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ABSTRACT

In this work, the Adomian decomposition method has been considered for solving
linear and non-linear parabolic and hyperbolic type partial differential equation
with initial conditions. The both of two type’s partial differential equations have
been applied for the considered method according to the functions of the initial
conditions. Then, it has been obtained that the solution is finite term series. It has
been taken into some examples to emphasize their results.
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ÖZET

Bu çalışmada, Adomian ayrıştırma yöntemi, başlangıç koşulları ile tanımlı,
doğrusal ve doğrusal olmayan, parabolik ve hiperbolik kısmi diferansiyel
denklemleri çözmek için dikkate alınmıştır. Ele alınan bu iki tip kısmi diferansiyel
denklemlere başlangıç koşullarının bağlı olduğu fonksiyonlarına göre dikkate
alınan yöntem uygulanmıştır. Daha sonra, bu yöntem uygulanarak oluşan sonlu
terimli serilere ait sonuçlar elde edilmiştir. Bu sonuçları vurgulamak için bazı
örneklere yer verilmiştir.

Anahtar Kelimeler: Parabolik tip kısmi diferansiyel denklemler, hiperbolik tip
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1. INTRODUCTION

When we want to obtain mathematical models of physical or engineering science,
generally we have linear or non-linear differential equations. To obtain analytical
solution of such differential equation is not so easy. They’re some methods to find
approximate solution of these kinds of equations. Recently, some of these are
differential transform [1-10], spectral [11-13], and Adomian methods [14-30].
In the 1980’s G. Adomian developed a new powerful method for solving linear and
non-linear functional equations of any kind. As a result, many authors were
interested in this method for solving problems whose mathematical models involve
algebraic, integral, integro-differential, difference, ordinary and partial differential
equation and systems.
This paper is concerned with Adomian decomposition method for solving parabolic
and hyperbolic type partial differential equation, linear and non-linear initial value
problem.

Now, we give some basic idea of the Adomian decomposition method:

1.THE ADOMIAN DECOMPOSITION METHOD (ADM)

The main idea of the ADM when applied to a general non-linear partial differential
equation is in the form

L u(x,t) + R u(x,t) + N u(x,t) = h(x,t) (1)
For simplicity, after this point, drop the notation and just call u = u(x,t).
The linear terms are decomposed into L + R, while the non-linear terms are
represented by Nu. L is taken as the highest order derivative and R is the remainder
term of the linear operator, L-1 is inverse operator of L, and is defined by a definite
integration from 0 to x or from 0 to t, i.e.,
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If L is second-order operator, inverse operator L-1 is a two-fold indefinite integral,
then we have
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Operating on both sides of Eq.(1) with two fold inverse operator L-1 comes into

L-1 L u =  L-1 h(x,t) - L-1 R u - L-1 N u (4)
And, then we get the following equations;
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The decomposition method consists in searching the solution of Eqs. (5) or (6) as a
infinite series:
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The non-linear operator, N u, is also decomposed in a infinite series form:
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where An are polynomials depending on u0, u1, …, un and named Adomian
polynomials. They are obtained by the following formula [15]:
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where a is a parameter introduced for convenience. Substituting Eqs. (7) and (8)
into Eq.(6), then we get following equations.
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From  Eq.(10), we obtain the following recurrent scheme:
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and consequently,
u1 = - L-1 R u0 – L-1 A0
u2 = - L-1 R u1 – L-1 A1 (12)


un+1 = - L-1 R un – L-1 An , n  0

where An are Adomian polynomials that gives are obtained from the Eq.(9)
A0 = F(u0)
A1 = u1 F(u0)
A2 = u2 F (u0) + (u1)2 F(u0) / 2 (13)
A3 = u3 F (u0) + u1 u2 F(u0) + (u1)3 F (u0) / 6


Application of Adomian method to the differential equation allows us to find an
approximated solution as in Eq. (7). By approximated solution we mean a solution
based on a truncated series involving finite number of terms. The convergency of
this method is proposed by Cherruault and his friends [31, 32].
Now, we give the proposed Adomian method (PADM):
The basic principles of the ADM depend on selecting the zeroth component u0(x,t).
Generally u0(x,t) is defined by a function which is obtained initial conditions and
non-homogeneous term of differential equation as in Eq.(11). The components u0,
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u1, u2 ,… are obtained recursively. So the series solution u(x,t) is defined by Eq. (7)
is determined.
The main idea of the proposed Adomian decomposition method (PADM) puts
forward that in Eq.(11) the function u0(x,t) is decomposed into two parts (where
f0(x,t) is obtained from initial condition and f1.2(x,t) is obtained from
inhomogeneous parts), such that

u0(x,t)= f0(x,t) + f1,2(x,t) (14)
In this proposed method, only the initial condition part f0(x,t) be assigned to the
zeroth components of u0(x,t) whereas the remaining part f1,2(x,t) be combined with
the other terms given as in Eq. (10) to determine u1(x,t). In this assumption, we
rearranged Eqs. (11)-(12), and we get the following recurrent scheme for the
PADM,

u0 = f0(x,t)
u1 = f1,2 (x,t) - L-1 R u0 – L-1 A0
u2 = - L-1 R u1 – L-1 A1 (15)


un+1 = - L-1 R un – L-1 An , n  0

When the Eq.(12) and Eq.(15) are compared, it is shown that, there are some
differences to choose u0. In this meaning, the zeroth component u0 is defined only
by f0(x,t) a part of u0(x,t). The remaining part f1,2(x,t) of u0(x,t) is added to the
definition of the component u1 in Eq.(12). Applying this proposed method to the
problem, generally; it is shown that only two iterations are sufficient to determine
the exact solution for most of the examined cases, which is given below. If more
than two iterations are needed, then non-linear term Nu(x,t) should be calculated
for all types of non-linear form. With the choosing of f0(x,t) for u0 to include  on
making easy the recurrent relation, and speeds up the convergence of the solution.
In this work, the achievement of the PADM relates to special choice of the parts
f0(x,t) and f1,2(x,t). Here, we have been able to establish some criterion to judge
what forms of f0(x,t) and f1,2(x,t) can be used to advantage of required speed. It
appears that these rules have some specific bases, which are given as in below.
In the following section, after a brief introduction to partial differential equations,
and then application of the proposed decomposition method is shown to parabolic
and hyperbolic type partial differential equations.

3. PARTIAL DIFFERENTIAL EQUATIONS (PDEs)
The mathematical formulation of the most problem in science involving rates of
change with respect to two or more independent variables, usually representing
time length or angle, leads either to a partial differential equation or to a set of such
equations. Special cases of two-dimensional second-order equation
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(16)

where A, B, C, D, E, F and G may be functions of the independent variables x and
y and of the dependent variable U, occur more frequently than any other because
they are often the mathematical form of one of the conservation principles of
physics.
This equation is said to be elliptic when B2-4AC<0, parabolic when B2-4AC=0,
and hyperbolic when B2-4AC>0.
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Parabolic and hyperbolic equations: If the problems involving time t as one
independent variable leads usually to parabolic or hyperbolic equations.
The simplest parabolic equation derives from the theory of heat conduction. Heat
may be transferred by conduction, convection, and radiation. In conduction the heat
(molecular motion or vibration) is transferred locally by impacts of molecules with
adjacent molecules. With convection, heat is carried from one region to another by
a current flow, and heat radiation occurs via infrared electromagnetic waves. In
homogeneous, solid, heat-conducting material, the temperature U(x, t), at the point
x at time t, very nearly obeys the heat equation Ut = k Uxx where k is a positive
constant which measures the heat conductivity of the material. The function U can
also have the interpretation of being the concentration of a chemical or dye in a
liquid without currents, and hence the heat equation is often called the diffusion
equation, and its solution gives, for example, the temperature U at a distance x
units of length from one end of a thermally insulated bar after t seconds of heat
conduction. In such problem the temperatures at the ends of a bar of length -l- are
often known for all time. In other words, the boundary conditions are known. It is
also usual for the temperature distribution along the bar to be known at some
particular instant. This instant is usually taken as zero time and the temperature
distribution is called initial condition. The solution gives U for values of x between
0 and -l- and values of t from zero to infinity. Hence the area of integration S in the
x-t plane, is the infinite area bounded by the x-axis and the parallel lines x = 0, x =
l. this is described as an open area because the boundary curves marked C do not
constitute a closed boundary in any finite region of the x-t plane.
The simplest hyperbolic equations generally originate from vibration problems, or
from problems where discontinuities can persist in time, such as with shock waves,
across which there are discontinuities in speed, pressure and density. The simplest
equation is the one-dimensional wave equation Utt = c2 Uxx giving, for example, the
transverse displacement U at a distance x from one end of a vibrating string of the
length l after a time t. as the values of U at the ends of the string are usually known
for all time (the boundary conditions) and the shape and velocity of the string are
prescribed at zero time (the initial conditions), that the solution is similar to that of
parabolic equation in that the calculation of U for given x and t  (0  x  l), entails
integration of the equation over the open area S bounded by the open curve C.
Although hyperbolic equations can be solved numerically by finite difference
methods, those involving only two independent variables, x and t say, are often
deal with by the method of characteristics, especially if the initial conditions and/or
boundary conditions involve discontinuities. This method finds special curves in
the x-t plane, called characteristic curves, along which the solution of the partial
differential equation is reduced to the integration of an ordinary differential
equation. This ordinary differential equation is generally integrated by numerical
methods.
After this section, PADM is considered to solve some typical problems according
to the initial conditions.

3.1. The Proposed Adomian Method For Parabolic Partial Differential
Equations

The ADM, when applied to the first-order parabolic differential equation is
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ut = α ux + N u + h(x, t) (17.a)
with initial condition

u(x,0) = f(x) (17.b)
where α is a scalar, h(x,t) non-homogeneous part of differential equation while the
non-linear terms are presented by N u, L-1 is the inverse operator form of L which

is defined 
t

0

1 dt(*)(*)L , we get

u(x,t) = u(x,0) + L-1{ α ux + N u + h(x,t)} (18)
if f(x) is a polynomial function, then

u0 = f(x) + { the parts of coming from L-1{h(x,t)} that are considering the
degree of non-linear terms} (19)

is choosing and finite term series solutions are obtained. The ADM, when applied
to a general second-order non-linear parabolic equation with initial conditions are
in the form as

D.E.   ut = α uxx + N u + h(x, t) (20a)
I.C.     u(0,t) = f(t) ux(0,t) = g(t) (20b)

where α, h(x, t), and N u are the same as stated above. L is taken as the highest
order derivative, L-1 as regard as the inverse operator of L and is defined as two-

fold integration operator from 0 to x, i.e.,  
x

0

x

0

1 dxdx(*)(*)L , we get

L-1L u(x,t) = u(x,t)- u(0,t)-xux(0,t) + L-1{ h(x,t) + N u} (21)
In Eq. (21) , if only Nu is equal to zero, means linear parabolic equation, where f(t)
and g(t) are;
 a polynomial functions or sine and cosine from trigonometric functions,

then
u0 = f(t) + x g(t) + { the parts of coming from L-1{h(x,t)} which is
including time t dependent variable part}

 exponential functions, then u0 = f(t) + x g(t) is choosing and the finite term
series solution is obtained.

And also, if Nu is different from zero, means non-linear, where f(t) and g(t) are;
 polynomial, logarithmic, exponential sine and cosine trigonometric

functions then        u0 = f(t) + x g(t) is choosing,
 if both f(t) and g(t) are zero and h(x, t) is trigonometric function sine or

cosine then     u0 = { the parts of coming from L-1{h(x, t)} that are
considering the degree of non-linear terms} is choosing

and finite term series solutions are obtained.

3.2 The Proposed Adomian Method For Hyperbolic Partial Differential
Equations

The first-order hyperbolic type initial boundary value problem is interested in two
parts: First part, if the problem for the continuous conditions is defined as follows

D.E. .ut + α ux = 0 (22)
I.C. u(x,0) = f(x) (23)
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where α is a scalar. By applying the proposed ADM to Eq.(22), where


t

0

1 dt(*)(*)L , we get

u(x,t) = u(x,0) + L-1{-α ux } = f(x) +  L-1{-α ux } (24)
in the selection of u0(x,t), if f(x) is a polynomial function, then we take u0 = f(x)
and              u1 = + L-1{-α ux }  as a result of this choosing we obtain finite term
series because of      u1(x,t) = 0. So, the solution of the problem is obtained.
The second part, if the problem (22) for the discontinuous initial condition which is
defined as
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and by applying the PADM to the problem, it is obtained from Eq. (24) under the
condition (25) is
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Choosing u0(x, t), if f1(x) and f2(x) are polynomial function, we take u0 = fi(x) (i =
1, 2), hence we obtain finite term series which is named the solution function.
If the second-order partial differential equation is defined as in below

D.E. uxx + P(x) uxy + Q(x) uyy = 0 (27.a)
I.C. u(x,0) = f(x) and uy(x,0) =  g(x) (27.b)

by applying PADM, where  
y

0

y

0

1 dydy(*)(*)L , are obtained

u(x,y) = f(x) + y g(x) + L-1  
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 xyxx u)x(Pu
)x(Q

1
(28)

if f(x) and g(x) are polynomial function, we select u0 = f(x) + y g(x), then we get
infinite term solution like u(x, y) = u0(x, y).
Similarly Eq. (27.a); if the problem second-order inhomogeneous equation as

D.E. uxy = h(x, y) (29.a)
I.C. u(x,0) = f(y) and u(0,y) = g(x) (29.b)

applying the PADM,

 )y,x(hLdx
x

)0,x(u)y,0(u)y,x(u 1
x
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



  (30)

when f(x) and g(x) are polynomials, then we have finite term series solution where
taking u0 = f(y) + g(x).
Second order general hyperbolic type initial value problem is determined as

D.E. utt = α2 uxx + N u + h(x,t) (31.a)
I.C. u(x,0) = f(x) and ut (x,0) = g(x) (31.b)

by using Adomian method, we have
u(x,t) = u(x,0) + tut(x,0) + L-1{ α2 uxx + h(x,t) + N u} (32)

where the inverse operator  
t

0

t

0

1 dtdt(*)(*)L . In Eq. (31), first, if both h(x, t)

and Nu is equal to zero, it means that linear homogeneous initial value problem,
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where f(x) and g(x) are the polynomial functions, then u0 = f(x) + t g(x) is choosing
and the finite term series solution is obtained. Second, in Eq. (31), if only Nu is
equal zero, means linear and non-homogeneous initial value problem, where f(x)
and g(x) are polynomial functions, then u0 = f(x) + tg(x) + {the parts of coming
from L-1{h(x, t)} which is including x independent variables parts} is choosing and
the solution is obtained as finite term series. And, finally, if both h(x, t) and Nu are
different from zero, where f(x) and g(x) are polynomial, then  u0 = f(x) + t g(x) +
{the parts of coming from L-1{h(x, t)}that are considering the degree of non-linear
terms} is choosing and finite term series solutions are obtained.
The first and the second-order parabolic and hyperbolic type partial differential
equations are applied to the considering method. For both types, examples are
taken into emphasize to obtain results and these examples are presented in Table-1
and Table-2, respectively.

4. CONCLUSION

In this work, different from the other authors, Adomian decomposition method is
investigated according to choose of u0 for the parabolic and hyperbolic type initial
value problems, with the considering method is applied some problems it is shown
that the convergency speed of the proposed Adomian Decomposition series
solution is quite rapid. Because of this rapid significantly depends on the proper
choice of f0 and f1,2. For this situation, we gave some clues to judge which parts are
selecting u0. So, in many cases, the exact solutions were obtained by determining
two components u0 and u1 only without using Adomian polynomials for the non-
linear terms. Applying proposed method is obtained finite terms series by the
solutions are shown that how rapid and simple integral used in this method.
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