - Timelike Bertrand Curve Couple, Spherical Involutes

Mathematics Subject Classification (2000) : 53A04, 53B30

ssenyurt@odu.edu.tr

1. PRELIMINARIES

For $\forall X, Y \in IR^3$ and let $g: IR^3 \times IR^3 \to IR$ be a function. In this case, the lorentzian metric is defined by

$$g(X,Y) = x_1y_1 + x_2y_2 - x_3y_3.$$

Here, the pair (IR^3, g) is called as Lorentzian space and denoted by IL^3 . For $\forall X \in IL^3$, the vector X is said to be spacelike, if g(X, X) > 0 or X = 0, timelike if g(X, X) < 0 and lightlike (or null) if g(X, X) = 0. The norm of the $X \in IL^3$ is given by, [2]

$$||X|| = \sqrt{|g(X,X)|}.$$

The Frenet formulas of timelike curve, $\Gamma: I \to IL^3$ are as followings;

$$T' = |N|, N' = |T - \ddagger B|, B' = \ddagger N, [3]$$

and the frenet instantaneous rotation vector is defined by, [5]

$$W = \ddagger T - |B, ||W|| = \sqrt{||^2 - \ddagger^2|}.$$

Here, $T \times N = -B$, $N \times B = T$, $B \times T = -N$. Let { be the angle between W and -B vectors and if W is taken as spacelike, then the unit Darboux vector can be stated by

$$\begin{cases} | = ||W|| \cosh\{ , \ddagger = ||W|| \sinh\{ , \\ C = \sinh\{T - \cosh\{B\} \end{cases}$$

$$(1)$$

51

Spherical Involutes Of The Fixed Pole Curve (C^*) On The Spacelike-Timelike Bertrand Curve Couple

And if W is taken as timelike, then it is described by

$$\begin{cases} | = ||W|| \sinh\{, \ddagger = ||W|| \cosh\{\\ C = \cosh\{T - \sinh\{B. \end{cases} \end{cases}$$

$$(2)$$

Th frenet formulas of spacelike with timelike binormal curve, $\Gamma : I \to IL^3$ are as followings:

$$T' = |N, N' = -|T + \ddagger B, B' = \ddagger N [3]$$
 (3)

And the frenet instantaneous rotation vector is defined by, [5]

$$W = \ddagger T - |B, \qquad ||W|| = \sqrt{|\ddagger^2 - |2|}.$$

Here, $T \times N = B$, $N \times B = -T$, $B \times T = -N$.Let { be the angle between W and -B vectors and if W is taken as spacelike, then the unit Darboux vector can be stated by

$$\begin{cases} | = ||W|| \cosh\{, \ddagger = ||W|| \sinh\{, \\ C = \sinh\{T - \cosh\{B\} \end{cases}$$

and if W is taken as timelike, then it is described by

$$\begin{cases} | = ||W|| \sinh\{, \ddagger = ||W|| \cosh\{, \\ C = \cosh\{T - \sinh\{B\}. \end{cases}$$

The vector product of X, $Y \in IL^3$ is calculated by, [1]

$$X \wedge Y = (x_3 y_2 - x_2 y_3, x_1 y_3 - x_3 y_1, x_1 y_2 - x_2 y_1).$$

The curvatures drawn by unit speednon-nullcurve, $\Gamma : I \to IL^3$ at the point $\Gamma(s)$ with the frenet vectors T, N, B and the unit Darboux vector, C over the Lorentzian unit sphere S_1^2 or Hyperbolic unit sphere H_0^2 are named respectively as indicatrix of tangents, indicatrix of principal normals, indicatrix of binormals and fixed pole curve. These curvatures are indicated in order as (T), (N), (B) and (C), [4].

Let $\Gamma: I \to IL^3$ be spacelike with timelike binormal curve and $\Gamma^*: I \to IL^3$ be timelike curve and if the tangent of Γ , $\Gamma(s)$ posses through the point $\Gamma^*(s)$ and $\langle T^*(s), T(s) \rangle = 0$, then the curve Γ^* is said to be the involute of Γ , [6].

2. SPHERICAL INVOLUTES OF THE FIXED POLE CURVE (C^*) on the spacelike-timelike bertrand curve couple

Definition 2.1: Let $\{T, N, B\}$ and $\{T^*, N^*, B^*\}$ be respectively the frenet frames of the spacelike with timelike binormal curve and timelike curve, $\Gamma : I \to IL^3$ and $\Gamma^* : I \to IL^3$ at points $\Gamma(s)$ and $\Gamma^*(s)$. If the principal normal vectors N and N^* are linearly dependent, then the pair (Γ, Γ^*) is said to be spacelike – timelike Bertrand curve couple.

Theorem 2.1: There is a connection between spacelike-timelike Bertrand curve couple and Frenet frames that are written as followings

$$\begin{cases} T^* = \sinh_{"} T - \cosh_{"} B \\ N^* = N \\ B^* = \cosh_{"} T - \sinh_{"} B \end{cases}$$

Here, the angle " is the angle between T and T^* .

Spherical Involutes Of The Fixed Pole Curve (C^*) On The Spacelike-Timelike Bertrand Curve Couple

Proof: By taking the derivative of $\Gamma^*(s) = \Gamma(s) + N(s)$ with respect to arclenght s and using the equation, we get

$$T^* \frac{ds^*}{ds} = T(1+) |) - \} \ddagger B.$$
 (4)

The iner products of the above equation with respect to T and B are respectively defined as

$$\begin{cases} \sinh_{\#} \frac{ds^*}{ds} = 1 - \} \\ \cosh_{\#} \frac{ds^*}{ds} = - \} \ddagger \end{cases}$$

and substituting these present equations in (4) we obtain

$$T^* = \sinh_{\mu} T - \cosh_{\mu} B.$$
 (5)

Here, by finding the derivative of (5) and using (3) we get

$$N^* = N$$
.

Firstly, we can write

$$B^* = \cosh_{"} T - \sinh_{"} B \tag{6}$$

By availing the equation $B^* = -(T^* \times N^*)$.

By the derivative of $\Gamma_{T^*}(s_{T^*}) = T^*(s)$ with respect to arclenght s_{T^*} , we get

$$T_{T^*} = \frac{dT^*}{ds} \cdot \frac{ds}{ds_{T^*}}.$$

After wards, by some algebraic manipulations and substituting (5) in T_{T^*} , the following result can be achieved

$$T_{T^*} = N . (7)$$

Similarly, by taking the derivative of $\Gamma_{B^*}(s_{B^*}) = B^*(s)$ with respect to arclenght s_{B^*} , we get

$$T_{B^*} = \frac{dB^*}{ds} \cdot \frac{ds}{ds_{B^*}}.$$

By using the equation (6), we write down

$$T_{R^*} = N . ag{8}$$

Lastly, by taking the derivative of $\Gamma_{C^*}(s_{C^*}) = C^*(s)$ with respect to arclenght s_{C^*} , we obtain

$$T_{C^*} = \frac{dC^*}{ds} \cdot \frac{ds}{ds_{C^*}}$$

If W^* is spacelike, then by considering (1) and with some algebraic operation we get

$$T_{C^*} = \cosh\{{}^*T^* - \sinh\{{}^*B^*$$
(9)

f W^* is timelike, then then by considering (2) and with some algebraic operation we get

$$T_{C^*} = \sinh\{{}^*T^* - \cosh\{{}^*B^*$$
(10)

Spherical Involutes Of The Fixed Pole Curve (C^*) On The Spacelike-Timelike Bertrand Curve Couple

Theorem 2.2: Let (r, r^*) be spacelike-timelike Bertrand curve couple. Tach of the indicatrix of tangents (T^*) and the indicatrix of binormals (B^*) of r^* curve is a spherical involute of the fixed pole curve (C^*) .

Proof: In order to show that (T^*) and (B^*) of the Γ^* curve is each a spherical involute of (C^*) , we need to prove the following statements $\langle \frac{dT^*}{ds}, \frac{dC^*}{ds} \rangle = 0$ and

$$\langle \frac{dB^*}{ds}, \frac{dC^*}{ds} \rangle = 0$$

If W^* is spacelike, by taking into account (7) and (9) we write down

$$\langle \frac{dT^*}{ds}, \frac{dC^*}{ds} \rangle = \langle N, \cosh\{ {}^*T^* - \sinh\{ {}^*B^* \rangle.$$

Next, by using (5) and (6) and doing required manipulations, the following result can be obtained

$$\langle \frac{dT^*}{ds}, \frac{dC^*}{ds} \rangle = 0.$$

Further more, by exploiting thee quations (5), (6), (8) and (9), we do the similar calculations to get

$$\langle \frac{dB^*}{ds}, \frac{dC^*}{ds} \rangle = 0$$
.

On the other hand, if W^* is timelike, we use (7) and (10) to reach

$$\langle \frac{dT^*}{ds}, \frac{dC^*}{ds} \rangle = \langle N, \sinh\{ {}^*T^* - \cosh\{ {}^*B^* \rangle.$$

Here, by substitution of (5) and (6) in the above the formula, we write

$$\langle \frac{dT^*}{ds}, \frac{dC^*}{ds} \rangle = 0.$$

Once again, when the given relations (5), (6), (8) and (10) are taken into consideration, we get

$$\langle \frac{dB^*}{ds}, \frac{dC^*}{ds} \rangle = 0.$$

3.REFERENCES

[1] Akutagawa, K. And Nishikawa S., The Gauss Map and Spacelike Surfaces with Prescribed Mean Curvature in Minkowski 3-space, Töhoko Math., J. 42, 67-82,1990.

[2]O'neill, B., Semi Riemann Geometry, Academic Press, New York, London, 468p., 1983.

[3] Woestijne, V.D.I., Minimal Surfaces of the 3-diemensional Minkowski space.

Proc. Congres "Geometrie differentielle et aplications" Avignon (30 May 1988), Wold Scientific Publishing. Singapore. 344-369, 1990.

[4]Hacısalio lu, H.H., Differential Geometry, nönü Univercity, Faculty of Arts and Sciences, Math. no.7, Malatya,1983.

[5] U urlu, H.H., On the Geometry of Timelike Surfaces, Commun. Fac. Sci. Ank. Series A1 V.46.pp. 211-223., 1997.

[6] Sabuncuo lu, A., "Differential Geometry", Nobel Press, Ankara, 2006.