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Abstract
We embed almost isometrically the generalized weighted space Hv0(G, E) of holomorphic
functions on an open subset G of CN with values in a Banach space E, into c0(E), the
space of all null sequences in E, where v is an operator-valued continuous function on G
vanishing nowhere. This extends and generalizes some known results in the literature. We
then deduce the non 1-Hyers-Rassias stability of the isometry functional equation in the
framework of Banach spaces.
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1. Introduction
A interesting issue when studying Banach spaces is whether such a space can be em-

bedded isometrically into a simpler Banach space. Such a problem has been considered by
several authors, especially in weighted spaces of holomorphic functions on an open subset
of C [2, 3, 9–11].

The first author who dealt with embedding weighted spaces of holomorphic functions
on an open subset of C into sequence spaces seems to be W. Lusky [9]. There, the
author showed that, whenever G is the unit open disc D of C and v is a radial (i.e.
v(z) = v(|z|), z ∈ D) strictly positive continuous function on D, the Banach space Hv0(D)
of all holomorphic functions f on D such that v|f | vanishes at infinity, endowed with the
weighted sup-norm ‖ · ‖v, is always isomorphic to a subspace of c0. He then showed in [10]
that there are weights v such that Hv0(D) is not isomorphic to the whole c0. Actually,
as Lusky showed in [11], there are exactly two situations in such a case: either Hv0(D) is
isomorphic to ℓ∞ or it is isomorphic to the Hardy space H∞ ⊂ c0. He even gave instances
where each situation occurs.
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Concerning the case of several variables, J. Bonet and E. Wolf extended in [2] the result
of Lusky to the case where G is an arbitrary open subset of CN , N being a positive
integer, without any further condition on the weight v. They showed that if v is any
strictly positive continuous function on a nonempty open set G ⊂ CN , then Hv0(G) is
almost isometrically isomorphic to a subspace of c0. This means that, for every ε ∈]0, 1[,
there is an isomorphism T from Hv0(G) into c0 such that:

(1 − ε)‖f‖v ≤ ‖T (f)‖c0 ≤ ‖f‖v, (∀f ∈ Hv0(G)).

This seems to be the maximum one can obtain in general since, in [3], C. Boyd and P.
Rueda showed that, whenever G ⊂ CN is balanced and v is radial, the isomorphism of
Hv0(G) into c0 cannot be an isometry.

Recently, C. Shekhar and B. S. Komal [14] and subsequently M. Klilou and L. Oubbi [7]
introduced systems V of weights with values in the set of positive operators on a Hilbert
space H. They then studied some questions concerning multiplication operators in the
corresponding weighted spaces of continuous functions CV (G, H). This study has been
enlarged to weights with values in continuous operators on a normed space [8].

In this note, we deal with the question whether for a nonempty open subset G of CN , a
Banach space E, and a continuous mapping v from G into the algebra B(E) of bounded
operators on E, the weighted space Hv0(G, E) can be embedded into the space c0(E) of
all null sequences of E. We mainly show that, if v is continuous with respect to the norm
topology on B(E) and takes values in the bounded below operators on E, then the Banach
space Hv0(G, E), endowed with the weighted sup-norm

‖f‖v := sup{‖v(z)(f(z))‖, z ∈ G},

is almost isometrically isomorphic to a closed subspace of the space c0(E). This extends
and generalizes the result, alluded to above, of J. Bonet and E. Wolf [2].

We obtain as an application, the non 1-Hyers-Rassias stability of the isometry functional
equation ‖f(x)‖ = ‖x‖ between Banach spaces.

2. Preliminaries
Let N be a positive integer, G a nonempty open subset of CN , and (E, ‖ ‖) a Banach

space. We write z for z = (z1, . . . , zN ) ∈ G and zj = xj + iyj for j = 1, . . . , N . We will
denote by N the set of all non-negative integers, by N∗ the set N \ {0}, and by c0(E) the
linear space of all null sequences of E. The space c0(E) will be endowed with its natural
sup-norm.

We first recall some facts related to holomorphic functions. We refer to [6] and [13] for
ample details.

Definition 2.1 ([13]). A function f : G → C is said to be holomorphic in G provided
1. f is continuous (i.e., f ∈ C(G)), and
2. f is holomorphic in each variable separately.

If f is continuously differentiable in the variables xj and yj , j = 1, . . . , N , it is said to
be holomorphic in G in the Cauchy-Riemann sense (see [6, Definition 2.1.1]) if

∂f

∂zj
= 0, (1 ≤ j ≤ N),

in G, where

∂

∂zj
= 1

2

(
∂

∂xj
− i

∂

∂yj

)
and ∂

∂zj
= 1

2

(
∂

∂xj
+ i

∂

∂yj

)
.

The following theorem is due to Hartogs [6, Theorem 2.2.8].
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Theorem 2.2. Let f be a function from G to C. The following properties are equivalent:
1. f is holomorphic in G.
2. f is holomorphic in the Cauchy-Riemann sense.

Theorem 2.3 ([12, p. 400, Theorem 8]). Let f be a function from G into E. The following
properties are equivalent:
1. The C-valued function φ ◦ f is holomorphic in G for each φ in the topological dual E′

of E.
2. For every w ∈ G, there exists a neighborhood U of w and elements xα ∈ E with α ∈ NN

such that f(z) =
∑

α∈NN

xα(z − w)α.

3. f is holomorphic in each variable separately in the sense described in 1.

We will denote by H(G, E) the linear space of all E-valued functions on G satisfying
one of (and then all) the assertions in Theorem 2.3, while C(G, E) will denote the space
of all continuous functions from G into E.

For α = (α1, . . . , αN ) ∈ NN , denote |α| = α1 + · · · + αN , α! = α1! . . . αN !, and zα =
zα1

1 . . . zαN
N . For w ∈ CN , we will let D(w, r) denote the polydisc D(w, r) := {z ∈ CN :

|zk − wk| ≤ r, k = 1, . . . , N}. We then have the Cauchy integral formula [12, p. 400]. Let
f ∈ H(G, E), w ∈ G, and r > 0 such that D(w, r) ⊂ G. Then

f(w) = 1
(2πi)N

∫
∂D(w,r)

f(z)
(z1 − w1) . . . (zN − wN )

dz1 . . . dzN . (2.1)

Therefore, for every α = (α1, . . . , αN ) ∈ NN with |α| = 1,

Dαf(w) = 1
(2πi)N

∫
∂D(w,r)

f(z)
(z − w)α+1 dz1 . . . dzN .

We will denote by B(E) the Banach algebra of all bounded linear operators from E into
itself. The strong operator (resp. the norm) topology on B(E) will be denoted by β (resp.
σ).

Recall that a linear mapping T from the Banach space E into another one F is said to
be bounded below if there exists r > 0 such that r‖x‖E ≤ ‖T (x)‖F , for every x ∈ E. We
will denote by Lbb(E) the subset of B(E) consisting of all continuous and bounded below
operators.

A mapping µ : G → E is said to vanish at infinity if for every ε > 0, there is a compact
subset Kε ⊂ G such that ‖µ(z)‖ < ε for all z /∈ Kε.

Here we consider generalized Nachbin families consisting of a single weight. Unlike [14]
and [7], we no more consider Hilbert spaces but arbitrary Banach spaces.

Definition 2.4. A generalized weight on G is any β-continuous mapping v : G → B(E)
such that v(z) is injective for every z in some dense subset G0 of G. The weight v is said to
be equibounded below on a subset A of G if there is r = rA > 0 such that r‖x‖ ≤ ‖v(z)x‖
for every z ∈ A and every x ∈ E.

With a generalized weight v on G are associated the following weighted spaces :
Cv0(G, E) := {f ∈ C(G, E), vf : z 7−→ v(z)(f(z)) vanishes at infinity on G}
Hv0(G, E) := {f ∈ H(G, E), vf : z 7−→ v(z)(f(z)) vanishes at infinity on G}.

From now on, we will denote the mapping z 7→ v(z)(f(z)) by vf , f ∈ Hv0(G, E). Since
vf is bounded on G for every f ∈ Hv0(G, E), the quantity

‖f‖v = sup
z∈G

‖v(z)(f(z))‖

defines a semi-norm on Hv0(G, E). Actually ‖f‖v turns out to be a norm on Hv0(G, E),
because for every nonzero f in Hv0(G, E), there is z0 ∈ G, such that f(z0) 6= 0. By
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the continuity of f , there exists a neighborhood Ω of z0 and ε > 0 such that ‖f(z)‖ > ϵ
for every z ∈ Ω. But the density of G0 in G yields some z1 ∈ G0 so that ‖f(z1)‖ > ϵ.
Now, v(z1) is injective, then v(z1)(f(z1)) 6= 0. Hence ‖f‖v 6= 0 and (Hv0(G, E), ‖ ‖v) is a
normed space. From now on, Hv0(G, E) will be endowed with this norm.

Whenever u is a strictly positive continuous function on G, if we consider on E the
operator Tz : x 7→ u(z)x, then the mapping v : z 7→ Tz is a generalized weight on G
and the generalized weighted space Hv0(G, E) is nothing but the usual weighted space
Hu0(G, E) algebraically and topologically. Obviously, if E is the complex field, Hv0(G, E)
is nothing but Hv0(G). More generally, we have the following.

Example 2.5. Let u : G −→ (0, ∞) be a continuous mapping vanishing nowhere on G
and T ∈ B(E). If T is injective, then the mapping v : z −→ u(z)T is a generalized weight
on G. Moreover, if T is bounded below, then v is equibounded below on every compact
subset of G. Indeed, let K be such a compact set. Since T is bounded below, there is
r > 0 such that ‖T (x)‖ ≥ r‖x‖ for all x ∈ E. Therefore, for each z ∈ K and x ∈ E, we
have

‖v(z)x‖ = u(z)‖T (x)‖ ≥ u(z)r‖x‖ ≥ [ inf
z∈K

u(z)]r‖x‖,

whence the result.

Example 2.6. Let v be a generalized weight on G and ϱ be the real function assigning
to any z ∈ G the minimum modulus µ(v(z)) of v(z) [5], where

µ(v(z)) := inf{‖v(z)x‖, ‖x‖ = 1}.

If ϱ is lower semi-continuous and does not vanish on G, then v is equibounded below on
each compact subset K of G. Indeed, if rK = inf{ϱ(z), z ∈ K}, then ‖v(z) x

‖x‖‖ ≥ rK for
all z ∈ K and all x ∈ E, hence ‖v(z)x‖ ≥ rK‖x‖ for all x ∈ E.

Proposition 2.7. Let v : G → B(E) be a generalized weight on G. If v is equibounded
below on the compact subsets of G, then the space Hv0(G, E), endowed with the norm ‖ ‖v,
is a Banach space.

Proof. The space Cv0(G, E) is a Banach space by Theorem 3.3 of [7]. Then it is sufficient
to prove that Hv0(G, E) is a closed subspace of Cv0(G, E). Let (fn)n∈N be a sequence in
Hv0(G, E) converging to some function f in Cv0(G, E). Fix a compact K ⊂ G and ε > 0.
Since v is equibounded below on K, there exists rK > 0, such that ‖x‖ < rK‖v(z)(x)‖,
z ∈ K, x ∈ E. But also, there exists N ∈ N, such that, for all n ≥ N , ‖fn − f‖v < r−1

K ε.
Therefore, for every z ∈ G, we have

‖fn(z) − f(z)‖ < rK‖v(z)(fn(z) − f(z))‖ ≤ rK‖fn − f‖v < ε.

Hence (fn)n∈N converges to f uniformly on every K. Then f is holomorphic. Since
f ∈ Cv0(G, E), f ∈ Hv0(G, E). �

3. Embedding Hv0(G, E) into c0(E)
Our main result gives instances where Hv0(G, E) is almost isometrically isomorphic to

a subspace of c0(E), extending and generalizing a result of [2]. From now on, let us denote
by d the sup-norm metric on CN . This is d(z, w) := maxi=1,...,N |zi − wi|, z, w ∈ CN .

Theorem 3.1. Let E be a Banach space, G a nonempty open subset of CN , and v : G →
B(E) a generalized weight. If v is σ-continuous and maps G into Lbb(E), then the space
Hv0(G, E) is almost isometrically isomorphic to a closed subspace of c0(E).
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Proof. Fix ε ∈]0, 1[ and consider an exhaustion of G by an increasing sequence (Kk)k∈N
of compact subsets of G. Since v is continuous, Mk := sup{‖v(z)‖B(E), z ∈ Kk} < +∞.
Set

ak := min
(

1,
1
2

d(Kk,CN \ Kk+1)
)

.

As v(G) ⊂ Lbb(E), for all z ∈ Kk, there exists rz > 0 such that rz‖x‖ ≤ ‖v(z)x‖, for all
x ∈ E. By Theorem 2.1 of [1], Lbb(E) is open in (B(E), σ). Then, by the σ-continuity
of v, there exists a neighborhood Uz of z in G, such that v(Uz) ⊂ B(v(z), rz

2 ) ∩ Lbb(E),
B(v(z), rz

2 ) being the ball in (B(E), σ) centered at v(z) with radius rz
2 . Then for all

w ∈ Uz, we have

‖v(z)x‖ − ‖v(w)x − v(z)x‖ ≤ ‖v(w)x‖, ∀x ∈ E.

Hence
‖v(z)x‖ − ‖v(z) − v(w)‖‖x‖ ≤ ‖v(w)x‖, ∀x ∈ E.

Therefore
rz‖x‖ − rz

2
‖x‖ = rz

2
‖x‖ ≤ ‖v(w)x‖, ∀x ∈ E.

Since Kk is compact, we can find a finite set {z1, . . . , zn} ⊂ Kk such that Kk ⊂ ∪n
i=1Uzi .

Now, for rk = inf i=1,...,n
rzi
2 , we have

rk‖x‖ ≤ ‖v(z)x‖, ∀z ∈ Kk, ∀x ∈ E.

For arbitrary f ∈ Hv0(G, E) and k ∈ N, with ‖f‖v = 1, we have

1 = sup
z∈G

‖v(z)f(z)‖ ≥ rk sup
z∈Kk

‖f(z)‖.

Hence, for each z ∈ Kk, the following inequality holds:

‖f(ζ)‖ ≤ 1
rk+1

, ∀ζ ∈ D(z, ak). (3.1)

For α ∈ NN with |α| = 1, we have

‖Dαf(z)‖ =
∥∥∥∥∥ 1

(2πi)N

∫
∂D(z,ak)

f(ζ)
(ζ − z)α+1 dζ1 . . . dζN

∥∥∥∥∥ ≤ 1
rk+1ak

. (3.2)

Whereby
‖Dαf(z)‖ ≤ 1

rk+1ak
, ∀z ∈ Kk. (3.3)

If Ak := Kk \
◦
Kk−1 and δk > 0 satisfy

δk < min
(

ak, ε

( 1
rk

+ Mk+1N

ak+1rk+2
,

)−1
)

, (3.4)

then
Ak ⊂

⋃
z∈Ak

{z′ ∈ G, d(z′, z) < δk and ‖v(z′) − v(z)‖ < δk}.

By the compactness of Ak, there is a finite subset Fk of Ak such that

Ak ⊂
⋃

z∈Fk

{z′ ∈ G, d(z′, z) < δk and ‖v(z′) − v(z)‖ < δk}.

Consequently, for each z ∈ Ak, there is w ∈ Fk with d(w, z) < δk and ‖v(w) − v(z)‖ < δk.
On the other hand, D(z, δk) ⊂ D(z, ak) ⊂ Kk+1. This implies

‖v(z)f(z)‖ ≤ ‖v(z)f(z) − v(w)f(z)‖ + ‖v(w)f(z)‖
≤ ‖v(z) − v(w)‖‖f(z)‖ + ‖v(w)(f(z) − f(w))‖ + ‖v(w)f(w)‖. (3.5)



2068 E. El Abbassi, L. Oubbi

We then have, denoting αi = (0, . . . , 1, 0, . . . ), where 1 is in the ith place :

‖f(z) − f(w)‖ = ‖f(z1, . . . , zN ) − f(w1, . . . , wN )‖
≤ ‖f(z1, . . . , zN ) − f(w1, z2, . . . , zN ) + f(w1, z2, . . . , zN )
− f(w1, w2, z3, . . . , zN ) + · · · + f(w1, w2, . . . , wN−1, zN ) − f(w1, . . . , wN )‖
≤ sup

ζ∈D(z,δk)
‖Dα1f(ζ)‖|z1 − w1| + · · · + sup

ζ∈D(z,δk)
‖DαN f(ζ)‖|zN − wN |.

Taking (3.3) into consideration, it follows that

‖f(z) − f(w)‖ ≤ Nδk

ak+1rk+2
. (3.6)

Now, since w belongs to Kk+1, it follows from (3.1), (3.4), (3.5), and (3.6) that

sup
z∈Ak

‖v(z)f(z)‖ ≤ ε + max
w∈Fk

‖v(w)f(w)‖.

Setting F :=
⋃

{Fk, k ∈ N}, we conclude

1 ≤ ε + sup
w∈F

‖v(w)f(w)‖.

Denote the elements of F as a sequence (zn)n∈N ⊂ G. Then zn tends to the boundary ∂G
of G, i.e., for each k ∈ N, there is n0 ∈ N such that zn /∈ Kk for every n > n0. Since F
does not depend on the function f , the correspondence g 7−→ (v(zn)g(zn))n∈N defines an
operator T from Hv0(G, E) into c0(E). Now, if g ∈ Hv0(G, E) with g 6= 0, we have∥∥∥∥ g

‖g‖v

∥∥∥∥
v

= 1 ≤ ε +
∥∥∥∥T ( g

‖g‖v
)
∥∥∥∥

c0(E)
.

Thus
(1 − ε)‖g‖v ≤ ‖T (g)‖c0(E).

Since ‖T (f)‖c0(E) = sup{‖v(w)f(w)‖, w ∈ F} ≤ ‖f‖v, we obtain

(1 − ε)‖f‖v ≤ ‖T (f)‖c0(E) ≤ ‖f‖v, ∀f ∈ Hv0(G, E)

showing that T is an almost isometry. �

Remark 3.2. It comes out from the proof of Theorem 3.1 that v is equibounded below
on compact subsets of G if and only if its range lies in Lbb(E).

If u : G → (0, +∞) is continuous, T is the identity of E, and v := uT , as in Example
2.5, we get, as a corollary, the vector-valued version of J. Bonet and E. Wolf’s theorem.

Corollary 3.3. Let E be a Banach space, G a nonempty open subset of CN , and u a
strictly positive and continuous weight on G. Then the space Hu0(G, E) is isomorphic to
a closed subspace of c0(E). Actually, Hu0(G, E) embeds almost isometrically into c0(E).

In case E = C, Corollary 3.3 is nothing but the result of J. Bonet and E. Wolf [2].

Corollary 3.4. Let G be an open subset of CN and v be a strictly positive and continuous
weight on G. Then the space Hv0(G) embeds almost isometrically into c0.

Notice that, for every nonzero x ∈ E and every generalized weight v on G, the mapping
vx : z 7→ ‖v(z)‖{x} := ‖v(z)(x)‖ is continuous. Therefore the normed weighted space
Hvx0(G) (:= H(vx)0(G)) is complete provided v(z) is injective for every z ∈ G. Since
the correspondence f 7→ x ⊗ f is an isometry from Hvx0(G) into Hv0(G, E), the space
Hvx0(G), identified with x ⊗ Hvx0(G) := {x ⊗ f, f ∈ Hvx0(G)}, is a closed subspace of
Hv0(G, E), where (x ⊗ f)(z) := f(z)x for every z ∈ G and every f ∈ Hvx0(G).

Now, recall the following result.
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Lemma 3.5 ([2, Corollary 2]). Let G be an open subset of CN , and let v be a strictly
positive and continuous weight on G. If the space Hv0(G) is infinite dimensional, then
Hv0(G) is not reflexive.

We then obtain the following theorem extending the lemma above.

Theorem 3.6. Let G be an open subset of CN , and let v be a generalized weight on G
such that v(z) is injective for every z ∈ G. If the space Hvx0(G) is infinite dimensional
for some x ∈ E, then Hv0(G, E) is not reflexive.

Proof. Since x ⊗ Hvx0(G) is a closed subspace of Hv0(G, E) and, by Lemma 3.5, x ⊗
Hvx0(G) is not reflexive, then Hv0(G, E) is not reflexive as well. �

As an application, we will show that the isometry equation ‖f(x)‖ = ‖x‖ is not 1-
Hyers-Rassias-stable. It is known that the Cauchy equation f(x + y) = f(x) + f(y) is
p-Hyers-Rassias stable for every real number p 6= 1, see [4]. This means that, for every
such p and every real θ > 0, if a function f : X → Y between Banach spaces X and Y
satisfies

‖f(x + y) − f(x) − f(y)‖ ≤ θ(‖x‖p + ‖y‖p), x, y ∈ X,

then there exists a unique additive function g : X → Y such that

‖f(x) − g(x)‖ ≤ 2θϵp

2p − 2
‖x‖p, x ∈ X,

where ϵp = sign(p − 1) is the sign of p − 1. The same equation fails to be stable for p = 1,
as shown in [4].

Here, we will show that the isometry functional equation ‖T (f)‖ = ‖f‖, where T is a
(even linear) mapping from the Banach space Hv0(G) into c0 is not 1-Hyers-Rassias stable
as well. Indeed, let θ > 0 be arbitrary, using Corollary 3.3, there exists a linear mapping
Tθ : Hv0(G) → c0 such that

(1 − θ)‖f‖v ≤ ‖Tθ(f)‖c0 ≤ ‖f‖v, f ∈ Hv0(G).

It follows from this that Tθ is an approximate isometry, this is |‖Tθ(f)‖ − ‖f‖v| ≤
θ‖f‖v, f ∈ Hv0(G). However, for G = ∆, the unit disc of C, and a positive continu-
ous and radial weight v (i.e., v(z) = v(λz) for every λ ∈ T), there exists no isometry, at
all, from Hv0(G) into c0 as shown in [3], Corollary 17. Hence there exists no isometry
approximating Tθ. Therefore the isometry equation fails to be 1-Hyers-Rassias stable.

Acknowledgment. The authors would like to thank the anonymous referees for their
valuable comments and suggestions.
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