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ABSTRACT 

This work presents solution of nonlinear differential-difference equations such as the 

discretized mKdV lattice equation, the discretized nonlinear Schrödinger equation and 

the Toda Lattice equation by Differential Transformation Method (DTM). This 

method provides more realistic solutions by solving the nonlinear differential 

equations without any simplification and the series solutions which generally converge 

very rapidly in real physical models. Moreover, no linearization or perturbation is 

required in this method. By using this method, exact solutions may be obtained 

without any need of cumbersome work. This method is a useful tool for analytical and 

numeric solutions. The results of the present method are compared with those obtained 

by Adomian Decomposition Method and exact solutions. The results have shown that 

DTM method has better performs.    

Key Words: Differential Transformation Method, Differential-Difference Equations, 

Nonlinear Equations. 

 

1. INTRODUCTION 

 

In this work, we study Nonlinear Differential-Difference Equations (NDDEs). The 

nonlinear differential-difference equations arise in the modeling of many phenomena 

in different fields, ranging from condensed matter and biophysics to mechanical 

engineering such as atomic chains, molecular crystals, biophysical systems, electrical 

lattices and optical wave guides. Nonlinear differential-difference equations are 

usually hard to solve analytically and exact solutions are scarce. In literature, lots of 

numerical techniques such as Adomian Decomposition Method [1], Laplace Method, 

Fourier Method, Wawelet Galerkin Method and Runge-Kutta Method exist. However, 

in the previous studies, there are complex integrals or methodology. Moreover, all of 

the previous studies require too much effort to achieve the results. But, DTM provides 

more realistic solutions by solving the nonlinear differential equations without any 

simplification and no linearization or perturbation is required. Because it is easily used 

various problems, DT Method is commonly used in recent published work. 

 Differential Transform Method (DTM) is based on Taylor series expansion. It 

is introduced by Zhou [2] in a study about electrical circuits. He gave exact values of 

the n
th
 derivative of an analytical function at a point in terms of known and unknown 
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boundary conditions in a fast manner. Chen and Ho [3] established the basic theory of 

two-dimensional DT and thereby reached exact solutions to a few linear and nonlinear 

initial problems. Ayaz [4] considered the exact or approximate solutions to several 

second-order nonlinear PDEs by exploiting some properties of two-dimensional DTM. 

Ayaz [5] introduced three-dimensional DTM to solve some systems of PDEs. 

  In this paper, we extend DTM to solve NDDEs, such as the discretized mKdV 

Lattice Equation [6]; 

  11

2

  nnn
n uuu

dt

du
     

the discretized nonlinear Schrödinger Equation [7]; 

       11

2

11 2   nnnnnn
n uuuuuu

dt

du
i  

and Toda Lattice Equation [8]; 
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2.ONE DIMENSIONAL DIFFERENTIAL TRANSFORM METHOD  

The differential transform of the function )(xy  is the form 
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where  )(xy  is original function. The differential inverse transform function of )(kY  

is showed as 
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If Eq. (1) is substituted into the Eq. (2), Eq. (2) can be written as 
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If 0x  is taken as zero, differential and differential inverse transform can be shown as  
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Because 
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k kYx  is negligibly small, )(xy  function can be written as 
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This is truncated expression of function )(xy .  



Differential Transformaiıon Method For Nonlinear Differential-Difference Equations 

 

39 

 

The fundamental operations performed by differential transform can readily 

be obtained and are listed in Table 1.  

 

3. APPLICATIONS OF DIFFERENTIAL TRANSFORM METHOD  
 

Example 1. 

 

We consider mKdV Lattice Equation 

  11

2

  nnn
n uuu

dt

du
     (4) 

with initial condition )tanh()tanh( 110 nkku  .  For 1 , Eq. (4)  has a kink-type 

solution  [7], which reads ).)tanh(2tanh()tanh()( 111 tknkktun    

By taking differential transform of Eq.(4), for 0k , the following equation 

can be obtained  
 

        

    
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 (5) 

and form the differential transform of initial condition  ),tanh().tanh()0( 11 nkkun   

)tanh().tanh(),0( 11 nkknU   

can be obtained. Hence, for various value of k , the following equation system can be 

obtained from  Eq. (5). 
 

          nUnUnUnU ,0.1,01,0,1 2   

                  1,01,0,1,02,01,11,1,22 2  nUnUnUnUnUnUnUnU 
 

                  
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                  
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Substituting all of the ),( nkU , which is obtained form the solution of above,  

into the inverse transform function )(tun , series solution of u can be obtained as  

...),6(),5(),4(),3(),2(),1(),0()( 65432  tnUtnUtnUtnUtnUtnUnUtun
 

Exact solution, DTM solution, ADM[1] solution and absolute errors of 

Eq. (4) have been given in Table 2-5 and shown in Figures 1-2. From the tables 

and figures, it is shown that computed values and actual solutions are 

extremely close and the results obtained by the present method are superior 

from ADM[1]. 

 
Example 4.2   

 

Next, we consider   Toda Lattice Equation  
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with initial conditions 

cdncdun )tanh()coth()0(   

cdncdvn )tanh()coth()0(    

which has an exact solution  

cctdncdtun )tanh()coth()(   
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By taking differential transform of Eq.(6), for 0k , the following equations 

can be obtained. 
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The differential transform of initial conditions   

 

)tanh()coth()0( dnccdun   and    )tanh()coth()0( dnccdvn   

can be written as    

)tanh()coth(),0( dnccdnU   
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)tanh()coth(),0( dnccdnV   
 

Substituting various values of k in to the Eq. (7) and Eq. (8), equation systems 

can be constructed. From the solutions of equations system, ),( nkU  and ),( nkV  

differential transform functions can be obtained.  

Substituting all of the ),( nkU  and ),( nkV  into the inverse transforms 

functions )(tun and )(tvn  respectively, series solutions of )(tun  and )(tvn  can be 

obtained as:  
 

...),6(),5(),4(),3(),2(),1(),0()( 65432  tnUtnUtnUtnUtnUtnUnUtun

...),6(),5(),4(),3(),2(),1(),0()( 65432  tnVtnVtnVtnVtnVtnVnVtvn  

Exact solution and approximate solution of the problem have been given in the 

Table 6, Table 7, Table 8 and Table 9 and have shown in the Fig. 3, Fig. 4, Fig. 5 and 

Fig. 6. From the Tables and figures, it is shown that computed values and actual 

solutions are extremely close. 

 

Example 4.3 

 

We consider nonlinear Schrödinger Equation  

   11

2

11 2   nnnnnn
n uuuuuu

dt

du
i     (9) 

with initial condition  
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which has an exact solution  
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By taking differential transform of Eq.(9), for 0k , the following equations 

can be obtained. 
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The differential transform of initial condition  

 

)tanh()exp()tanh()0( 11 nkipnkun       

 

can be written as  

)tanh()exp()tanh(),0( 11 nkipnknU   

 

Substituting various values of k in to the Eq. (10), equation system can be 

constructed. From the solution of equation system, ),( nkU   differential transform 

function can be obtained.  

Substituting all of the ),( nkU  into the inverse transform function )(tun , 

series solutions of )(tun  can be obtained as:  
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...),6(),5(),4(),3(),2(),1(),0()( 65432  tnUtnUtnUtnUtnUtnUnUtun

 

Exact solutions and approximate solutions of the problem have been given in Fig. 7. 

Table 10 shows the absolute errors for various values of  tn and . Absolute errors 

of Example 4.3 are depicted in Figure 8 1.01 k , 5.0p   and 1t . From the table 

and figures, it is shown that computed values and actual solutions are extremely close. 

 

4. CONCLUSION 

 

In this text we extend the solutions of mKdV Lattice Equation, the discretized 

nonlinear Schrödinger Equation and Toda Lattice equation. In the literature, a lot of 

methods can solve these problems such as ADM. Solving these equations by other 

methods were very difficult and some of them had complex integrals. But by using 

DTM, we turned them into easy equation system and solved them easily. From the 

figures, accuracy and efficiency of  the method were demonstrated. 
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Table 2. For 3k , 5.0t and 1.01 k , comparing  DTM  and exact solutions of nu  

 

    n Exact Solution DTM Absolute error 

-25 -

0.0980419716685 

-

0.098041974540424 2.87192E-09 

-15 -

0.0882483737640 

-

0.088248370424162 3.33984E-09 

-5 -

0.0378970609082 

-

0.037897039415964 2.14922E-08 

0 0.0099009464692 0.009900816293384 1.30176E-07 

5 0.0535031028299 0.053503134152388 3.13225E-08 

15 0.0918558740145 0.091855875966215 1.95171E-09 

25 0.0985736553800 0.098573652648647 2.73135E-09 

 

 

 

Table 3. For 3k , 5.1t  and 1.01 k , comparing  DTM and exact solutions of nu   

 
n Exact Solution DTM Absolute error 

-25 -0.097255114012016 -0.097255847240229 7.33228E-07 

-15 -0.083118937378073 -0.083117708245280 1.22913E-06 

-5 -0.019767387202623 -0.019765023755796 2.36345E-06 

0  0.028943671058017  0.028913020259932 3.06508E-05 

5  0.066127678611751  0.066137115576502 9.43696E-06 

15  0.094355966562706  0.094356172616496 2.06054E-07 

25 0.098932134016150  0.098931502773966 6.31242E-07 

 

 

Table 4. For 5k , 5.0t  and 1.01 k , comparing  DTM, ADM and exact solutions of 

nu  

 
n Exact Solution ADM[1] Absolute 

error (ADM) 

DTM Absolute error 

(DTM) 

-25 -0.0980419716685 -0.09804197166 8.49999E-12 -0.0980419716679 5.99992E-13 

-15 -0.0882483737640 -0.08824837298 7.84E-10 -0.0882483736885 7.55E-11 

-5 -0.0378970609082 -0.03789706610 5.1918E-09 -0.0378970622547 1.3465E-09 

0 0.0099009464692 0.009900946992 5.228E-10 0.0099009464588 1.04E-11 

5 0.0535031028299 0.05350309813 4.6999E-09 0.0535031039771 1.1472E-09 

15 0.0918558740145 0.09185587327 7.445E-10 0.0918558740072 7.30001E-12 

25 0.0985736553800 0.09857365542 4E-11 0.0985736553765 3.50001E-12 

 

 

 

Table 5. For 5k , 5.1t  and 1.01 k , comparing  DTM, ADM  and exact solutions of 

nu   
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  n Exact Solution ADM[1] Absolute 

error (ADM) 

DTM Absolute error 

(DTM) 

-25 -0.097255114012016 -0.09725516662 5.2608E-08 -0.097255115097158 1.08514E-09 

-15 -0.083118937378073 -0.08311834180 5.95578E-07 -0.083118839008260 9.83698E-08 

 -5 -0.019767387202623 -0.01977150813 4.12093E-06 -0.019768215755761 8.28553E-07 

  0  0.028943671058017  0.02894478018 1.10912E-06  0.028944695756441 1.0247E-06 

  5  0.066127678611751  0.06613063122 2.95261E-06  0.066127397190045 2.81422E-07 

15  0.094355966562706  0.09435553904 4.27523E-07  0.094356034637888 6.80752E-08 

25  0.098932134016150  0.09893218337 4.93538E-08  0.098932131655087 4.93538E-08 

Table 6. 3k , 1.0d , 1.0c  and 1t , comparing DTM and exact solutions 

of nu and nv  

 

n Exact Solution nu      DTM nu  
Abs. 

error( nu ) 

Exact 

Solution nv  
     DTM nv  

Abs. error 

( nv ) 

-40 -1.103249199792 -1.103249199975 1.83E-10 -0.90341302665 -0.90341302647 1.8E-10 

-20 -1.098954859038 -1.098954863828 4.79E-09 -0.90770736741 -0.90770736262 4.79E-09 

-10 -1.074960900245 -1.074960852077 4.8168E-08 -0.93170132620 -0.93170137437 4.817E-08 

 0 -0.993364313762 -0.993364446558 1.32796E-07 -1.01329791268 -1.01329777989 1.3279E-07 

 10 -0.923281211049 -0.923281166651 4.4398E-08 -1.08338101540 -1.08338105979 4.439E-08 

20 -0.906285919564 -0.906285924323 4.759E-09 -1.10037630688 -1.10037630212 4.76E-09 

40 -0.903386028856 -0.903386029027 1.71E-10 -1.10327619759 -1.10327619742 1.7E-10 

 

 

 

Table 7. For 5k , 1.0d , 1.0c  and 1t , comparing  DTM and exact solutions of 

nu  and nv  

 

n Exact Solution nu      DTM nu  
Abs. 

error( nu ) 

Exact 

Solution nv  
     DTM nv  

Abs. 

error 

( nv ) 

-40 -1.103249199792 -1.103249199792 0 -0.90341302665 -0.90341302665 0 

-20 -1.098954859038 -1.098954859031 6.99996E-12 -0.90770736741 -0.90770736741 0 

-10 -1.074960900245 -1.074960900276 3.10001E-11 -0.93170132620 -0.93170132617 3E-11 

 0 -0.993364313762 -0.993364313225 5.37E-10 -1.01329791268 -1.01329791322 5.4E-10 

 10 -0.923281211049 -0.923281211067 1.8E-11 -1.08338101540 -1.08338101538 2E-11 

20 -0.906285919564 -0.906285919557 6.99996E-12 -1.10037630688 -1.10037630689 1E-11 

40 -0.903386028856 -0.903386028856 0 -1.10327619759 -1.10327619759 0 

 

 

 

Table 8.  For 3k , 1.0d , 1.0c , 3t  comparing DTM and exact solutions of 

nu and nv  

 

n Exact Solution nu       DTM nu  
Abs. 

error( nu ) 

Exact 

Solution nv  
     DTM nv  

Abs. error 

( nv ) 

-40 -1.103208937353 -1.10320898500 4.7647E-08 -0.90345328909 -0.90345324144 4.765E-08 
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-20 -1.096872020285 -1.09687317624 1.15595E-06 -0.90979020616 -0.90978905020 1.15596E-06 

-10 -1.063767890937 -1.06375536335 1.25276E-05 -0.94289433551 -0.94290686309 1.25276E-05 

 0 -0.97419985198 -0.97423111322 3.12612E-05 -1.03246237447 -1.03243111322 3.12613E-05 

 10 -0.917158797294 -0.91714893859 9.8587E-06 -1.08950342915 -1.08951328786 9.85871E-06 

20 -0.905321473598 -0.90532261205 1.13845E-06 -1.10134075285 -1.10133961439 1.13846E-06 

40 -0.90336792760 -0.90336796669 3.909E-08 -1.10329429884 -1.10329425975 3.909E-08 

Table 9. For 5k , 1.0d , 1.0c , 3t  comparing  DTM and exact solutions of 

nu and nv  

n 
Exact Solution 

nu  
     DTM nu  

Abs. 

error( nu ) 

Exact 

Solution nv  
     DTM nv  

Abs. error 

( nv ) 

-40 -1.10320893735 -1.103208937737 3.87E-10 -0.90345328909 -0.90345328871 3.8E-10 

-20 -1.09687202028 -1.096872002812 1.7468E-08 -0.90979020616 -0.90979022363 1.747E-08 

-10 -1.06376789093 -1.063767995498 1.04568E-07 -0.94289433551 -0.94289423095 1.0456E-07 

 0 -0.97419985198 -0.974198713225 1.13876E-06 -1.03246237447 -1.03246351322 1.1388E-06 

 10 -0.917158797294 -0.917158811862 1.4568E-08 -1.08950342915 -1.08950341458 1.457E-08 

20 -0.905321473598 -0.905321461811 1.1787E-08 -1.10134075285 -1.10134076463 1.178E-08 

40 -0.903367927606 -0.903367927939 3.33E-10 -1.10329429884 -1.10329429851 3.3E-10 

 

 

Table 10. The absolute errors of Example 4.3 for various values of  tn and  

n 1t  5.1t  2t  5.2t  3t  

-40 3.889763e-010 9.813534e-009 9.623932e-008 5.609540e-007 2.348130e-006 

-20 6.978906e-010 1.526501e-008 1.378812e-007 7.608852e-007 3.060422e-006 

 0 1.375211e-008 2.285186e-007 1.645200e-006 7.442950e-006 2.494993e-005 

 20 1.456220e-010 6.101938e-009 7.206301e-008 4.640887e-007 2.070075e-006 

40 3.795945e-010 9.658237e-009 9.512766e-008 5.559651e-007 2.331590e-00 
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Figure 3. For 5k , 1.0d , 1.0c and 1t , comparing DTM and exact solution 

of nu  

 

   
Figure 4. For 5k , 1.0d , 1.0c  and 1t , comparing DTM and exact solution 
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Figure 8. The absolute error of Example 4.3 for 1.01 k , 5.0p   and 1t  

 


