Results in Nonlinear Analysis 4 (2021) No. 1, 33–46 https://doi.org/10.53006/rna.748994 Available online at www.nonlinear-analysis.com

Common Fixed Point Theorems in \mathfrak{M} -Fuzzy Cone Metric Spaces

Jeyaraman Mathuraiveeran^a, Suganthi Mookiah^b,

 ^a PG and Research Department of Mathematics, Raja Doraisingam Government Arts College, Sivagangai 630561, Affiliated to Alagappa University, Karaikudi, India.
 ^b Research Scholar, PG and Research Department of Mathematics, Raja Doraisingam Government Arts College, Sivagangai 630561. Affiliated to Alagappa University, Karaikudi, India.
 Department of Mathematics, Government Arts College, Melur 625106

Abstract

This work aims to generalize the Banach contraction theorem to \mathfrak{M} -fuzzy cone metric spaces. We construct generalized \mathfrak{M} -fuzzy cone contractive conditions for three self mappings with which they have a unique common fixed point.

Keywords: Fixed point, Cone, Triangular, Fuzzy contractive, Symmetric. 2010 MSC: 54H25, 47H10.

1. Introduction

Fuzzy sets that handle uncertainties well was introduced by Zadeh [10]. Huang and Zhang [4] introduced cone and defined cone metric spaces as a generalization of metric spaces [1]. Tarkan Oner et al. [9] introduced fuzzy cone metric spaces that generalized fuzzy metric spaces [2]. These ideas motivated the researchers to come up with several new ideas as they act as a base for introducing new concepts and proving many more new results. The aim here is to construct and prove \mathfrak{M} -Fuzzy Cone Banach Contraction Theorem and some common fixed point theorems for three self mappings which satisfy generalized contractive conditions in \mathfrak{M} -Fuzzy Cone Metric Spaces and to provide an example to exhibit the same.

Email addresses: jeya.math@gmail.com (Jeyaraman Mathuraiveeran), vimalsugan@gmail.com (Suganthi Mookiah)

2. Preliminaries

Definition 1. [4] Let \mathfrak{B} be a real Banach space and \mathfrak{C} be a subset of \mathfrak{B} . \mathfrak{C} is called a cone if and only if:

[C1] \mathcal{C} is nonempty, closed and $\mathcal{C} \neq \{0\}$,

[C2] $\rho, \sigma \in \mathbb{R}, \rho, \sigma \geq 0, c_1, c_2 \in \mathcal{C}$ imply $\rho c_1 + \sigma c_2 \in \mathcal{C}$,

[C3] $c \in \mathcal{C}$ and $-c \in \mathcal{C}$ imply c = 0.

The cones considered here are subsets of a real Banach space and are with nonempty interiors.

Definition 2. An \mathfrak{M} -Fuzzy Cone Metric Space (briefly, \mathfrak{M} -FCM Space) is a 3-tuple ($\mathcal{Z}, \mathfrak{M}, *$) where \mathcal{Z} is an arbitrary set, * is a continuous *t*-norm, \mathfrak{C} is a cone and \mathfrak{M} a fuzzy set in $\mathcal{Z}^3 \times int(\mathfrak{C})$ satisfying the following conditions: For all $\zeta, \eta, \omega, \mathbf{u} \in \mathcal{Z}$ and $c, c' \in int(\mathfrak{C})$,

[MFC1] $\mathfrak{M}(\zeta, \eta, \omega, c) > 0$,

[MFC2] $\mathfrak{M}(\zeta, \eta, \omega, c) = 1$ if and only if $\zeta = \eta = \omega$,

[MFC3] $\mathfrak{M}(\zeta, \eta, \omega, c) = \mathfrak{M}(p\{\zeta, \eta, \omega\}, c)$, where p is a permutation,

[MFC4] $\mathfrak{M}(\zeta, \eta, \omega, c + c') \ge \mathfrak{M}(\zeta, \eta, \mathbf{u}, c) * \mathfrak{M}(\mathbf{u}, \omega, \omega, c'),$

[MFC5] $\mathfrak{M}(\zeta, \eta, \omega, \cdot) : int(\mathfrak{C}) \to [0, 1]$ is continuous.

Then \mathfrak{M} is called an \mathfrak{M} -Fuzzy Cone Metric on \mathcal{Z} . The function $\mathfrak{M}(\zeta, \eta, \omega, c)$ denotes the degree of nearness between ζ, η and ω with respect to c.

Example 3. Let $\mathfrak{B} = \mathbb{R}$ and consider the cone $\mathfrak{C} = [0, +\infty]$ in \mathfrak{B} . Consider an increasing continuous function $g: \mathfrak{C} \to \mathfrak{C}$ and a, b > 0. Let the t-norm * be defined by $\rho * \sigma = \rho \sigma$. Define $\mathfrak{M}: \mathbb{R}^3 \times int(\mathfrak{C}) \to [0, 1]$ by

$$\mathfrak{M}(\zeta, \eta, \omega, c) = \left(\frac{(\min\{f(x), f(y), f(z))^a + \|g(c)\|}{(\max\{f(x), f(y), f(z))^a + \|g(c)\|}\right)^b$$

for all $\zeta, \eta, \omega \in \mathbb{R}$ and $c \in int(\mathbb{C})$. Then $(\mathbb{R}, \mathfrak{M}, *)$ is an \mathfrak{M} -FCM Space.

Definition 4. A symmetric \mathfrak{M} -FCM Space is an \mathfrak{M} -FCM Space ($\mathcal{Z}, \mathfrak{M}, *$) satisfying

 $\mathfrak{M}(\eta, \omega, \omega, c) = \mathfrak{M}(\omega, \eta, \eta, c)$, for all $\eta, \omega \in \mathbb{Z}$ and $c \in int(\mathbb{C})$.

Remark 5. An M-FCM Space is symmetric.

Definition 6. Let $(\mathcal{Z}, \mathfrak{M}, *)$ be an \mathfrak{M} -FCM Space. A self mapping $\mathcal{P} : \mathcal{Z} \to \mathcal{Z}$ is said to be \mathfrak{M} -Fuzzy Cone Contractive (briefly, \mathfrak{M} -FCC) if there exists $k \in (0, 1)$ such that

$$\left(\frac{1}{\mathfrak{M}(\mathfrak{P}(\zeta),\mathfrak{P}(\eta),\mathfrak{P}(\omega),c)}-1\right) \leq k\left(\frac{1}{\mathfrak{M}(\zeta,\eta,\omega,c)}-1\right),$$

for all $\zeta, \eta, \omega \in \mathbb{Z}$ and $c \in int(\mathbb{C})$.

Definition 7. In an \mathfrak{M} -FCM Space $(\mathcal{Z}, \mathfrak{M}, *)$, \mathfrak{M} is said to be triangular if, for all $\zeta, \eta, \omega, u \in \mathcal{Z}$ and $c \in int(\mathcal{C})$,

$$\left(\frac{1}{\mathfrak{M}(\zeta,\eta,\omega,c)}-1\right) \leq \left(\frac{1}{\mathfrak{M}(\zeta,\eta,\mathsf{u},c)}-1\right) + \left(\frac{1}{\mathfrak{M}(\mathsf{u},\omega,\omega,c)}-1\right).$$

Definition 8. Let $(\mathcal{Z}, \mathfrak{M}, *)$ be an \mathfrak{M} -FCM Space, $\zeta' \in \mathcal{Z}$ and $\{\zeta_n\}$ be a sequence in \mathcal{Z} .

- (i) $\{\zeta_n\}$ is said to converge to ζ' if for all $c \in int(\mathcal{C})$, $\lim_{n \to +\infty} \left(\frac{1}{\mathfrak{M}(\zeta_n,\zeta',\zeta',c)} 1\right) = 0$. It is denoted by $\lim_{n \to +\infty} \zeta_n = \zeta'$ or by $\zeta_n \to \zeta'$ as $n \to +\infty$.
- (ii) $\{\zeta_n\}$ is said to be a Cauchy sequence if $\lim_{n\to+\infty} \left(\frac{1}{\mathfrak{M}(\zeta_{n+m},\zeta_n,\zeta_n,c)}-1\right) = 0$, for all $c \in int(\mathcal{C})$ and $m \in \mathbb{N}$.
- (iii) $(\mathcal{Z}, \mathfrak{M}, *)$ is called a complete \mathfrak{M} -FCM space if every Cauchy sequence in \mathcal{Z} converges.

Definition 9. Let $(\mathcal{Z}, \mathfrak{M}, *)$ be an \mathfrak{M} -FCM Space. A sequence $\{\zeta_n\}$ in \mathcal{Z} is \mathfrak{M} -Fuzzy Cone Contractive if there exists $k \in (0, 1)$ such that

$$\left(\frac{1}{\mathfrak{M}(\zeta_n,\zeta_{n+1},\zeta_{n+1},c)}-1\right) \le k\left(\frac{1}{\mathfrak{M}(\zeta_{n-1},\zeta_n,\zeta_n,c)}-1\right), \text{ for all } c \in int(\mathfrak{C}).$$

3. Main Results

Let us first state and prove the \mathfrak{M} -fuzzy cone Banach contraction theorem in a complete \mathfrak{M} -FCM Space.

Theorem 1. Let $(\mathcal{Z}, \mathfrak{M}, *)$ be a complete \mathfrak{M} -FCM Space in which \mathfrak{M} -FCC sequences are Cauchy. Let $\mathcal{P}: \mathcal{Z} \to \mathcal{Z}$ be an \mathfrak{M} -FCC mapping. Then \mathcal{P} has a unique fixed point.

Proof. Let $\zeta_0 \in \mathbb{Z}$ and $c \in int(\mathbb{C})$. Define a sequence $\{\zeta_n\}$ by

$$\zeta_n = \mathfrak{P}^n \zeta_0, \ n \in \mathbb{N}.$$

Since \mathcal{P} is \mathfrak{M} -FCC, we have

$$\left(\frac{1}{\mathfrak{M}(\mathfrak{P}\zeta,\mathfrak{P}^{2}\zeta,\mathfrak{P}^{2}\zeta,c)}-1\right) \leq k\left(\frac{1}{\mathfrak{M}(\zeta,\mathfrak{P}\zeta,\mathfrak{P}\zeta,c)}-1\right),$$

for all $\zeta \in \mathcal{Z}$ and for some $k \in (0, 1)$. This gives

$$\left(\frac{1}{\mathfrak{M}(\zeta_{n+1},\zeta_{n+2},\zeta_{n+2},c)}-1\right) \leq k\left(\frac{1}{\mathfrak{M}(\zeta_n,\zeta_{n+1},\zeta_{n+1},c)}-1\right).$$

This makes $\{\zeta_n\}$ an \mathfrak{M} -FCC sequence and by assumption $\zeta_n \to \zeta$ for some $\zeta \in \mathcal{Z}$. Now,

$$\left(\frac{1}{\mathfrak{M}(\mathfrak{P}\zeta_n,\mathfrak{P}\zeta,\mathfrak{P}\zeta,c)}-1\right) \leq k\left(\frac{1}{\mathfrak{M}(\zeta_n,\zeta,\zeta,c)}-1\right).$$

As k < 1,

$$\lim_{n \to +\infty} \left(\frac{1}{\mathfrak{M}(\mathfrak{P}\zeta_n, \mathfrak{P}\zeta, \mathfrak{P}\zeta, c)} - 1 \right) = 0.$$

That is,

$$\left(\frac{1}{\mathfrak{M}(\zeta, \mathcal{P}\zeta, \mathcal{P}\zeta, c)} - 1\right) = 0$$
, and which gives
 $\mathcal{P}\zeta = \zeta.$

Suppose $\mathfrak{P}\eta = \eta$, for some $\eta \in \mathcal{Z}$. Then

$$\begin{pmatrix} \frac{1}{\mathfrak{M}(\zeta,\zeta,\eta,c)} - 1 \end{pmatrix} = \left(\frac{1}{\mathfrak{M}(\mathfrak{P}\zeta,\mathfrak{P}\zeta,\mathfrak{P}\eta,c)} - 1 \right)$$

$$\leq k \left(\frac{1}{\mathfrak{M}(\zeta,\zeta,\eta,c)} - 1 \right)$$

$$= \left(\frac{1}{\mathfrak{M}(\mathfrak{P}\zeta,\mathfrak{P}\zeta,\mathfrak{P}\eta,c)} - 1 \right)$$

$$\leq k^2 \left(\frac{1}{\mathfrak{M}(\zeta,\zeta,\eta,c)} - 1 \right)$$

$$\dots \dots \dots \dots$$

$$\leq k^n \left(\frac{1}{\mathfrak{M}(\zeta,\zeta,\eta,c)} - 1 \right)$$

$$\rightarrow 0 \quad \text{as} \quad n \to +\infty.$$

Therefore $\zeta = \eta$.

The following theorem considers three self mappings and proves the existence of their unique fixed point under a generalized contractive condition in a complete \mathfrak{M} -FCM Space.

Theorem 2. Let $(\mathcal{Z}, \mathfrak{M}, *)$ be a complete \mathfrak{M} -FCM Space where \mathfrak{M} is triangular. If $\mathcal{P}, \mathcal{Q}, \mathcal{R} : \mathcal{Z} \to \mathcal{Z}$ is such that for all $\zeta, \eta, \omega \in \mathcal{Z}$ and $c \in int(\mathfrak{C})$,

$$\left(\frac{1}{\mathfrak{M}(\mathcal{P}\zeta,\mathfrak{Q}\eta,\mathfrak{R}\omega,c)}-1\right) \leq \left\{\begin{array}{c} k_1\left(\frac{1}{\mathfrak{M}(\zeta,\eta,\omega,c)}-1\right)+k_2\left(\frac{1}{\mathfrak{M}(\zeta,\eta,\mathfrak{R}\omega,c)}-1\right)\\ +k_3\left(\frac{1}{\mathfrak{M}(\zeta,\mathfrak{Q}\eta,\omega,c)}-1\right)+k_4\left(\frac{1}{\mathfrak{M}(\mathcal{P}\zeta,\eta,\omega,c)}-1\right)\end{array}\right\}$$
(2.1)

where $k_i \in [0, +\infty]$, i = 1, ..., 4 and $k_1 + 2(k_2 + k_3) + k_4 < 1$. Then \mathcal{P}, \mathcal{Q} and \mathcal{R} have a unique common fixed point.

Proof. Let $\zeta_0 \in \mathcal{Z}$ be arbitrary. Let the sequence $\{\zeta_n\}$ be defined by

$$\begin{split} \zeta_{3n+1} &= \mathcal{P}\zeta_{3n}, \\ \zeta_{3n+2} &= \mathcal{Q}\zeta_{3n+1}, \text{and}, \\ \zeta_{3n+3} &= \mathcal{R}\zeta_{3n+2} \quad \text{for } n \geq 0. \end{split}$$

From (2.1),

$$\begin{pmatrix} \frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+2},\zeta_{3n+2},c)} - 1 \end{pmatrix} \leq \begin{pmatrix} \frac{1}{\mathfrak{M}(\mathcal{P}\zeta_{3n},\mathcal{Q}\zeta_{3n+1},\mathcal{Q}\zeta_{3n+1},c)} - 1 \end{pmatrix} \\ \leq \begin{cases} k_1 \left(\frac{1}{\mathfrak{M}(\zeta_{3n},\zeta_{3n+1},\zeta_{3n+1},c)} - 1 \right) + k_2 \left(\frac{1}{\mathfrak{M}(\zeta_{3n},\zeta_{3n+1},\mathcal{Q}\zeta_{3n+1},c)} - 1 \right) \\ + k_3 \left(\frac{1}{\mathfrak{M}(\zeta_{3n},\mathcal{Q}\zeta_{3n+1},\zeta_{3n+1},c)} - 1 \right) + k_4 \left(\frac{1}{\mathfrak{M}(\mathcal{P}\zeta_{3n},\zeta_{3n+1},\zeta_{3n+1},c)} - 1 \right) \end{cases} \\ = \begin{cases} k_1 \left(\frac{1}{\mathfrak{M}(\zeta_{3n},\zeta_{3n+1},\zeta_{3n+1},c)} - 1 \right) + k_2 \left(\frac{1}{\mathfrak{M}(\zeta_{3n},\zeta_{3n+1},\zeta_{3n+1},c)} - 1 \right) \\ + k_3 \left(\frac{1}{\mathfrak{M}(\zeta_{3n},\zeta_{3n+2},\zeta_{3n+1},c)} - 1 \right) + k_4 \left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+1},\zeta_{3n+1},c)} - 1 \right) \end{cases} \\ = \begin{cases} k_1 \left(\frac{1}{\mathfrak{M}(\zeta_{3n},\zeta_{3n+1},\zeta_{3n+1},c)} - 1 \right) + k_3 \left(\frac{1}{\mathfrak{M}(\zeta_{3n},\zeta_{3n+1},\zeta_{3n+1},c)} - 1 \right) \\ + k_2 \left(\frac{1}{\mathfrak{M}(\zeta_{3n},\zeta_{3n+1},\zeta_{3n+2},c)} - 1 \right) + k_3 \left(\frac{1}{\mathfrak{M}(\zeta_{3n},\zeta_{3n+2},\zeta_{3n+1},c)} - 1 \right) \end{cases} \end{cases}$$

$$\leq \left\{ \begin{array}{c} k_1 \left(\frac{1}{\mathfrak{M}(\zeta_{3n},\zeta_{3n+1},\zeta_{3n+1},c)} - 1 \right) \\ + k_2 \left[\left(\frac{1}{\mathfrak{M}(\zeta_{3n},\zeta_{3n+1},\zeta_{3n+1},c)} - 1 \right) + \left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+2},\zeta_{3n+2},c)} - 1 \right) \right] \\ + k_3 \left[\left(\frac{1}{\mathfrak{M}(\zeta_{3n},\zeta_{3n+1},\zeta_{3n+1},c)} - 1 \right) + \left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+2},\zeta_{3n+2},c)} - 1 \right) \right] \end{array} \right\} \\ = \left\{ \begin{array}{c} (k_1 + k_2 + k_3) \left(\frac{1}{\mathfrak{M}(\zeta_{3n},\zeta_{3n+1},\zeta_{3n+1},c)} - 1 \right) \\ + (k_2 + k_3) \left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+2},\zeta_{3n+2},c)} - 1 \right) \end{array} \right\}.$$

Therefore,

$$\left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+2},\zeta_{3n+2},c)}-1\right) \leq \frac{k_1+k_2+k_3}{1-(k_2+k_3)} \left(\frac{1}{\mathfrak{M}(\zeta_{3n},\zeta_{3n+1},\zeta_{3n+1},c)}-1\right).$$
(2.2)

Again, from (2.1),

$$\begin{split} & \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+3},\zeta_{3n+3},c)}-1\right) \leq \left(\frac{1}{\mathfrak{M}(Q\zeta_{3n+1},\mathcal{R}\zeta_{3n+2},\mathcal{R}\zeta_{3n+2},c)}-1\right) \\ & \leq \begin{cases} k_1\left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+2},\zeta_{3n+2},c)}-1\right)+k_2\left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+2},\mathcal{R}\zeta_{3n+2},c)}-1\right) \\ & +k_3\left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\mathcal{R}\zeta_{3n+2},\zeta_{3n+2},c)}-1\right)+k_4\left(\frac{1}{\mathfrak{M}(Q\zeta_{3n+1},\zeta_{3n+2},\zeta_{3n+2},c)}-1\right) \\ & +k_3\left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+2},\zeta_{3n+2},c)}-1\right)+k_4\left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+2},\zeta_{3n+2},c)}-1\right) \\ & +k_3\left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+2},\zeta_{3n+2},c)}-1\right)+k_4\left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+2},c)}-1\right) \\ & \leq \begin{cases} k_1\left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+2},\zeta_{3n+2},c)}-1\right)+k_4\left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+3},\zeta_{3n+3},c)}-1\right) \\ & +k_2\left[\left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+2},\zeta_{3n+2},c)}-1\right)+\left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+3},\zeta_{3n+3},c)}-1\right)\right] \\ & +k_3\left[\left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+2},\zeta_{3n+2},c)}-1\right)+\left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+3},\zeta_{3n+3},c)}-1\right)\right] \\ & = \begin{cases} (k_1+k_2+k_3)\left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+2},\zeta_{3n+3},c)}-1\right) \\ & +(k_2+k_3)\left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+3},c)}-1\right) \end{cases} \end{cases}. \end{split}$$

This gives,

$$\left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+3},\zeta_{3n+3},c)}-1\right) \le \frac{k_1+k_2+k_3}{1-(k_2+k_3)} \left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+2},\zeta_{3n+2},c)}-1\right).$$
(2.3)

Again, using (2.1),

$$\left(\frac{1}{\mathfrak{M}(\zeta_{3n+3},\zeta_{3n+4},\zeta_{3n+4},c)} - 1 \right) \leq \left(\frac{1}{\mathfrak{M}(\mathcal{R}\zeta_{3n+2},\mathcal{P}\zeta_{3n+3},\mathcal{P}\zeta_{3n+3},c)} - 1 \right)$$

$$\leq \begin{cases} k_1 \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+3},\zeta_{3n+3},c)} - 1 \right) + k_2 \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+3},\beta_{3n+3},c)} - 1 \right) \\ + k_3 \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\mathcal{P}\zeta_{3n+3},\zeta_{3n+3},c)} - 1 \right) + k_4 \left(\frac{1}{\mathfrak{M}(\mathcal{R}\zeta_{3n+2},\zeta_{3n+3},\zeta_{3n+3},c)} - 1 \right) \\ \end{cases} \\ = \begin{cases} k_1 \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+3},\zeta_{3n+3},c)} - 1 \right) + k_3 \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+3},\zeta_{3n+3},c)} - 1 \right) \\ + k_2 \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+3},\zeta_{3n+4},c)} - 1 \right) + k_3 \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+4},\zeta_{3n+4},c)} - 1 \right) \\ \end{cases} \\ \leq \begin{cases} k_1 \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+3},\zeta_{3n+3},c)} - 1 \right) + \left(\frac{1}{\mathfrak{M}(\zeta_{3n+3},\zeta_{3n+4},\zeta_{3n+4},c)} - 1 \right) \\ + k_3 \left[\left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+3},\zeta_{3n+3},c)} - 1 \right) + \left(\frac{1}{\mathfrak{M}(\zeta_{3n+3},\zeta_{3n+4},\zeta_{3n+4},c)} - 1 \right) \right] \end{cases}$$

$$= \left\{ \begin{array}{c} (k_1 + k_2 + k_3) \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2}, \zeta_{3n+3}, \zeta_{3n+3}, c)} - 1 \right) \\ + (k_2 + k_3) \left(\frac{1}{\mathfrak{M}(\zeta_{3n+3}, \zeta_{3n+4}, \zeta_{3n+4}, c)} - 1 \right) \end{array} \right\}.$$

This gives,

$$\left(\frac{1}{\mathfrak{M}(\zeta_{3n+3},\zeta_{3n+4},\zeta_{3n+4},c)}-1\right) \le \frac{k_1+k_2+k_3}{1-(k_2+k_3)} \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+3},\zeta_{3n+3},c)}-1\right).$$
(2.4)

Put $\mathfrak{M}_n = \left(\frac{1}{\mathfrak{M}(\zeta_n, \zeta_{n+1}, \zeta_{n+1}, c)} - 1\right)$ and $k = \frac{k_1 + k_2 + k_3}{1 - (k_2 + k_3)}$. Then from (2.2) to (2.4) we have the following inequalities: For $n = 0, 1, 2, \ldots$,

$$\begin{split} \mathfrak{M}_{3n+1} &\leq k\mathfrak{M}_{3n}, \\ \mathfrak{M}_{3n+2} &\leq k\mathfrak{M}_{3n+1}, \text{ and,} \\ \mathfrak{M}_{3n+3} &\leq k\mathfrak{M}_{3n+2}. \end{split}$$

These inequalities together gives that

$$\mathfrak{M}_{n+1} \le k\mathfrak{M}_n \quad \text{for } n = 0, 1, 2, \dots,$$

$$(2.5)$$

which makes $\{\zeta_n\}$ an \mathfrak{M} -FCC sequence.

Now, \mathfrak{M} is triangular and the space $(\mathcal{Z}, \mathfrak{M}, *)$ is symmetric. Therefore we have,

$$\begin{split} \left(\frac{1}{\mathfrak{M}(\zeta_{n},\zeta_{n},\zeta_{m},c)}-1\right) &\leq \left(\frac{1}{\mathfrak{M}(\zeta_{n},\zeta_{n},\zeta_{n+1},c)}-1\right) + \left(\frac{1}{\mathfrak{M}(\zeta_{n+1},\zeta_{m},\zeta_{m},c)}-1\right) \\ &= \left(\frac{1}{\mathfrak{M}(\zeta_{n},\zeta_{n+1},\zeta_{n+1},c)}-1\right) + \left(\frac{1}{\mathfrak{M}(\zeta_{n+1},\zeta_{n+1},\zeta_{m},c)}-1\right) \\ &\leq \left\{ \begin{array}{c} \left(\frac{1}{\mathfrak{M}(\zeta_{n+1},\zeta_{n+1},\zeta_{n+1},c)}-1\right) \\ + \left(\frac{1}{\mathfrak{M}(\zeta_{n+1},\zeta_{n+1},\zeta_{n+2},c)}-1\right) + \left(\frac{1}{\mathfrak{M}(\zeta_{n+2},\zeta_{m},\zeta_{m},c)}-1\right) \end{array} \right\} \\ &\leq \left\{ \begin{array}{c} \left(\frac{1}{\mathfrak{M}(\zeta_{n+1},\zeta_{n+2},\zeta_{n+2},c)}-1\right) + \left(\frac{1}{\mathfrak{M}(\zeta_{m-1},\zeta_{m},\zeta_{m},c)}-1\right) \\ + \left(\frac{1}{\mathfrak{M}(\zeta_{n+1},\zeta_{n+2},\zeta_{n+2},c)}-1\right) + \cdots + \left(\frac{1}{\mathfrak{M}(\zeta_{m-1},\zeta_{m},\zeta_{m},c)}-1\right) \end{array} \right\} \\ &= \mathfrak{M}_{n} + \mathfrak{M}_{n+1} + \cdots + \mathfrak{M}_{m-1} \\ &\leq k^{n}\mathfrak{M}_{0} + k^{n+1}\mathfrak{M}_{0} + \cdots + k^{m-1}\mathfrak{M}_{0} \\ &\leq \frac{k^{n}}{1-k}\mathfrak{M}_{0} \to 0 \text{ as } n \to +\infty. \end{split}$$

Thus $\{\zeta_n\}$ is Cauchy. As \mathcal{Z} is complete, there exists $\dot{\zeta} \in \mathcal{Z}$ such that

$$\lim_{n \to +\infty} \left(\frac{1}{\mathfrak{M}(\zeta_n, \dot{\zeta}, \dot{\zeta}, c)} - 1 \right) = 0.$$
(2.6)

Since \mathfrak{M} is triangular,

$$\left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\mathfrak{P}\dot{\zeta},c)}-1\right) \leq \left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\zeta_{3n+2},c)}-1\right) + \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\mathfrak{P}\dot{\zeta},\mathfrak{P}\dot{\zeta},c)}-1\right).$$
(2.7)

From (2.1),

$$\left(\frac{1}{\mathfrak{M}(\zeta_{3n+2}, \mathcal{P}\dot{\zeta}, \mathcal{P}\dot{\zeta}, c)} - 1\right) \leq \left(\frac{1}{\mathfrak{M}(\mathcal{Q}\zeta_{3n+1}, \mathcal{P}\dot{\zeta}, \mathcal{P}\dot{\zeta}, c)} - 1\right) \\
\leq \begin{cases} k_1 \left(\frac{1}{\mathfrak{M}(\zeta_{3n+1}, \dot{\zeta}, \dot{\zeta}, c)} - 1\right) + k_2 \left(\frac{1}{\mathfrak{M}(\zeta_{3n+1}, \dot{\zeta}, \mathcal{P}\dot{\zeta}, c)} - 1\right) \\
+ k_3 \left(\frac{1}{\mathfrak{M}(\zeta_{3n+1}, \mathcal{P}\dot{\zeta}, \dot{\zeta}, c)} - 1\right) + k_4 \left(\frac{1}{\mathfrak{M}(\mathcal{Q}\zeta_{3n+1}, \dot{\zeta}, \dot{\zeta}, c)} - 1\right) \end{cases} \\
= \begin{cases} k_1 \left(\frac{1}{\mathfrak{M}(\zeta_{3n+1}, \dot{\zeta}, \dot{\zeta}, c)} - 1\right) + k_2 \left(\frac{1}{\mathfrak{M}(\zeta_{3n+1}, \dot{\zeta}, \dot{\zeta}, c)} - 1\right) \\
+ k_3 \left(\frac{1}{\mathfrak{M}(\zeta_{3n+1}, \mathcal{P}\dot{\zeta}, \dot{\zeta}, c)} - 1\right) + k_4 \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2}, \dot{\zeta}, \dot{\zeta}, c)} - 1\right) \end{cases} \\
\rightarrow (k_2 + k_3) \left(\frac{1}{\mathfrak{M}(\dot{\zeta}, \dot{\zeta}, \mathcal{P}\dot{\zeta}, c)} - 1\right) \text{ as } n \to +\infty.$$

Therefore,

$$\lim_{n \to +\infty} \sup\left(\frac{1}{\mathfrak{M}(\zeta_{3n+2}, \mathfrak{P}\dot{\zeta}, \mathfrak{P}\dot{\zeta}, c)} - 1\right) \le (k_2 + k_3) \left(\frac{1}{\mathfrak{M}(\dot{\zeta}, \dot{\zeta}, \mathfrak{P}\dot{\zeta}, c)} - 1\right).$$
(2.8)

From (2.7) and (2.8), we have that

$$\left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\mathfrak{P}\dot{\zeta},c)}-1\right) \leq (k_2+k_3)\left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\mathfrak{P}\dot{\zeta},c)}-1\right).$$

Since $k_2 + k_3 < 1$, we have

$$\begin{pmatrix} \frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\mathfrak{P}\dot{\zeta},c)} - 1 \end{pmatrix} = 0, \quad \text{and this gives} \\ \mathfrak{P}\dot{\zeta} = \dot{\zeta}.$$

Since \mathfrak{M} is triangular,

$$\left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\mathfrak{Q}\dot{\zeta},c)}-1\right) \leq \left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\zeta_{3n+3},c)}-1\right) + \left(\frac{1}{\mathfrak{M}(\zeta_{3n+3},\mathfrak{Q}\dot{\zeta},\mathfrak{Q}\dot{\zeta},c)}-1\right).$$
(2.9)

From (2.1),

$$\begin{split} \left(\frac{1}{\mathfrak{M}(\zeta_{3n+3}, \Omega\dot{\zeta}, \Omega\dot{\zeta}, c)} - 1\right) &= \left(\frac{1}{\mathfrak{M}(\mathcal{R}\zeta_{3n+2}, \Omega\dot{\zeta}, \Omega\dot{\zeta}, c)} - 1\right) \\ &\leq \begin{cases} k_1 \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2}, \dot{\zeta}, \dot{\zeta}, c)} - 1\right) + k_2 \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2}, \dot{\zeta}, \Omega\dot{\zeta}, c)} - 1\right) \\ + k_3 \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2}, \Omega\dot{\zeta}, \dot{\zeta}, c)} - 1\right) + k_4 \left(\frac{1}{\mathfrak{M}(\mathcal{R}\zeta_{3n+2}, \dot{\zeta}, \dot{\zeta}, c)} - 1\right) \end{cases} \\ &= \begin{cases} k_1 \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2}, \dot{\zeta}, \dot{\zeta}, c)} - 1\right) + k_2 \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2}, \dot{\zeta}, \Omega\dot{\zeta}, c)} - 1\right) \\ + k_3 \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2}, \Omega\dot{\zeta}, \dot{\zeta}, c)} - 1\right) + k_4 \left(\frac{1}{\mathfrak{M}(\zeta_{3n+3}, \dot{\zeta}, \dot{\zeta}, c)} - 1\right) \end{cases} \\ &\to (k_2 + k_3) \left(\frac{1}{\mathfrak{M}(\dot{\zeta}, \dot{\zeta}, \Omega\dot{\zeta}, c)} - 1\right) \text{ as } n \to +\infty. \end{split}$$

Therefore,

$$\lim_{n \to +\infty} \sup\left(\frac{1}{\mathfrak{M}(\zeta_{3n+3}, \mathcal{Q}\dot{\zeta}, \mathcal{Q}\dot{\zeta}, c)} - 1\right) \le (k_2 + k_3) \left(\frac{1}{\mathfrak{M}(\dot{\zeta}, \dot{\zeta}, \mathcal{Q}\dot{\zeta}, c)} - 1\right).$$
(2.10)

From (2.9) and (2.10), we have

$$\left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\mathfrak{Q}\dot{\zeta},c)}-1\right) \leq (k_2+k_3)\left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\mathfrak{Q}\dot{\zeta},c)}-1\right)$$

Since $k_2 + k_3 < 1$, we have

$$\begin{pmatrix} \frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\Omega\dot{\zeta},c)} - 1 \end{pmatrix} = 0, \quad \text{and this gives} \\ \Omega\dot{\zeta} = \dot{\zeta}$$

Since ${\mathfrak M}$ is triangular,

$$\left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\mathcal{R}\dot{\zeta},c)}-1\right) \leq \left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\zeta_{3n+1},c)}-1\right) + \left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\mathcal{R}\dot{\zeta},\mathcal{R}\dot{\zeta},c)}-1\right).$$
(2.11)

From (2.1),

$$\begin{split} \left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\mathfrak{R}\dot{\zeta},\mathfrak{R}\dot{\zeta},c)}-1\right) &= \left(\frac{1}{\mathfrak{M}(\mathfrak{P}\zeta_{3n},\mathfrak{R}\dot{\zeta},\mathfrak{R}\dot{\zeta},c)}-1\right) \\ &\leq \begin{cases} k_1\left(\frac{1}{\mathfrak{M}(\zeta_{3n},\dot{\zeta},\dot{\zeta},c)}-1\right)+k_2\left(\frac{1}{\mathfrak{M}(\zeta_{3n},\dot{\zeta},\mathfrak{R}\dot{\zeta},c)}-1\right) \\ +k_3\left(\frac{1}{\mathfrak{M}(\zeta_{3n},\mathfrak{R}\dot{\zeta},\dot{\zeta},c)}-1\right)+k_4\left(\frac{1}{\mathfrak{M}(\zeta_{3n},\dot{\zeta},\dot{\zeta},c)}-1\right) \end{cases} \\ &= \begin{cases} k_1\left(\frac{1}{\mathfrak{M}(\zeta_{3n},\dot{\zeta},\dot{\zeta},c)}-1\right)+k_2\left(\frac{1}{\mathfrak{M}(\zeta_{3n},\dot{\zeta},\mathfrak{R}\dot{\zeta},c)}-1\right) \\ +k_3\left(\frac{1}{\mathfrak{M}(\zeta_{3n},\mathfrak{R}\dot{\zeta},\dot{\zeta},c)}-1\right)+k_4\left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\dot{\zeta},\dot{\zeta},c)}-1\right) \end{cases} \\ &\to (k_2+k_3)\left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\mathfrak{R}\dot{\zeta},c)}-1\right) \text{ as } n \to +\infty. \end{split}$$

Therefore,

$$\lim_{n \to +\infty} \sup\left(\frac{1}{\mathfrak{M}(\zeta_{3n+1}, \mathfrak{R}\dot{\zeta}, \mathfrak{R}\dot{\zeta}, c)} - 1\right) \le (k_2 + k_3) \left(\frac{1}{\mathfrak{M}(\dot{\zeta}, \dot{\zeta}, \mathfrak{R}\dot{\zeta}, c)} - 1\right).$$
(2.12)

From (2.11) and (2.12), we have that

$$\left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\mathfrak{R}\dot{\zeta},c)}-1\right) \leq (k_2+k_3)\left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\mathfrak{R}\dot{\zeta},c)}-1\right).$$

Since $k_2 + k_3 < 1$, we have $\left(\frac{1}{\mathfrak{M}(\dot{\zeta}, \ddot{\zeta}, \mathcal{R}\dot{\zeta}, c)} - 1\right) = 0$, and this gives

$$\mathcal{R}\dot{\zeta} = \dot{\zeta}.$$

Thus we have shown that

$$\mathcal{P}\dot{\zeta}=\mathcal{Q}\dot{\zeta}=\mathcal{R}\dot{\zeta}=\dot{\zeta}.$$

Suppose $\mathcal{P}\ddot{\zeta} = \mathcal{Q}\ddot{\zeta} = \mathcal{R}\ddot{\zeta} = \ddot{\zeta}$. Then from (2.1),

$$\begin{pmatrix} \frac{1}{\mathfrak{M}(\dot{\zeta},\ddot{\zeta},\ddot{\zeta},c)} - 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\mathfrak{M}(\mathcal{P}\dot{\zeta},\mathcal{Q}\ddot{\zeta},\mathcal{R}\ddot{\zeta},c)} - 1 \end{pmatrix}$$

$$\leq \begin{cases} k_1 \left(\frac{1}{\mathfrak{M}(\dot{\zeta},\ddot{\zeta},\ddot{\zeta},c)} - 1 \right) + k_2 \left(\frac{1}{\mathfrak{M}(\dot{\zeta},\ddot{\zeta},\mathcal{R}\ddot{\zeta},c)} - 1 \right) \\ + k_3 \left(\frac{1}{\mathfrak{M}(\dot{\zeta},\ddot{\zeta},\ddot{\zeta},c)} - 1 \right) + k_4 \left(\frac{1}{\mathfrak{M}(\dot{\zeta},\ddot{\zeta},\ddot{\zeta},c)} - 1 \right) \\ \end{cases}$$

$$= \begin{cases} k_1 \left(\frac{1}{\mathfrak{M}(\dot{\zeta},\ddot{\zeta},\ddot{\zeta},c)} - 1 \right) + k_2 \left(\frac{1}{\mathfrak{M}(\dot{\zeta},\ddot{\zeta},\ddot{\zeta},c)} - 1 \right) \\ + k_3 \left(\frac{1}{\mathfrak{M}(\dot{\zeta},\ddot{\zeta},\ddot{\zeta},c)} - 1 \right) + k_4 \left(\frac{1}{\mathfrak{M}(\dot{\zeta},\ddot{\zeta},\ddot{\zeta},c)} - 1 \right) \\ \end{cases}$$

$$= (k_1 + k_2 + k_3 + k_4) \left(\frac{1}{\mathfrak{M}(\dot{\zeta},\ddot{\zeta},\ddot{\zeta},c)} - 1 \right)$$

$$That is, \quad \left(\frac{1}{\mathfrak{M}(\dot{\zeta},\ddot{\zeta},\ddot{\zeta},c)} - 1 \right) \leq (k_1 + k_2 + k_3 + k_4) \left(\frac{1}{\mathfrak{M}(\dot{\zeta},\ddot{\zeta},\ddot{\zeta},c)} - 1 \right).$$

$$Therefore, \quad \left(\frac{1}{\mathfrak{M}(\dot{\zeta},\ddot{\zeta},\ddot{\zeta},c)} - 1 \right) = 0, \quad \text{since} \ k_1 + k_2 + k_3 + k_4 < 1.$$

Hence we can conclude that $\dot{\zeta}$ is the unique common fixed point of \mathcal{P}, \mathcal{Q} and \mathcal{R} .

Corollary 3. Let $(\mathcal{Z}, \mathfrak{M}, *)$ be a complete \mathfrak{M} -FCM Space where \mathfrak{M} is triangular. If $\mathcal{P} : X \to X$ is such that for all $\zeta, \eta, \omega \in X$ and $c \in int(\mathfrak{C})$,

$$\left(\frac{1}{\mathfrak{M}(\mathfrak{P}\zeta,\mathfrak{P}\eta,\mathfrak{P}\omega,c)}-1\right) \leq \left\{ \begin{array}{c} k_1\left(\frac{1}{\mathfrak{M}(\zeta,\eta,\omega,c)}-1\right)+k_2\left(\frac{1}{\mathfrak{M}(\zeta,\eta,\mathfrak{P}\omega,c)}-1\right)\\ +k_3\left(\frac{1}{\mathfrak{M}(\zeta,\mathfrak{P}\eta,\omega,c)}-1\right)+k_4\left(\frac{1}{\mathfrak{M}(\mathfrak{P}\zeta,\eta,\omega,c)}-1\right) \end{array} \right\},$$

where $k_i \in [0, +\infty], i = 1, ..., 4$ and $k_1 + 2(k_2 + k_3) + k_4 < 1$. Then \mathcal{P} has unique fixed point.

Corollary 4. Theorem 2 gives Theorem 1 when $\mathcal{P} = \mathcal{Q} = \mathcal{R}$ and $k_2 = k_3 = k_4 = 0$.

where , $\mathcal{C} =$ and a continuous *t*-norm *.

Example 5. Consider($\mathcal{Z}, \mathfrak{M}, *$) in which $\mathfrak{M} : \mathcal{Z}^3 \times (0, +\infty) \to [0, 1]$ by

$$\mathfrak{M}(\zeta,\eta,\omega,c) = \frac{\|c\|}{\|c\| + (|\zeta-\eta| + |\eta-\omega| + |\omega-\zeta|)} \text{ for all } \zeta,\eta,\omega\in\mathcal{Z} \text{ and } c\in int(\mathfrak{C})$$

where $\mathcal{Z} = \{1, 2, 3\}$ and $\mathcal{C} = \mathbb{R}^+$. Then it is clear that $(\mathcal{Z}, \mathfrak{M}, *)$ is a complete \mathfrak{M} -FCM Space and that \mathfrak{M} is triangular. Consider the self mappings $\mathfrak{P}, \mathfrak{Q}$ and \mathfrak{R} from \mathcal{Z} to \mathcal{Z} , given by P(1) = 1, P(2) = 2, P(3) = 1, Q(1) = 1, Q(2) = 2, Q(3) = 2, R(1) = 3, R(2) = 2 and R(3) = 2. Then each one of $\mathfrak{P}, \mathfrak{Q}$ and \mathfrak{R} is not \mathfrak{M} -FCC and it is not possible for the \mathfrak{M} -fuzzy cone Banach contraction theorem to assure the existence of their respective fixed points. But $\mathfrak{P}, \mathfrak{Q}$ and \mathfrak{R} together satisfies the condition (2.1) with $k_1 = \frac{1}{10}, k_2 = \frac{1}{25}, k_3 = \frac{1}{25}$ and $k_4 = \frac{3}{5}$. Therefore $\mathfrak{P}, \mathfrak{Q}$ and \mathfrak{R} have a unique common fixed point which is 2.

Theorem 6. Let $(\mathcal{Z}, \mathfrak{M}, *)$ be a complete \mathfrak{M} -FCM Space where \mathfrak{M} is triangular. If $\mathcal{P}, \mathcal{Q}, \mathcal{R} : \mathcal{Z} \to \mathcal{Z}$ is such that for all $\zeta, \eta, \omega \in \mathcal{Z}$ and $c \in int(\mathfrak{C})$,

$$\left(\frac{1}{\mathfrak{M}(\mathfrak{P}\zeta,\mathfrak{Q}\eta,\mathfrak{R}\omega,c)}-1\right) \le k\left(\frac{1}{\Psi(\zeta,\eta,\omega)}-1\right),\tag{6.1}$$

where $\Psi(\zeta, \eta, \omega) = \min\{\mathfrak{M}(\zeta, \mathfrak{Q}\eta, \mathfrak{R}\omega, c), \mathfrak{M}(\mathfrak{P}\zeta, \eta, \mathfrak{R}\omega, c), \mathfrak{M}(\mathfrak{P}\zeta, \mathfrak{Q}\eta, \omega, c)\}$ and $k \in (0, 1)$. Then $\mathfrak{P}, \mathfrak{Q}$ and \mathfrak{R} have unique common fixed point.

Proof. Let $\zeta_0 \in \mathcal{Z}$ be arbitrary. Define the sequence $\{\zeta_n\}$ as in Theorem (2). From (6.1),

$$\begin{pmatrix} \frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+2},\zeta_{3n+2},c)} - 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\mathfrak{M}(\mathcal{P}\zeta_{3n},\mathcal{Q}\zeta_{3n+1},\mathcal{Q}\zeta_{3n+1},c)} - 1 \end{pmatrix} \\ \leq k \left(\frac{1}{\Psi(\zeta,\eta,\omega)} - 1 \right), \\ \text{where, } \Psi(\zeta,\eta,\omega) = \min \left\{ \begin{array}{c} \mathfrak{M}(\zeta_{3n},\mathcal{Q}\zeta_{3n+1},\mathcal{Q}\zeta_{3n+1},c), \mathfrak{M}(\mathcal{P}\zeta_{3n},\zeta_{3n+1},\mathcal{Q}\zeta_{3n+1},c), \\ \mathfrak{M}(\mathcal{P}\zeta_{3n},\mathcal{Q}\zeta_{3n+1},\zeta_{3n+1},c) \end{array} \right\} \\ = \min \left\{ \begin{array}{c} \mathfrak{M}(\zeta_{3n},\zeta_{3n+2},\zeta_{3n+2},c), \mathfrak{M}(\zeta_{3n+1},\zeta_{3n+1},\zeta_{3n+2},c), \\ \mathfrak{M}(\zeta_{3n+1},\zeta_{3n+2},\zeta_{3n+1},c) \end{array} \right\} \\ = \min \left\{ \begin{array}{c} \mathfrak{M}(\zeta_{3n},\zeta_{3n+2},\zeta_{3n+2},c), \mathfrak{M}(\zeta_{3n+1},\zeta_{3n+1},\zeta_{3n+2},c), \\ \mathfrak{M}(\zeta_{3n+1},\zeta_{3n+2},\zeta_{3n+1},c) \end{array} \right\}.$$

Case(i) $\Psi(\zeta,\eta,\omega) = \mathfrak{M}(\zeta_{3n},\zeta_{3n+2},\zeta_{3n+2},c).$

$$\left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+2},\zeta_{3n+2},c)} - 1 \right) \leq k \left(\frac{1}{\mathfrak{M}(\zeta_{3n},\zeta_{3n+2},\zeta_{3n+2},c)} - 1 \right) \\ \leq k \left\{ \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+2},\zeta_{3n+1},c)} - 1 \right) + \left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n},\zeta_{3n},c)} - 1 \right) \right\}.$$

Therefore,

$$\left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+2},\zeta_{3n+2},c)}-1\right) \leq \frac{k}{1-k} \left(\frac{1}{\mathfrak{M}(\zeta_{3n},\zeta_{3n+1},\zeta_{3n+1},c)}-1\right).$$

Case(ii) $\Psi(\zeta,\eta,\omega) = \mathfrak{M}(\zeta_{3n+1},\zeta_{3n+1},\zeta_{3n+2},c).$

$$\left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+2},\zeta_{3n+2},c)} - 1 \right) \leq k \left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+1},\zeta_{3n+2},c)} - 1 \right), \text{ and, this gives}$$
$$\left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+2},\zeta_{3n+2},c)} - 1 \right) = 0, \text{ which is absurd.}$$

Therefore,

$$\left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+2},\zeta_{3n+2},c)}-1\right) \le \frac{k}{1-k} \left(\frac{1}{\mathfrak{M}(\zeta_{3n},\zeta_{3n+1},\zeta_{3n+1},c)}-1\right).$$
(6.2)

From (6.1),

$$\begin{pmatrix} \frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+3},\zeta_{3n+3},c)} - 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\mathfrak{M}(\Omega\zeta_{3n+1},\mathcal{R}\zeta_{3n+2},\mathcal{R}\zeta_{3n+2},c)} - 1 \end{pmatrix} \\ \leq k \begin{pmatrix} \frac{1}{\Psi(\zeta,\eta,\omega)} - 1 \end{pmatrix}, \\ \text{where, } \Psi(\zeta,\eta,\omega) = \min \left\{ \begin{array}{c} \mathfrak{M}(\zeta_{3n+1},\mathcal{R}\zeta_{3n+2},\mathcal{R}\zeta_{3n+2},c), \mathfrak{M}(\Omega\zeta_{3n+1},\zeta_{3n+2},\mathcal{R}\zeta_{3n+2},c), \\ \mathfrak{M}(\Omega\zeta_{3n+1},\mathcal{R}\zeta_{3n+2},\zeta_{3n+2},c) & \end{array} \right\} \\ = \min \left\{ \begin{array}{c} \mathfrak{M}(\zeta_{3n+1},\zeta_{3n+3},\zeta_{3n+3},c), \mathfrak{M}(\zeta_{3n+2},\zeta_{3n+2},\zeta_{3n+3},c), \\ \mathfrak{M}(\zeta_{3n+2},\zeta_{3n+3},\zeta_{3n+2},c) & \end{array} \right\} \\ = \min \left\{ \begin{array}{c} \mathfrak{M}(\zeta_{3n+1},\zeta_{3n+3},\zeta_{3n+3},c), \mathfrak{M}(\zeta_{3n+2},\zeta_{3n+2},\zeta_{3n+3},c), \\ \mathfrak{M}(\zeta_{3n+2},\zeta_{3n+3},\zeta_{3n+3},c), \mathfrak{M}(\zeta_{3n+2},\zeta_{3n+3},c), \end{array} \right\}.$$

Case(i) $\Psi(\zeta, \eta, \omega) = \mathfrak{M}(\zeta_{3n+1}, \zeta_{3n+3}, \zeta_{3n+3}, c).$

$$\left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+3},\zeta_{3n+3},c)} - 1 \right) \leq k \left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+3},\zeta_{3n+3},c)} - 1 \right) \\ \leq k \left\{ \left(\frac{1}{\mathfrak{M}(\zeta_{3n+3},\zeta_{3n+3},\zeta_{3n+3},\zeta_{3n+2},c)} - 1 \right) + \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+1},\zeta_{3n+1},c)} - 1 \right) \right\}.$$

Therefore,

$$\left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+3},\zeta_{3n+3},c)}-1\right) \leq \frac{k}{1-k} \left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+2},\zeta_{3n+2},c)}-1\right).$$

 $\mathbf{Case(ii)} \ \Psi(\zeta,\eta,\omega) = \mathfrak{M}(\zeta_{3n+2},\zeta_{3n+2},\zeta_{3n+3},c).$

$$\left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+3},\zeta_{3n+3},c)} - 1 \right) \leq k \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+2},\zeta_{3n+3},c)} - 1 \right), \text{ and, this gives} \\ \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+3},\zeta_{3n+3},c)} - 1 \right) = 0, \text{ which is absurd.}$$

Therefore,

$$\left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+3},\zeta_{3n+3},c)} - 1\right) \le \frac{k}{1-k} \left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\zeta_{3n+2},\zeta_{3n+2},c)} - 1\right).$$
(6.3)

Again, from (6.1),

$$\begin{pmatrix} \frac{1}{\mathfrak{M}(\zeta_{3n+3},\zeta_{3n+4},\zeta_{3n+4},c)} - 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\mathfrak{M}(\mathcal{R}\zeta_{3n+2},\mathcal{P}\zeta_{3n+3},\mathcal{P}\zeta_{3n+3},c)} - 1 \end{pmatrix} \\ \leq k \left(\frac{1}{\Psi(\zeta,\eta,\omega)} - 1 \right), \\ \text{where, } \Psi(\zeta,\eta,\omega) = \min \left\{ \begin{array}{c} \mathfrak{M}(\zeta_{3n+2},\mathcal{P}\zeta_{3n+3},\mathcal{P}\zeta_{3n+3},c), \mathfrak{M}(\mathcal{R}\zeta_{3n+2},\zeta_{3n+3},\mathcal{P}\zeta_{3n+3},c), \\ \mathfrak{M}(\mathcal{R}\zeta_{3n+2},\mathcal{P}\zeta_{3n+3},\zeta_{3n+3},\zeta_{3n+3},c) \end{array} \right\} \\ = \min \left\{ \begin{array}{c} \mathfrak{M}(\zeta_{3n+2},\zeta_{3n+4},\zeta_{3n+4},c), \mathfrak{M}(\zeta_{3n+3},\zeta_{3n+3},\zeta_{3n+4},c), \\ \mathfrak{M}(\zeta_{3n+3},\zeta_{3n+4},\zeta_{3n+4},c), \mathfrak{M}(\zeta_{3n+3},\zeta_{3n+3},\zeta_{3n+4},c), \\ \end{array} \right\} \\ = \min \left\{ \begin{array}{c} \mathfrak{M}(\zeta_{3n+2},\zeta_{3n+4},\zeta_{3n+4},c), \mathfrak{M}(\zeta_{3n+3},\zeta_{3n+3},\zeta_{3n+4},c), \\ \mathfrak{M}(\zeta_{3n+2},\zeta_{3n+4},\zeta_{3n+4},c), \mathfrak{M}(\zeta_{3n+3},\zeta_{3n+3},\zeta_{3n+4},c) \end{array} \right\}.$$

Case(i) $\Psi(\zeta,\eta,\omega) = \mathfrak{M}(\zeta_{3n+2},\zeta_{3n+4},\zeta_{3n+4},c).$

$$\left(\frac{1}{\mathfrak{M}(\zeta_{3n+3},\zeta_{3n+4},\zeta_{3n+4},c)} - 1 \right) \leq k \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+4},\zeta_{3n+4},c)} - 1 \right) \\ \leq k \left\{ \left(\frac{1}{\mathfrak{M}(\zeta_{3n+4},\zeta_{3n+4},\zeta_{3n+4},c)} - 1 \right) + \left(\frac{1}{\mathfrak{M}(\zeta_{3n+3},\zeta_{3n+2},\zeta_{3n+2},c)} - 1 \right) \right\}.$$

Therefore,

$$\left(\frac{1}{\mathfrak{M}(\zeta_{3n+3},\zeta_{3n+4},\zeta_{3n+4},c)}-1\right) \leq \frac{k}{1-k} \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+3},\zeta_{3n+2},c)}-1\right).$$

Case(ii) $\Psi(\zeta,\eta,\omega) = \mathfrak{M}(\zeta_{3n+3},\zeta_{3n+3},\zeta_{3n+4},c).$

$$\left(\frac{1}{\mathfrak{M}(\zeta_{3n+3},\zeta_{3n+4},\zeta_{3n+4},c)} - 1\right) \leq k \left(\frac{1}{\mathfrak{M}(\zeta_{3n+3},\zeta_{3n+3},\zeta_{3n+4},c)} - 1\right), \text{ and, this gives} \left(\frac{1}{\mathfrak{M}(\zeta_{3n+3},\zeta_{3n+4},\zeta_{3n+4},c)} - 1\right) = 0, \text{ which is absurd.}$$
Therefore, $\left(\frac{1}{\mathfrak{M}(\zeta_{3n+3},\zeta_{3n+4},\zeta_{3n+4},c)} - 1\right) \leq \frac{k}{1-k} \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\zeta_{3n+3},\zeta_{3n+2},c)} - 1\right).$ (6.4)

From (6.2), (6.3) and (6.4), we obtain

$$\left(\frac{1}{\mathfrak{M}(\zeta_{n+1},\zeta_{n+2},\zeta_{n+2},c)}-1\right) \leq \frac{k}{1-k} \left(\frac{1}{\mathfrak{M}(\zeta_n,\zeta_{n+1},\zeta_{n+1},c)}-1\right), \text{ and, this gives,} \\ \left(\frac{1}{\mathfrak{M}(\zeta_{n+1},\zeta_{n+2},\zeta_{n+2},c)}-1\right) \leq \left(\frac{k}{1-k}\right)^n \left(\frac{1}{\mathfrak{M}(\zeta_0,\zeta_1,\zeta_1,c)}-1\right).$$

The above two inequalities imply that $\{\zeta_n\}$ is \mathfrak{M} -FCC and Cauchy. Therefore there is an element $\dot{\zeta} \in \mathcal{Z}$ such that

$$\lim_{n \to +\infty} \left(\frac{1}{\mathfrak{M}(\zeta_n, \dot{\zeta}, \dot{\zeta}, t)} - 1 \right) = 0.$$
(6.5)

Since \mathfrak{M} is triangular,

$$\left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\mathfrak{P}\dot{\zeta},t)}-1\right) \leq \left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\zeta_{3n+2},t)}-1\right) + \left(\frac{1}{\mathfrak{M}(\zeta_{3n+2},\mathfrak{P}\dot{\zeta},\mathfrak{P}\dot{\zeta},t)}-1\right).$$
(6.6)

From (6.1),

$$\begin{pmatrix} \frac{1}{\mathfrak{M}(\zeta_{3n+2}, \mathcal{P}\dot{\zeta}, \mathcal{P}\dot{\zeta}, t)} - 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\mathfrak{M}(\mathcal{Q}\zeta_{3n+1}, \mathcal{P}\dot{\zeta}, \mathcal{P}\dot{\zeta}, t)} - 1 \end{pmatrix}$$

$$\leq k \left(\frac{1}{\Psi(\zeta, \eta, \omega)} - 1 \right),$$

where, $\Psi(\zeta, \eta, \omega) = \min \{ \mathfrak{M}(\zeta_{3n+1}, \mathcal{P}\dot{\zeta}, \mathcal{P}\dot{\zeta}, t), \mathfrak{M}(\mathcal{Q}\zeta_{3n+1}, \dot{\zeta}, \mathcal{P}\dot{\zeta}, t), \mathfrak{M}(\mathcal{Q}\zeta_{3n+1}, \mathcal{P}\dot{\zeta}, \dot{\zeta}, t) \}$

$$= \min \{ \mathfrak{M}(\zeta_{3n+1}, \zeta_{3n+1}, \mathcal{P}\dot{\zeta}, t), \mathfrak{M}(\zeta_{3n+2}, \dot{\zeta}, \mathcal{P}\dot{\zeta}, t), \mathfrak{M}(\zeta_{3n+2}, \mathcal{P}\dot{\zeta}, \dot{\zeta}, t) \}$$

$$\rightarrow \mathfrak{M}(\dot{\zeta}, \dot{\zeta}, \mathcal{P}\dot{\zeta}, t) \text{ as } n \to +\infty.$$

$$\lim_{n \to +\infty} \sup\left(\frac{1}{\mathfrak{M}(\zeta_{3n+2}, \mathcal{P}\dot{\zeta}, \mathcal{P}\dot{\zeta}, t)} - 1\right) \le k\left(\frac{1}{\mathfrak{M}(\dot{\zeta}, \dot{\zeta}, \mathcal{P}\dot{\zeta}, t)} - 1\right).$$
(6.7)

From (6.5), (6.6) and (6.7), we have that

$$\left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\mathfrak{P}\dot{\zeta},t)}-1\right) \le k\left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\mathfrak{P}\dot{\zeta},t)}-1\right).$$
(6.8)

Therefore,

•

$$\left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\mathfrak{P}\dot{\zeta},t)}-1\right)=0$$

This gives $\mathcal{P}\dot{\zeta} = \dot{\zeta}$. Since \mathfrak{M} is triangular,

$$\left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\mathfrak{Q}\dot{\zeta},t)}-1\right) \leq \left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\zeta_{3n+3},t)}-1\right) + \left(\frac{1}{\mathfrak{M}(\zeta_{3n+3},\mathfrak{Q}\dot{\zeta},\mathfrak{Q}\dot{\zeta},t)}-1\right).$$
(6.9)

From (6.1),

$$\begin{pmatrix} \frac{1}{\mathfrak{M}(\zeta_{3n+3}, \mathfrak{Q}\dot{\zeta}, \mathfrak{Q}\dot{\zeta}, t)} - 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\mathfrak{M}(\mathfrak{R}\zeta_{3n+2}, \mathfrak{Q}\dot{\zeta}, \mathfrak{Q}\dot{\zeta}, t)} - 1 \end{pmatrix}$$

$$\leq k \left(\frac{1}{\Psi(\zeta, \eta, \omega)} - 1 \right),$$

where, $\Psi(\zeta, \eta, \omega) = \min \{ \mathfrak{M}(\zeta_{3n+2}, \mathfrak{Q}\dot{\zeta}, \mathfrak{Q}\dot{\zeta}, t), \mathfrak{M}(\mathfrak{R}\zeta_{3n+2}, \dot{\zeta}, \mathfrak{Q}\dot{\zeta}, t), \mathfrak{M}(\mathfrak{R}\zeta_{3n+2}, \mathfrak{Q}\dot{\zeta}, \dot{\zeta}, t) \}$

$$= \min \{ \mathfrak{M}(\zeta_{3n+2}, \mathfrak{Q}\dot{\zeta}, \mathfrak{Q}\dot{\zeta}, t), \mathfrak{M}(\zeta_{3n+3}, \dot{\zeta}, \mathfrak{Q}\dot{\zeta}, t), \mathfrak{M}(\zeta_{3n+3}, \mathfrak{Q}\dot{\zeta}, \dot{\zeta}, t) \}$$

$$\rightarrow \mathfrak{M}(\dot{\zeta}, \dot{\zeta}, \mathfrak{Q}\dot{\zeta}, t) \text{ as } n \to +\infty.$$

Therefore,

$$\lim_{n \to +\infty} \sup\left(\frac{1}{\mathfrak{M}(\zeta_{3n+3}, \mathcal{Q}\dot{\zeta}, \mathcal{Q}\dot{\zeta}, t)} - 1\right) \le k\left(\frac{1}{\mathfrak{M}(\dot{\zeta}, \dot{\zeta}, \mathcal{Q}\dot{\zeta}, t)} - 1\right).$$
(6.10)

From (6.5), (6.9) and (6.10), we have that

$$\left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\Omega\dot{\zeta},t)}-1\right) \leq k \left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\Omega\dot{\zeta},t)}-1\right).$$

Therefore, $\left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\Omega\dot{\zeta},t)}-1\right) = 0$, and this gives,
 $\Omega\dot{\zeta} = \dot{\zeta}.$ (6.11)

Since \mathfrak{M} is triangular,

$$\left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\mathfrak{R}\dot{\zeta},t)}-1\right) \leq \left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\zeta_{3n+1},t)}-1\right) + \left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\mathfrak{R}\dot{\zeta},\mathfrak{R}\dot{\zeta},t)}-1\right).$$
(6.12)

From (6.1),

$$\begin{split} \left(\frac{1}{\mathfrak{M}(\zeta_{3n+1},\mathfrak{R}\dot{\zeta},\mathfrak{R}\dot{\zeta},t)}-1\right) &= \left(\frac{1}{\mathfrak{M}(\mathfrak{P}\zeta_{3n},\mathfrak{R}\dot{\zeta},\mathfrak{R}\dot{\zeta},t)}-1\right) \\ &\leq k\left(\frac{1}{\Psi(\zeta,\eta,\omega)}-1\right), \\ \text{where, } \Psi(\zeta,\eta,\omega) &= \min\left\{ \mathfrak{M}(\zeta_{3n},\mathfrak{R}\dot{\zeta},\mathfrak{R}\dot{\zeta},t),\mathfrak{M}(\mathfrak{P}\zeta_{3n},\dot{\zeta},\mathfrak{R}\dot{\zeta},t),\mathfrak{M}(\mathfrak{P}\zeta_{3n},\mathfrak{R}\dot{\zeta},\dot{\zeta},t) \right\} \\ &= \min\left\{ \mathfrak{M}(\zeta_{3n},\mathfrak{R}\dot{\zeta},\mathfrak{R}\dot{\zeta},t),\mathfrak{M}(\zeta_{3n+1},\dot{\zeta},\mathfrak{R}\dot{\zeta},t),\mathfrak{M}(\zeta_{3n+1},\mathfrak{R}\dot{\zeta},\dot{\zeta},t) \right\} \\ &\to \mathfrak{M}(\dot{\zeta},\dot{\zeta},\mathfrak{R}\dot{\zeta},t) \quad \text{as} \quad n \to +\infty. \end{split}$$

Therefore,

$$\lim_{n \to +\infty} \sup\left(\frac{1}{\mathfrak{M}(\zeta_{3n+1}, \mathcal{R}\dot{\zeta}, \mathcal{R}\dot{\zeta}, t)} - 1\right) \le k\left(\frac{1}{\mathfrak{M}(\dot{\zeta}, \dot{\zeta}, \mathcal{R}\dot{\zeta}, t)} - 1\right).$$
(6.13)
d (6.13) we have

From (6.5), (6.12) and (6.13), we have

$$\left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\mathfrak{R}\dot{\zeta},t)}-1\right) \leq k\left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\mathfrak{R}\dot{\zeta},t)}-1\right).$$

Therefore, $\left(\frac{1}{\mathfrak{M}(\dot{\zeta},\dot{\zeta},\mathfrak{R}\dot{\zeta},t)}-1\right) = 0$, and this gives
 $\mathcal{R}\dot{\zeta} = \dot{\zeta}.$ (6.14)

.

From (6.8), (6.11) and (6.14), we get $\mathcal{P}\dot{\zeta} = \mathcal{Q}\dot{\zeta} = \mathcal{R}\dot{\zeta} = \dot{\zeta}$. Suppose $\mathcal{P}\ddot{\zeta} = \mathcal{Q}\ddot{\zeta} = \mathcal{R}\ddot{\zeta} = \ddot{\zeta}$. Then from (6.1),

$$\begin{pmatrix} \frac{1}{\mathfrak{M}(\dot{\zeta},\ddot{\zeta},\ddot{\zeta},t)} - 1 \end{pmatrix} = \left(\frac{1}{\mathfrak{M}(\mathfrak{P}\dot{\zeta},\mathfrak{Q}\ddot{\zeta},\mathfrak{R}\ddot{\zeta},t)} - 1 \right) \leq k \left(\frac{1}{\Psi(\zeta,\eta,\omega)} - 1 \right),$$

where, $\Psi(\zeta,\eta,\omega) = \min \left\{ \mathfrak{M}(\dot{\zeta},\mathfrak{Q}\ddot{\zeta},\mathfrak{R}\ddot{\zeta},t), \mathfrak{M}(\mathfrak{P}\dot{\zeta},\ddot{\zeta},\mathfrak{R}\ddot{\zeta},t), \mathfrak{M}(\mathfrak{P}\dot{\zeta},\mathfrak{Q}\ddot{\zeta},\ddot{\zeta},t) \right\}$
 $= \min \left\{ \mathfrak{M}(\dot{\zeta},\ddot{\zeta},\ddot{\zeta},t), \mathfrak{M}(\dot{\zeta},\ddot{\zeta},\ddot{\zeta},t), \mathfrak{M}(\dot{\zeta},\ddot{\zeta},\ddot{\zeta},t) \right\}$
 $= \mathfrak{M}(\dot{\zeta},\ddot{\zeta},\ddot{\zeta},t).$

Therefore,

$$\begin{pmatrix} \frac{1}{\mathfrak{M}(\dot{\zeta},\ddot{\zeta},\ddot{\zeta},t)} - 1 \end{pmatrix} \leq k \left(\frac{1}{\mathfrak{M}(\dot{\zeta},\ddot{\zeta},\ddot{\zeta},t)} - 1 \right)$$

Hence, $\left(\frac{1}{\mathfrak{M}(\dot{\zeta},\ddot{\zeta},\ddot{\zeta},t)} - 1 \right) = 0$, and this gives,
 $\dot{\zeta} = \ddot{\zeta}.$

Hence we can conclude that \mathcal{P}, \mathcal{Q} and \mathcal{R} have a unique common fixed point.

Example 7. Consider the \mathfrak{M} -FCM Space given in Example (5) with $\mathcal{Z} = [0, +\infty]$ and the self mappings $\mathfrak{P}, \mathfrak{Q}$ and \mathfrak{R} from \mathcal{Z} to \mathcal{Z} , given by $\mathfrak{P}\zeta = \frac{2}{3}\zeta + 1$, $\mathfrak{Q}\eta = \frac{1}{3}\eta + 2$, and $\mathfrak{R}\omega = 3$. It is easily seen that condition (6.1) holds and therefore $\mathfrak{P}, \mathfrak{Q}$ and \mathfrak{R} have a unique common fixed point and it is 3.

Corollary 8. Let $(\mathcal{Z}, \mathfrak{M}, *)$ be a complete \mathfrak{M} -FCM Space where \mathfrak{M} is triangular. If $\mathfrak{P} : \mathcal{Z} \to \mathcal{Z}$ is such that for all $\zeta, \eta, \omega \in \mathcal{Z}$ and $c \in int(\mathfrak{C})$,

$$\left(\frac{1}{\mathfrak{M}(\mathfrak{P}\zeta,\mathfrak{P}\eta,\mathfrak{P}\omega,c)}-1\right) \leq k\left(\frac{1}{\Psi(\zeta,\eta,\omega)}-1\right)$$

where $\Psi(\zeta, \eta, \omega) = \min\{\mathfrak{M}(\zeta, \mathfrak{P}\eta, \mathfrak{P}\omega, c), \mathfrak{M}(\mathfrak{P}\zeta, \eta, \mathfrak{P}\omega, c), \mathfrak{M}(\mathfrak{P}\zeta, \mathfrak{P}\eta, z, c)\}$ and $k \in (0, 1)$. Then \mathfrak{P} has a unique fixed point.

Conclusion:

We constructed \mathfrak{M} -fuzzy cone Banach contraction theorem and theorems which assure the common fixed points for three self mappings under generalized fuzzy contractive conditions in \mathfrak{M} -fuzzy cone metric spaces. This work can be either extended or generalized to various kinds of other spaces.

References

- [1] M. Fréchet, Sur quelques points de calcul fonctionnel, Rend. Circ. Mat. Paleremo, 22(1906), 1-74.
- [2] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy sets and Systems, 64(1994), 395-399.
- [3] V. Gregori, A. Sapena, On fixed point theorems in fuzzy metric spaces, Fuzzy sets and Systems, 125(2002),245-252.
- [4] L. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332(2007),1468-1476.
- [5] O. Kaleva, and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems 12 (1984) 215-229.
- [6] O. Kramosil, J. and Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975) 326-334.
- [7] Saif U. Rehman et.al., Common fixed point theorems for a pair of self mappings in fuzzy cone metric spaces, Abs. Appl. Analysis, 2019(2841606)(2019), 10 pages.
- [8] S. Sedghi, N. Shobe, Fixed point theorem in M-fuzzy metric spaces with property (E), Adv. Fuzzy Math., 1(1)(2006), 55-65.
- [9] Tarkan Oner et. al., Fuzzy cone metric spaces, J. Nonlinear Sci. Appl., 8(2015), 610-616.
- [10] L.A. Zadeh, Fuzzy sets, Inform. and Control, 8(1965), 338–353.