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ÖZET
1918 yılında H. Weyl uzay-zaman üzerindeki eğrilik ölçüsü için Riemann geometrisini
genelleyerek bir birleşik alan teorisi formüle edip sundu. Klasik alan teorisi geleneksel
Hamilton dinamiklerinin dilini kullanır. Bir flat manifold yerel mesafeler açısından
Öklid uzay gibi görünür. Bir tam Flat manifoldu evrensel örtüsü Öklid alandır. Bu
makale, flat manifoldu üzerindeki Weyl-Hamilton denklemleri ile ilgilenir. Bu
çalışmanın sonucunda, uzayda nesnelerin hareketi için elde edilecek kısmi diferansiyel
denklemler ve bu denklemlerin kapalı çözümleri sembolik hesaplama programı
kullanılarak yapıldı. Ayrıca, matematiksel ve fiziksel sonuçlar ortaya çıkan denklem
için sunulmaktadır.

Anahtar Kelimeler: : Weyl Manifold, Flat Manifold, Mekanik Sistem, Dinamik
Proğramlama, Hamilton Formalizmi.

WEYL-HAMILTON EQUATIONS ON FLAT MANIFOLD

ABSTRACT

In 1918 H. Weyl introduced a generalization of Riemannian geometry in his attempt to
formulate a unified field theory for a measure of the curvature on space-time. Classical
field theory utilizes traditionally the language of Hamiltonian dynamics. A flat manifold
is locally looks like Euclidean space in terms of distances. The universal cover of a
complete flat manifold is Euclidean space. This paper deals with Weyl-Hamilton
equations on flat manifold. As a result of this study, partial differential equations have
be obtained for movement of objects in space and closed solutions of these equations
have be made using symbolic computational program. Also, the mathematical and
physical results are presented for the resulting equations.

Keywords: Weyl Manifold, Flat Manifold, Mechanical System, Dynamic Equation,
Dynamic Programming, Hamiltonian Formalism

1. INTRODUCTION

Geodesics always have attracted the attention of researchers. It is well known a geodesic
is the shortest route between two points. Geodesics can be found with the help of the
Hamiltonian equations. It is showed that Hamiltonian mechanics are very important
tools for analytical mechanics. They have a simple method to describe the model for
mechanical systems. The models about mechanical systems are given as follows. In this
article, Weyl structures on flat manifolds will be transferred to the mechanical system.
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Thus the time-dependent Weyl-Hamilton partial equations of motion of the dynamic
systems have be found and an example will be given on the solution of the equations.
Now follows, we let some work on this subject.

Olszak investigated paraquaternionic analogy of these ideas applied to conformally flat
almost pseudo-Kählerian as well as almost para-Kählerian manifolds [1]. Schwartz
considered asymptotically flat Riemannian manifolds with non-negative scalar
curvature that are conformal to Rⁿ∖Ω, n≥3, and such that their boundary is a minimal
hypersurface [2]. Ge et al. submitted that the mass of an asymptotically flat n-manifold
is a geometric invariant [3]. Gonzalez explored complete, locally conformally flat
metrics defined on a domain Ω⊂Sⁿ [4]. Upadhyay indicated bounding question for
almost at manifolds by looking at the equivalent description of them as
infranilmanifolds Γ∖L⋊G/G. He showed that infranilmanifolds Γ∖L⋊G/G bound if L is
a 2-step nilpotent group [5]. Kapovich obtained an existence theorem for flat conformal
structures on finite-sheeted coverings over a wide class of Haken manifolds [6]. Zhu
obtained a classification of complete locally conformally flat manifolds of nonnegative
Ricci curvature [7]. Kulkarni revealed some new examples of conformally flat
manifolds, as a step toward a classification of such manifolds up to conformal
equivalence [8]. Dotti and Miatello purposed the real cohomology ring of low
dimensional compact flat manifolds endowed with one of these special structures [9].
Szczepanski revealed that a list of six dimensional at Kähler manifolds and he submitted
an example of eight dimensional at Kähler manifold with finite group [10]. Akbulut and
Kalafat studied infinite families of non-simply connected locally conformally flat (LCF)
4-manifolds realizing rich topological types [11]. Abood proved that if M is flat
manifold with flat Bochner tensor, then M is an Einstein manifold with a cosmological
constant [12]. Lutowski showed an example of a Bieberbach group Γ for which Out (Γ)
is a cyclic group of order 3. He also calculated the outer automorphism group of a direct
product of n copies of a Bieberbach group with trivial center [13]. Kasap and Tekkoyun
obtained Lagrangian and Hamiltonian formalism for mechanical systems using
para/pseudo-Kähler manifolds, representing an interesting multidisciplinary field of
research [14]. Kasap found that the Weyl-Euler-Lagrange and Weyl-Hamilton equations
on 2n

nR which is a model of tangent manifolds of constant W-sectional curvature [15].

2. PRELIMINARIES

Throughout this study, all the manifolds and geometric objects are C∞ and the Einstein
summation convention (∑ajxj= ajxj) is in use. Also, A, F(TM), χ(TM) and Λ¹(TM)
denote the set of para-complex numbers, the set of complex functions on TM, the set of
complex vector fields on TM and the set of complex 1-forms on TM, respectively.

3. RIEMANN MANIFOLD
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Definition 1: Tangent space given any point p∈M, it has a tangent space TpM isometric
to Rⁿ. If we have a metric (inner-product) in this space <,>p:TpM×TpM↦R defined on
every point p∈M, we thus call M Riemann Manifold.

4. CONFORMAL GEOMETRY

A conformal map is a function which preserves angles. Conformal maps can be defined
between domains in higher dimensional Euclidean spaces and more generally on a
(semi) Riemann manifold. Conformal geometry is the study of the set of angle-
preserving (conformal) transformations on a space. In two real dimensions, conformal
geometry is precisely the geometry of Riemann surfaces. In more than two dimensions,
conformal geometry may refer either to the study of conformal transformations of flat
spaces, such as Euclidean spaces or spheres, to the study of conformal manifolds which
are Riemann or pseudo-Riemann manifolds with a class of metrics defined up to scale.
A conformal manifold is a differentiable manifold equipped with an equivalence class
of (pseudo) Riemann metric tensors, in which two metrics g′ and g are equivalent if and
only if g′=Ψ²g where Ψ>0 is a smooth positive function and an equivalence class of
such metrics is known as a conformal metric or conformal class [16].

5. CONFORMALLY FLAT MANIFOLD

Definition 2: A manifold with a Riemannian metric, it has zero curvature, is a flat
manifold.

A flat manifold is one such that locally looks like Euclidean space in terms of distances
and angles, e.g. the interior angles of a triangle add up to 180°. The basic example is

Euclidean space with the usual metric 



3

1

22ds
i

idx . Indeed any point on a flat

manifold has a neighborhood isometric to a neighborhood in Euclidean space. A flat
manifold is locally Euclidean in terms of distances and angles, as well as merely
topologically locally Euclidean, as all manifolds are. The simplest nontrivial examples
occur as surfaces in four dimensional spaces. For example, the flat torus is a flat
manifold. It is the image of f(x,y)=(cosx,sinx,cosy,siny). A theorem due to Bieberbach
says that all compact flat manifolds are tori. More generally, the universal cover of a
complete flat manifold is Euclidean space. The integrability of the almost complex
structure implies a relation in the curvature. Let {xi,yi, i=1,2,3} be coordinates on R⁶
with the standard flat metric 




3

1

222 )(ds
i

ii dydx [17].

Definition 3: A (pseudo) Riemannian manifold is conformally flat manifold if each
point has a neighborhood that can be mapped to flat space by a conformal
transformation.

Let (M,g) be a pseudo-Riemannian manifold. Then (M,g) is conformally flat if for each
point x in M, there exists a neighborhood U of x and a smooth function f defined on U
such that (U,e2fg) is flat (i.e. the curvature of e2fg vanishes on U). The function f need
not be defined on all of M. Some authors use locally conformally flat to describe the
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above notion and reserve conformally flat for the case in which the function f is defined
on all of M [18].

6. THE THEORY OF J-HOLOMORPHIC CURVES

A pseudo J-holomorphic curve is a smooth map from a Riemannian surface into an
almost complex manifold such that satisfies the Cauchy--Riemann equation. Pseudo-
holomorphic curves have since revolutionized the study of symplectic manifolds. The
theory of J-holomorphic curves is one of the new techniques which have recently
revolutionized the study of symplectic geometry and making it possible to study the
global structure of symplectic manifolds. Aforementioned the methods are also of
interest in the study of Kähler manifolds, since often when one studies properties of
holomorphic curves in such manifolds it is necessary to perturb the complex structure to
be generic. This effect of this is to ensure that one is looking at persistent rather than
accidental features of these curves. But, the perturbed structure may no longer be
integrable, and so again one is led to the study of curves such that it’s are holomorphic
with respect to some non-integrable almost complex structure J [19].

7. WEYL GEOMETRY

A conformal transformation for use in curved lengths has been revealed. The linear
distance between two points can be found easily by Riemann metric. Many scientists
have used the Riemann metric. Einstein was one of the first studies in this field. Einstein
discovered such that the Riemannian geometry and successfully used it to describe
General Relativity in the 1910 that is actually a classical theory for gravitation. But, the
universe is really completely not like Riemannian geometry. Each path between two
points is not always linear. Also, orbits of move objects may change during movement.
So, each two points in space may not be linear geodesic. Therefore, new metric is
needed for non-linear distances like spherical surface. Then, a method is required for
converting nonlinear distance to linear distance. Weyl introduced a metric with a
conformal transformation in 1918. The basic concepts related to the topic are listed
below [20,21].

Definition 4: Two Riemann metrics g₁ and g₂ on M are said to be conformally
equivalent iff there exists a smooth function f: M→R with

efg₁=g₂ (1)

In this case: g₁∼g₂.
Definition 5: Let M an n-dimensional smooth manifold. A pair (M,G), a conformal
structure on M is an equivalence class G of Riemann metrics on M, is called a
conformal structure.

Theorem 1: Let D be a connection on M and g∈G a fixed metric. D is compatible with
(M,G)⇔ there exists a 1-form ω with DXg+ω(X)g=0.
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Definition 6: A compatible torsion-free connection is called a Weyl connection. The
triple (M,G,D) is a Weyl structure.

Theorem 2: To each metric g∈G and 1-form ω, there corresponds a unique Weyl
connection D satisfying DXg+ω(X)g=0.

Definition 7: Define a function F:{1-forms on M}×G→{Weyl connections} by
F(g,ω)=D, where D is the connection guaranteed by Theorem 2. We say that D
corresponds to (g,ω).

Proposition 1: 1. F is surjective. 2. F(g,ω)=F(efg,η) iff η=ω-df. So

F(efg)=F(g)-df. (2)

Where, G is a conformal structure. Note that a Riemann metric g and a one-form ω
determine a Weyl structure, namely F: G→∧¹M where G is the equivalence class of g
and F(efg)=ω-df.

Proof: Suppose F(g,ω)=F(efg,η)=D. We have

DX(efg)+η(X)efg=X(ef)g+efDXg+η(X)efg=df(X)efg+efDXg +η(X)efg=0. (3)

Therefore DXg =-(df(X)+η(X)). On the other hand DXg+ω(X)g=0. Therefore ω=η+df.
Set D=F(g,ω). To show D=F(efg,η) and DX(efg)+η(X) efg =0. To calculate

DX(efg)+η(X)efg=efdf(X)g+efDXg+(ω(X)-df(X))efg=ef(DXg +ω(X)g)=0. (4)

Theorem 3: A connection on the metric bundle ω of a conformal manifold M naturally
induces a map F: G→∧¹M and (2), and conversely. Parallel translation of points in ω by
the connection is the same as their translation by F.

Theorem 4: Let m≥6. If (M,g,∇,W) is a Kähler--Weyl structure, then the associated
Weyl structure is trivial, i.e. there is a conformally equivalent metric ğ=e2fg so that
(M,ğ,W) is Kähler and so that ∇=∇ğ [22,23].

8. WEYL CURVATURE TENSOR

Definition 8: Weyl curvature tensor is a measure of the curvature of space-time or a
pseudo-Riemannian manifold. Like the Riemannian curvature tensor, the Weyl tensor
expresses the tidal force that a body feels when moving along a geodesic.

The Weyl tensor differs from the Riemannian curvature tensor in that it does not convey
information on how the volume of the body changes, but rather only how the shape of
the body is distorted by the tidal force. The Ricci curvature, or trace component of the
Riemannian tensor contains precisely the information about how volumes change in the
presence of tidal forces, so the Weyl tensor is the traceless component of the
Riemannian tensor. It is a tensor that has the same symmetries as the Riemannian tensor
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with the extra condition that it be trace-free: metric contraction on any pair of indices
yields zero. In general relativity, the Weyl curvature is the only part of the curvature
that exists in free space a solution of the suction Einstein equation-and it governs the
propagation of gravitational radiation through regions of space devoid of matter. The
Weyl curvature is the only component of curvature for Ricci-flat manifolds and always
governs the characteristics of the field equations of an Einstein manifold. In dimensions
2 and 3 the Weyl curvature tensor vanishes identically. In dimensions≥4, the Weyl
curvature is generally nonzero. If the Weyl tensor vanishes in dimension≥4, then the
metric is locally conformally flat: there exists a local coordinate system in which the
metric tensor is proportional to a constant tensor. This fact was a key component of
Nordstrom’s theory of gravitation, which was a precursor of general relativity [25].

9. ALMOST COMPLEX MANIFOLD

Definition 9: Let M be a smooth manifold of real dimension 2n. We say that a smooth
atlas A of M is holomorphic if for any two coordinate charts mCUUz  ': and

mCVVw  ': in A, the coordinate transition map z∘w⁻¹ is holomorphic. Any
holomorphic atlas uniquely determines a maximal holomorphic atlas, and a maximal
holomorphic atlas is called a complex structure for M. We say that M is a complex
manifold of complex dimension n if M comes equipped with a holomorphic atlas. Any
coordinate chart of the corresponding complex structure will be called a holomorphic
coordinate chart of M. A Riemann surface or complex curve is a complex manifold of
complex dimension 1.

Definition 10: Let M be a differentiable manifold of dimension 2n, and suppose J is a
differentiable vector bundle isomorphism J: TM→TM such that Jx: TxM→
TxM is a (almost) complex structure for TxM, i.e. J²=-I where I is the identity (unit)
operator on V. Then J is called an almost complex structure for the differentiable
manifold M. A manifold with a fixed (almost) complex structure is called an (almost)
complex manifold. Where J²=J∘J, and I is the identity operator on V.

A celebrated theorem of Newlander and Nirenberg says that an almost (para) complex
structure is a (para) complex structure if and only if its Nijenhuis tensor or torsion
vanishes [26].

Theorem 5: The almost (para)complex structure J on M is integrable if and only if the
tensor NJ vanishes identically, where NJ is defined on two vector fields X and Y by

NJ[X,Y]=[JX,JY]-J[X,JY]-J[JX,Y]-[X,Y]. (5)

The tensor (2,1) is called the Nijenhuis tensor (5). We say that J is torsion free if NJ=0.
Complex Nijenhuis tensor of an almost complex manifold (M,J) is given by (5).

10. WEYL HOLOMORPHIC STRUCTURES
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It vanishes if and only if J is an integrable almost complex structure, i.e. given any point
P∈M, there exist local coordinates (xi,yi), i=1,2,3 centered at P and f=f(xi,yi), following
structures taken from;

J∂x₁=cos(x₃)∂y₁+sin(x₃)∂y₂, J∂x₂=-sin(x₃)∂y₁+cos(x₃)∂y₂, J∂x₃=∂y₃,
J∂y₁=-cos(x₃)∂x₁+sin(x₃)∂x₂, J∂y₂=-sin(x₃)∂x₁-cos(x₃)∂x₂, J∂y₃=-∂x₃.

(6)

The above structures (6) have been taken from [27]. Here, instead of J conformal
structure representing the structure of W will be used and ∂xi=dxi, ∂yi=dyi.

Proposition 2: W* is the dual of the W. If we extend the equation (6) by means of
conformal structure [18,28] and Theorem 4, we can give equations as follows:

1. W*(dx₁)=e2fcos(x₃)dy₁+e2fsin(x₃)dy₂,
2. W*(dx₂)=-e2fsin(x₃)dy₁+e2fcos(x₃)dy₂,
3. W* (dx₃)=e2fdy₃, (7)

4. W*(dy₁)=-e-2fcos(x₃)dx₁+e-2fsin(x₃)dx₂,
5. W* (dy₂)=-e-2fsin(x₃)dx₁-e-2fcos(x₃)dx₂,
6. W*(dy₃)=-e-2fdx₃,

such that are base structures for Hamilton equations. Where, W is a conformal complex
structure to be similar to an integrable almost complex J given in (6). From now on, we
continue our studies thinking of the (TM,g,∇,W*). Now, W* denote the structure of the
holomorphic property:

W*2(dx₁)=W*∘W*(dx₁)=e2fcos(x₃)W*(dx₁)+e2fsin(x₃) W*(dy₂)
=e2fcos(x₃)[-e-2fcos(x₃)dx₁+e-2fsin(x₃)dx₂]+e2fsin(x₃)[-e-2fsin(x₃)dx₁

-e-2fcos(x₃)dx₂]
=-cos²(x₃)dx₁+cos(x₃)sin(x₃)dx₂-sin²(x₃)dx₁-sin(x₃)cos(x₃)dx₂

=-[cos²(x₃)+sin²(x₃)]dx₁=-dx₁,                                                    (8)

and similar manner it is shown that

W*2(dxi)=-dxi, W*2(dyi)=-dyi,   i=1,2,3. (9)
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As can be seen from (8) and (9) W*2=-I are the complex structures.

11. HAMILTONIAN SYSTEM

Definition 11: Let M is the base manifold of dimension n and its cotangent manifold
T*M. By a symplectic form we mean a 2-form Φ on T*M. Let (T*M,Φ) be a symplectic
manifold, there is a unique vector field XH on T*M and H: T*M→ℝ is called as
Hamiltonian Function (H=T+V, T is the kinetic energy and V is the potential energy)
such that Hamiltonian Dynamical Equation is determined by

.
HXi dH  (10)

We can say that XH is locally Hamiltonian vector field. Φ is closed and also shows the
canonical symplectic form so that Φ=-dΩ, Ω=J*(ω), J* a dual of J, ω a 1-form on T*M.
The triple (T*M,Φ,XH) is named Hamiltonian System which is defined on the cotangent
bundle T*M. From the local expression for XH we see that (qi(t),pi(t)) is an integral
curve of XH if Hamilton's Equations is expressed as follows [29,30].

qi=(∂H)/(∂pi) , pi =-(∂H)/(∂qi). (11)

12. WEYL-HAMILTON EQUATIONS

Now, we will present Hamilton equations and Hamiltonian mechanical systems for
quantum and classical mechanics constructed on flat manifold. Let (T*M,W*) be on flat
manifold. Suppose that the complex structures, a Liouville form and a 1-form on flat
manifold are shown by W*, Ω and ω, respectively. Consider a 1-form ω such that

ω=(1/2)[x₁dx₁+x₂dx₂+x₃dx₃-y₁dy₁-y₂dy₂-y₃dy₃]. (12)

Then, we obtain the Liouville form as follows:

Ω=-W*(ω)=-(1/2)[x₁W*(dx₁)+x₂W*(dx₂)+x₃W*(dx₃)-y₁W*(dy₁)-y₂W*(dy₂)
-y₃W*(dy₃)]

=-(1/2)[x₁(e2fcos(x₃)dy₁+e2fsin(x₃)dy₂)+x₂(-e2fsin(x₃)dy₁+e2fcos(x₃)dy₂)+x₃e2fdy₃
+y₁(e-2fcos(x₃)dx₁-e-2fsin(x₃)dx₂)+y₂(e-2fsin(x₃)dx₁+e-2fcos(x₃)dx₂)+y₃e-2fdx₃].

(13)

It is well known that if Φ is a closed on flat manifold, then Φ is also a symplectic
structure on (T*M,W*). Therefore the 2-form Φ=-dΩ indicates the canonical symplectic
form and derived from the 1-form Ω to find to mechanical equations. Then the 2-form Φ
is calculated as below:
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Φ=d(Ω)

=(1/2)[e2fcos(x₃)dy₁∧dx₁+e2fsin(x₃)dy₂∧dx₁+x₁2((∂f)/(∂x₁))e2fcos(x₃)dy₁∧dx₁
+x₁2((∂f)/(∂x₁))e2fsin(x₃)dy₂∧dx₁-e2fsin(x₃)dy₁∧dx₂+e2fcos(x₃)dy₂∧dx₂
-x₂2((∂f)/(∂x₂))e2fsin(x₃)dy₁∧dx₂+x₂2((∂f)/(∂x₂))e2fcos(x₃)dy₂∧dx₂
+x₁2((∂f)/(∂x₃))e2fcos(x₃)dy₁∧dx₃+x₁2((∂f)/(∂x₃))e2fsin(x₃)dy₂∧dx₃
-x₁e2fsin(x₃)dy₁∧dx₃+x₁e2fcos(x₃)dy₂∧dx₃-x₂2((∂f)/(∂x₃))e2fsin(x₃)dx₃∧dy₁
+x₂2((∂f)/(∂x₃))e2fcos(x₃)dy₂∧dx₃-x₂e2fcos(x₃)dy₁∧dx₃-x₂e2fsin(x₃)dy₂∧dx₃
+e2fdy₃∧dx₃+x₃2((∂f)/(∂x₃))e2fdy₃∧dx₃-2y₁((∂f)/(∂x₃))e-2fcos(x₃)dx₁∧dx₃
+2y₁((∂f)/(∂x₃))e-2fsin(x₃)dx₂∧dx₃-y₁e-2fsin(x₃)dx₁∧dx₃-y₁e-2fcos(x₃)dx₂∧dx₃
-y₂2((∂f)/(∂x₃))e-2fsin(x₃)dx₁∧dx₃-y₂2((∂f)/(∂x₃))e-2fcos(x₃)dx₂∧dx₃
+y₂e-2fcos(x₃)dx₁∧dx₃-y₂e-2fsin(x₃)dx₂∧dx₃+e-2fcos(x₃)dx₁∧dy₁-e-2fsin(x₃)dx₂∧dy₁
-y₁2((∂f)/(∂y₁))e-2fcos(x₃)dx₁∧dy₁+y₁2((∂f)/(∂y₁))e-2fsin(x₃)dx₂∧dy₁
+e-2fsin(x₃)dx₁∧dy₂+e-2fcos(x₃)dx₂∧dy₂-y₂2((∂f)/(∂y₁))e-2fsin(x₃)dx₁∧dy₂
-y₂2((∂f)/(∂y₂))e-2fcos(x₃)dx₂∧dy₂+e-2fdx₃∧dy₃-y₃2((∂f)/(∂y₃))e-2fdx₃∧dy₃].

(14)

Take a vector field XH so that called to be Hamiltonian vector field associated with
Hamiltonian energy H and determined by

3

1

i i
H

i i i

X X Y
x y

  
    
 . (15)

Φ(XH) will be calculated using Φ and XH. Calculations use external product feature.
These properties are

f∧g=-g∧f

f∧g(v)=f(v)g-g(v)f.

(16)

We have
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 
HX Hi X 

=(1/2)X¹(-e2fcos(x₃))dy₁-e2fsin(x₃)dy₂-x₁2((∂f)/(∂x₁))e2fcos(x₃)dy₁
-x₁2((∂f)/(∂x₁))e2fsin(x₃)dy₂)+(1/2)X¹(-2y₁((∂f)/(∂x₃))e-2fcos(x₃)dx₃
-y₁e-2fsin(x₃)dx₃-y₂2((∂f)/(∂x₃))e-2fsin(x₃)dx₃+y₂e-2fcos(x₃)dx₃)
+(1/2)X¹(-e-2fcos(x₃)dy₁-y₁2((∂f)/(∂y₁))e-2fcos(x₃)dy₁+e-2fsin(x₃)dy₂
-y₂2((∂f)/(∂y₂))e-2fsin(x₃)dy₂)+(1/2)X²(e2fsin(x₃)dy₁-e2fcos(x₃)dy₂
+x₂2((∂f)/(∂x₂))e2fsin(x₃)dy₁-x₂2((∂f)/(∂x₂))e2fcos(x₃)dy₂)
+(1/2)X²(2y₁((∂f)/(∂x₃))e-2fsin(x₃)dx₃-y₁e-2fcos(x₃)dx₃
-y₂2((∂f)/(∂x₃))e-2fcos(x₃)dx₃-y₂e-2fsin(x₃)dx₃)+(1/2)X²(-e-2fsin(x₃)dy₁
+y₁2((∂f)/(∂y₁))e-2fsin(x₃)dy₁+e-2fcos(x₃)dy₂-y₂2((∂f)/(∂y₂))e-2fcos(x₃)dy₂)
+(1/2)X³(-e2fdy₃-x₃2((∂f)/(∂x₃))e2fdy₃+2y₁((∂f)/(∂x₃))e-2fcos(x₃)dx₁
-2y₁((∂f)/(∂x₃))e-2fsin(x₃)dx₂+y₁e-2fsin(x₃)dx₁)+(1/2)X³(y₁e-2fcos(x₃)dx₂+y₂2((∂f)/(∂x₃))e-2fsin(x₃)dx₁+y₂2((∂f)/(∂x₃))e-2fcos(x₃)dx₂-y₂e-2fcos(x₃)dx₁)
+(1/2)X³(y₂e-2fsin(x₃)dx₂-e-2fdy₃+y₃2((∂f)/(∂y₃))e-2fdy₃)+(1/2)Y¹(e2fcos(x₃))dx₁
+x₁2((∂f)/(∂x₁))e2fcos(x₃)dx₁-e2fsin(x₃)dx₂-x₂2((∂f)/(∂x₂))e2fsin(x₃)dx₂)
+(1/2)Y¹(e-2fcos(x₃)dx₁+e-2fsin(x₃)dx₂+y₁2((∂f)/(∂y₁))e-2fcos(x₃)dx₁
-y₁2((∂f)/(∂y₁))e-2fsin(x₃)dx₂)+(1/2)Y²(e2fsin(x₃)dx₁+x₁2((∂f)/(∂x₁))e2fsin(x₃)dx₁
+e2fcos(x₃)dx₂+x₂2((∂f)/(∂x₂))e2fcos(x₃)dx₂)+(1/2)Y²(-e-2fsin(x₃)dx₁
-e-2fsincos(x₃)dx₂+y₂2((∂f)/(∂y₂))e-2fsin(x₃)dx₁+y₂2((∂f)/(∂y₂))e-2fcos(x₃)dx₂)
+(1/2)Y³(e2fdx₃+x₃2((∂f)/(∂x₃))e2fdx₃+e-2fdx₃-y₃2((∂f)/(∂y₃))e-2fdx₃).

(17)

Furthermore, the differential of Hamiltonian energy H is obtained by
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3

1
i i

i i i

H HdH dx dy
x y

  
    
 (18)

X¹, X², X³, Y¹, Y² and Y³ are obtained using the .
HXi dH  Consider the curve and its

velocity vector fields;

   
3

1

3

1

(t), y ( ) ,

,

: , i i
i

i i

i i i

x t

dx dy
dt x dt

I R M

y

t 




  
   

  







(19)

such that an integral curve of the Hamiltonian vector field XH, i.e.,

3

1
( ( )) , .H

i i i i i

H HX t t I
t x x y y





     
         

 (20)

Then, we find the following equations;

(1) Y¹cos(x₃)(e2f+x₁2((∂f)/(∂x₁))e2f-e-2f-y₁2((∂f)/(∂y₁))e-2f)

+Y²sin(x₃)(e2f+x₁2((∂f)/(∂x₁))e2f+e-2f-y₂2((∂f)/(∂y₁))e-2f)=2((∂H)/(∂x₁)),
(2) Y¹sin(x₃)(-e2f-x₂2((∂f)/(∂x₂))e2f-e-2f+y₁2((∂f)/(∂y₁))e-2f)

+Y²cos(x₃)(e2f+x₂2((∂f)/(∂x₂))e2f+e-2f-y₂2((∂f)/(∂y₂))e-2f)=2((∂H)/(∂x₂)),
(3) Y³(e2f+x₃2((∂f)/(∂x₃))e2f+e-2f-y₃2((∂f)/(∂y₃))e-2f)=2((∂H)/(∂x₃)),
(4) X¹cos(x₃)(-e2f-x₁2((∂f)/(∂x₁))e2f+e-2f +y₁2((∂f)/(∂y₁))e-2f)

+X²sin(x₃)(e2f+x₂2((∂f)/(∂x₂))e2f+e-2f-y₁2((∂f)/(∂y₁))e-2f)=2((∂H)/(∂y₁)),
(5) X¹sin(x₃)(-e2f-x₁2((∂f)/(∂x₁))e2f-e-2f+y₂2((∂f)/(∂y₁))e-2f)

+X²cos(x₃)(-e2f-x₂2((∂f)/(∂x₂))e2f-e-2f +y₂2((∂f)/(∂y₂))e-2f)=2((∂H)/(∂y₂)),
(6) X³(-e2f-x₃2((∂f)/(∂x₃))e2f-e-2f +y₃2((∂f)/(∂y₃))e-2f)=2((∂H)/(∂y₃))dy₃,

(21)

or

A=cos(x₃)(e2f+x₁2((∂f)/(∂x₁))e2f-e-2f-y₁2((∂f)/(∂y₁))e-2f)
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B=sin(x₃)(e2f+x₁2((∂f)/(∂x₁))e2f+e-2f-y₂2((∂f)/(∂y₁))e-2f)

C=sin(x₃)(-e2f-x₂2((∂f)/(∂x₂))e2f-e-2f +y₁2((∂f)/(∂y₁))e-2f)

D=cos(x₃)(e2f+x₂2((∂f)/(∂x₂))e2f+e-2f-y₂2((∂f)/(∂y₂))e-2f)

E=cos(x₃)(-e2f-x₁2((∂f)/(∂x₁))e2f+e-2f+y₁2((∂f)/(∂y₁))e-2f)

F=sin(x₃)(e2f+x₂2((∂f)/(∂x₂))e2f+e-2f-y₁2((∂f)/(∂y₁))e-2f)

G=sin(x₃)(-e2f-x₁2((∂f)/(∂x₁))e2f-e-2f+y₂2((∂f)/(∂y₁))e-2f)

H=cos(x₃)(-e2f-x₂2((∂f)/(∂x₂))e2f-e-2f+y₂2((∂f)/(∂y₂))e-2f),

(22)

so,

(PDE1) ((dx₁)/(dt))=(2/((EH-FG)))[H((∂H)/(∂y₁))-F((∂H)/(∂y₂))]
(PDE2) ((dx₂)/(dt))=(2/((GF-EH)))[G((∂H)/(∂y₁))-E((∂H)/(∂y₂))]
(PDE3) ((dx₃)/(dt))=(2/((-e2f-x₃2((∂f)/(∂x₃))e2f-e-2f

+y₃2((∂f)/(∂y₃))e-2f)))((∂H)/(∂y₃))
(PDE4) ((dy₁)/(dt))=(2/((DA-BC)))[D((∂H)/(∂x₁))-B((∂H)/(∂x₂))]
(PDE5) ((dy₂)/(dt))=(2/((BC-AD)))[C((∂H)/(∂x₁))-A((∂H)/(∂x₂))]
(PDE6) ((dy₃)/(dt))=(2/((e2f+x₃2((∂f)/(∂x₃))e2f+e-2f

-y₃2((∂f)/(∂y₃))e-2f)))((∂H)/(∂x₃)).
(23)

Hence, the equations introduced in (23) are named Weyl-Hamilton equations on flat
manifold (T*M,W*) and then the triple (T*M,Φ,XH) is said to be a Weyl-Hamiltonian
mechanical system on flat manifold.

13. EQUATİONS SOLVING WITH COMPUTER

These found (23) are partial differential equation and there are seven independent
variables. Obtained from equation (PDE3) as an example will be solved with symbolic
computational program software. The software codes of these equation,
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Codes of Equations (PDE3)

PDE3:=diff(x₁(t),t)=2∗diff(H(x₁,x₂,x₃,y₁,y₂,y₃,t),y₃)/(-exp(2∗f)
-x₁(t)∗2∗diff(f,c)∗exp(2∗f)-exp(-2∗f)+y₃(t)∗2∗diff(f,c)∗exp(-2∗f));
for f=sin(t), y₃(t)=cost, x₁(t)=t.

(24)

Closed Solution (PDE3)

H(x₁,x₂,x₃,y₁,y₂,y₃,t)=(-1/2∗exp(2∗sin(t))-1/2∗exp(2∗sin(t)))∗cost

+1/2∗F₁(x₁,x₂,x₃,y₁,y₂,t)∗exp(2∗sin(t))+1/2∗F₁(x₁,x₂,x₃,y₁,y₂,t)∗exp(-2∗sin(t)).

(25)

14. DISCUSSION

In this study, Hamilton Equations raised in (23) on flat manifold for mechanical
systems. Today, it is well-known Hamiltonian models have emerged as a very important
tool for mechanical systems. classical field theory utilizes traditionally the language of
Hamiltonian dynamics. Also, this theory has extended to time-dependent classical
mechanics. A Hamiltonian space has been certified as an excellent model for some
important problems in relativity, gauge theory and electromagnetism. Hamiltonian gives
a model for both the gravitational and electromagnetic field in a very natural blending of
the geometrical structures of the space with the characteristic properties of these
physical fields. Hamiltonian dynamics is used as a model for field theory, quantum
physics, optimal control, biology and fluid dynamics. Most important advantage of flat
manifold is to allow the calculation of linear distance. Since Weyl's unified theory, the
metrics have been thought as the gravitational potential, as in general relativity, and the
corresponding forms are thought as the electromagnetic potentials. Hence, the
differential equations found are considered Weyl-Hamilton equations on conformally
flat manifold such that they could be used in modelling the problems in various
physical, relativistic and mechanical areas for geodesics [28,31,32]. In addition, we,
using symbolic computational program that these equations closed solutions (25), were
found.
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