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Abstract

This work aims to generalize the Banach contraction theorem to 91-fuzzy cone metric spaces. We construct
generalized M-fuzzy cone contractive conditions for three self mappings with which they have a unique
common fixed point.
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1. Introduction

Fuzzy sets that handle uncertainties well was introduced by Zadeh [10]. Huang and Zhang [4]
introduced cone and defined cone metric spaces as a generalization of metric spaces [I]. Tarkan Oner et
al. [9] introduced fuzzy cone metric spaces that generalized fuzzy metric spaces [2]. These ideas motivated
the researchers to come up with several new ideas as they act as a base for introducing new concepts and
proving many more new results. The aim here is to construct and prove 91-Fuzzy Cone Banach Contraction
Theorem and some common fixed point theorems for three self mappings which satisfy generalized contractive
conditions in 9-Fuzzy Cone Metric Spaces and to provide an example to exhibit the same.
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2. Preliminaries

Definition 1. [4] Let B be a real Banach space and € be a subset of 8. € is called a cone if and only if:
[C1 | € is nonempty, closed and € # {0},
[C2 | p,o €R,p,0>0,c1,c0 € C imply pcy + ocy € C,
[C3 |ceC and —c€ € imply ¢=0.

The cones considered here are subsets of a real Banach space and are with nonempty interiors.

Definition 2. An 9M-Fuzzy Cone Metric Space (briefly, 9-FCM Space) is a 3-tuple (Z,9, x) where Z is an
arbitrary set,  is a continuous t-norm, € is a cone and 9 a fuzzy set in Z3 x int(€) satisfying the following
conditions: For all (,n,w,u € Z and ¢, € int(C),

[MFC]' ] C’ 77,(}.)70) > 0?

[MFC2 | ¢,nw,c)=1if and only if (=7n=w,

[MFC4 |

m(
m(
[MFC3 | M(¢,n,w,c) = M(p{¢,n,w},c), where p is a permutation,
M, n,w,c+ ) >M,n,u,c)* M(u,w,w, ),
m(

[MFC5 | ¢,n,w,-) :int(C) — [0,1] is continuous.

Then M is called an M-Fuzzy Cone Metric on Z. The function 9(({,n,w, ¢) denotes the degree of nearness
between (,n and w with respect to c.

Example 3. Let B8 = R and consider the cone C = [0,400] in B. Consider an increasing continuous
function g : C — € and a,b > 0. Let the t-norm * be defined by p x 0 = po. Define M : R3 x int(C) — [0,1]

by
o (min{f (). F(0). £+ g\
M) = (a0, 70, FF+ o)
forall (,n,w e R and c € int(C). Then (R,IM,*) is an M-FCM Space.

Definition 4. A symmetric M-FCM Space is an 9-FCM Space (2,90, ) satisfying
M(n,w,w,c) =M(w,n,n,c), for all n,w € Z and c € int(C).
Remark 5. An M-FCM Space is symmetric.

Definition 6. Let (2,90, %) be an MM-FCM Space. A self mapping P : Z — Z is said to be 9MM-Fuzzy Cone
Contractive (briefly, M-FCC) if there exists k € (0,1) such that

1 1
<mt<ﬂ><<>,ﬂ><n>,ﬂ><w>,c> - 1> =k (m(c,n,w,c> - 1) ’
for all {,n,w € Z and c € int(C).

Definition 7. In an 9M-FCM Space (2,01, ), M is said to be triangular if, for all {,n,w,u € Z and c €

int(C),
<9ﬁ<<,11w,c>_1> = (W‘Q*(W‘Q'

Definition 8. Let (2,90, x) be an 9M-FCM Space, (' € Z and {(,} be a sequence in Z.
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(1) {¢n} is said to converge to ¢’ if for all ¢ € int(C), limy,— oo < = 0. It is denoted by

1
1 1
MG, C'-C0) >
lim;, 100 ¢ = ¢" or by (, — (' as n — +oo.

(i) {¢n} is said to be a Cauchy sequence if lim,_, o (m - 1) = 0, for all ¢ € int(C) and
m € N.

(iii) (Z,9M, %) is called a complete 9MM-FCM space if every Cauchy sequence in Z converges.

Definition 9. Let (2,91, %) be an MM-FCM Space. A sequence {(,} in Z is 9MM-Fuzzy Cone Contractive if
there exists k£ € (0, 1) such that

1 1 .
(m(Cm Cn+1a Cn+17 C) B 1) S F <9ﬁ(<n1, Cna Cm C) N 1) ! for all ¢ € Znt(e)'

3. Main Results

Let us first state and prove the 9M-fuzzy cone Banach contraction theorem in a complete 9-FCM
Space.

Theorem 1. Let (Z,90,%) be a complete M-FCM Space in which M-FCC sequences are Cauchy. Let
P:Z— Z be an M-FCC mapping. Then P has a unique fixed point.

Proof. Let {y € Z and c € int(C). Define a sequence {(,} by
Cn = ?nC(Jv n € N.

Since P is M-FCC, we have

1 1
-1 < _ 1
<ivt<ﬂ><, P2, 72,0) ) =k <im<<, 3.9C,0 > /
for all ¢ € Z and for some k € (0,1). This gives

1 1
<9ﬁ(<n+17 C’n,—‘y-?a CTL-FQ: C) 1> S <9:'n(Cn7 CTH—I; Cn-i-l? C) 1)

This makes {(,} an 9M-FCC sequence and by assumption (, — ¢ for some ¢ € Z.
Now,

1 1
(mwcn,?c,?c,c) - 1) =h (zm(cn,c,c,c) B 1) |
As k <1,

1
1 —1]=0.
That is,

(M — 1) = 0, and which gives
P =C.
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Suppose Pn =n, for some n € Z. Then

<fm(42n)1>

<9n<?<,;<,?n,c>1>
1
Sk( WC.Cr0) Q

1
:<m@9%?m®_g

nf_ L
§k<mmamd Q

—0 as n— +oo.

Therefore ¢ = 7. |

The following theorem considers three self mappings and proves the existence of their unique
fixed point under a generalized contractive condition in a complete 9-FCM Space.

Theorem 2. Let (Z,9M, %) be a complete M-FCM Space where M is triangular. If P,Q. R : Z — Z is such
that for all {,n,w € Z and c € int(C),

1 b (scdog — 1) + ke (sermsg — 1)
<”‘(9’4>an Reoye) 1> “\ s (W 1)+ ?W -1) Y

where k; € [0,+00],i=1,...,4 and k1 +2(ka +k3) + kg < 1. Then P,Q and R have a unique common fized
point.

Proof. Let {y € Z be arbitrary. Let the sequence {(,} be defined by

C3TL+1 = ?C:ﬂ’ﬂu
3n+2 = 9Q(3n+1,and,
(3n+3 = R(3py2  forn > 0.

From ,

1
—-1]< -1
<fm (Cant1s C3n+2,C3n+2, c) ) B (W(?Csmg@nﬂag@mhc) )
1 1
< k1 ( (C3n7C3n+1,§3n+1, ) 1) + ke (W(C3n,C3n+1,Q§3n+1,C) n 1)

1
+k3 W(CSH 7Q<3n+1 7C37L+1 ac) 1 + k4 W(TCS’VL 7<3n+1 7<3n+1 70) o 1)

1 1
_ k1 ( M(C3n,C3n+1,C3nt1,0) ) + ke (W(C:3n7C3n+1,C3n+2,C) o 1)
+ ks (e —1) + ks (e -1)

(3n,C3n+2,(3n+1,C) C3n+1,63n+1,(3n+1,C)

1
_ k1 <9ﬁ(43n£3n+1,§3n+170) o 1)
1 1
+he (m(<3n7<3n+1 (3n42:¢) 1) + ks (m(<3n7CI3n+27<3n+17C) o 1)




M. Jeyaraman, M. Suganthi, Results in Nonlinear Anal. 4 (2021), 33-/46] 37

1
k1 (m(CBn)<3n+17<3n+lyc) N 1)

< +hk2 |:<W(C3H,C3n11,<3n+1,6) -1+ 93?((3n+1,43711+2,63n+276) B 1”
+ k3 [(m(ggn,C3"}_1,<3n+1,C) - 1) - (W(C3n+1743i+2,43n+270) B 1)}
_ (k1 + k2 + k3) (W(Canyéanivaan»C) N 1)
+(k2 + k3) <W(C3n+1£3i+2,€3n+2,0) n
Therefore,
(o ki,
D(Can+15 C3n+2, (3nt2, €) 1= (k2 + k3) \M(C3ns C3n+15 C3nt1, )

Again, from (2.1)),

1 1
—1] < —1
( C3n+2;§3n+3;€3n+37 c) > - (m(QC3n+1,RC3n+2,RC3n+27C) >

1 1
< M(C3n+15C3n+2,C3n+2,C) 1) + ko (W(C3n+1,ﬁ3n+2,RC3n+270) N 1)
- 1 1
+k3 fm (C3n+1,RC3n+2,C3n+2,¢) — 1)tk M(AWsn+1,C3n+2,C3n+2,) 1)
1 1
_ { M(¢3n+1,C3n+2,C3n+2,¢) 1) + k2 (93?((371+1,C3n+2,é’3n+370) N 1)
1 1
+k3 IM(C3n+15(3n+3,(3n+2,C) —1)+k M(C3nt2,¢3n+2,C3nt2,) 1)
1
k1 (W(C3n+1,C3n+2,C3n+2,C) N 1)
1 1
= +k2 DM(¢3n+1,63n+2,¢3n+2,¢) —1)+ M(Can+2:C3n+3:C3n+3,C) 1)}
1 1
+ k3 fm(C3n+1,C3n+2,C3n+2, ) 1> - (W(C3n+27C3n+37C3n+370) N 1):|
1
_ { (k1 + k2 + k) (m(43n+1,43n+2£3n+270) N 1)
1
+ (k2 + ks) (fm(Csn+2,C3n+37C3n+3,C) o
This gives,
< 1 _1) k1+k2+k3< 1 _1> 2.3)
M (C3n+25 (3n+35 (3n+35 €) T 1= (k2 + k3) \DUCsn+1, G3n+25 (3nt2, €) . '

Again, using (2.1)),

1 1
—1] < —1
( M(C3n+35 (3n+4, (3n+4, C) > - <9ﬁ(:RC3n+2a?C3n+37?<.3n+3ac) )

1 1
< kl Din(C:*erz (3n+3,(3n+3,0) ) + k2 (m(C3n+2,43n+3,3’C3n+370) B 1)
- L ~1) +ha L 1)
M(C3n-+2,PC3n43,(3n43,) 4\ MReanr2,C3n13,C3n13:0)
1
_ k1 (W(C3n+2£3n+37€3n+370) N 1)
1 1
+k2 IM(C3n+2,(3n+3,(3n+4,C) —1)+ks M(C3n+2,C3nt4:C3nt3,0) 1)
1
k1 (W(C3n+2,C3n+3,C3n+3,C) N 1)
1 1
< +k2 M (¢3n+2,(3n+3,(3n+3,C) -1+ M(C3n+3:C3n+4,C3n44a,C) 1)}

1 1
- k3 M((3n+2,C3n+3,(3n+3.C) 1)+ M(C3n+3,C3n+4,C3nt4,C) 1 }
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1
_ (k1 + k2 + k3) (W(C3n+2,43n+3£3n+370) N 1)
1
+ (k2 + k) M(C3n+3,C3n14:C3nt4sC) 1

This gives,

< 1 _1) k1+k2+k3< 1 _1> (2.4)

M (C3n+35 (3n+45 (3n+4,C) T 1= (k2 + k3) \DUC3n+2, C3nt+3, C3nt3, €)

Put M,, = (W - 1) and k = % Then from (2.2) to (2.4) we have the following
inequalities:
For n=0,1,2,...,

mi}n—‘rl S km?ma
M3y < EM3,41, and,
M3p13 < kM3pp2.

These inequalities together gives that
My < kM, forn=0,1,2,..., (2.5)

which makes {¢,} an 9M-FCC sequence.
Now, 9 is triangular and the space (Z,90, ) is symmetric. Therefore we have,

1 1 1
(fm@n,cn,cm,c) B 1) : <m<<n,<n,<n+1,c> - 1) * <m<<n+1,<m,¢m,c> - 1)

1 1
N <m(Cn7Cn+17Cn+1;C) a 1) * <9ﬁ<<—n+17<n+17€m7c> - 1>

(3ecrtrgrrg — 1)
m(Cn7Cn+17<n+lvc)

1 1
+ (mcnﬂ,cnﬂ,cm,c) R R b rewewerenv: B 1)

IN

(é _ 1)
< IM(CnsCnt1,Cn+1,C)

1 1
+ <9ﬁ(<n+17<n+27<n+27c) - 1 + o + m(Cm—hCmvgmvC) o 1)
=M, + M1+ + M
< E"Mo + KO0 + - 4+ BT,
k"
<
11—k

My — 0asn — +oo.

Thus {¢,} is Cauchy. As Z is complete, there exists ¢ € Z such that

lim (1 - 1) — 0. (2.6)
n=+00 \ M((y, ¢, ¢, €)

Since 9 is triangular,

(..1.—1>§< _ 1 —1>+< LI —1>. (2.7)
m(gv C? fPC? C) m(C7 Ca C3n+27 C) m({3n+27 fPC, ':Pga C)
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From ,
(s ) = )
M(C3nt2, PC, PC, ) M QC3n+1,TC P¢, )
{ zm<<3n+1 2o~ V) e (serteses ) }
<3n+179><< M(Cant1,7.Crc) 1) +ky (m - 1)
{ <3n+1,< M(Cant1.6C0) ) Tk <m a 1) }
+k3 G E) ) T (Sigmaics 1)
— (ko + k3 ( 1 1> asn — +oo.
M(C, ¢, PC,0)
Therefore,

lim sup ( ! — — 1) < (ka2 + k3) (1 - 1) . (2.8)
oo m(CBn—‘r% TC) :])Cv C) m(c: C’ :PC, C)
From (2.7) and (2.8]), we have that

(m@im@‘Q§W+@Wm@ém@‘Q-

Since ko + k3 < 1, we have

(1 — 1> =0, and this gives
Mmoo/
Pe=¢
Since 9 is triangular,
<..1._1>§< ! _1)+< L _1). (29)
m(C7 CJ QC? C) m(C7 Ca C3TL+3) C) m(<3n+37 QC? an C)

From ,

1
—— —1
<m<<—3n+37 QC7 QC? > <m :R<3TL+27 QC? QC? ) )

S S
{ <3n+2,c M(Canto.C.000) ) + ke ( M(¢an+2,6,9¢,¢) 1> }

-1
C3n+27Q< M(Cant2,26,C00) 1) + ki (Em(RCan,C,CvC) 1

-
{ Cdn+27< M(Cant2.6,60e) ) + ko (W(Csn+27C,QC7C) 1) }

[ S
+k3 M( Cdn+27Q< M(Cant2,96,60) ) +h M (C3n+35C,¢,C) 1)
1

— (ko + ks ( 1) asn — +oo.
M(C, ¢, 9, )
Therefore,

1 1
e (Gemaas ) 5@ (s ) 210
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From (2.9) and (2.10)), we have

(M*)“’“’%)(M*)-

Since ko + k3 < 1, we have

1
( — 1) =0, and this gives
M((, ¢, ¢, c)
QC=¢
Since 9 is triangular,
(ﬂ._l)g( 1 _1>+( L _1). (2.11)
m(C7 gv ‘(RC) C) m(<7 C? €3n+17 C) m(c&n-{-h RC) :RC) C)
From ,
N ()
M(C3n+1, RE, RE, ) m ?cgn,mc R¢, )
R S
{ sm(cgm,c co ) +h ( M(Can G RE ) 1) }
1
+k3 W Csn,RCC M(C3n,REC ) 1) +ha (93?(9’43m¢,é,6) B 1)
1 _
{ fm(csn,c o) 1> Tk (m(cgn,c',ﬂzc',c) 1) }
1 _
+ k?’ m(csn,ﬂzccc) 1) +h <Dﬁ(<3n+17c',é,c) 1)
— (k2 + K )(1 1) asn — +00.
M(C, ¢ RE, )
Therefore,
1 1
lim sup < — — 1> < (ka + k3) < — 1) . (2.12)
n—+0o DJT(Ci’)?’b-i-h :RC7 RC; C) m(C7 Cv RC; C)

From (2.11) and (2.12), we have that

(M—Q%“@(M”)'

Since ko + k3 < 1, we have ( — 1) =0, and this gives

M(EE,RE )
R¢E =

Thus we have shown that

P =090 =R =C.
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Suppose P{ = QC = R¢ = (. Then from (2.1),

1
(W(C7C>Cvc) > Z)thPC QC RQ ¢) )

< { <<c ML 1)+ (sedaz )
1

i (sdzes — 1)

<<<c >'%k2<‘7?%?5'_1)
)+/€4(m

+% mmm¢>
+% m@u@ G&&e)

1
=kt ket ks k) (sm@,é,z,c) - 1)
1

. 1
That is, (W_l) < (k1 + ko + ks + ka) (W—l)

1
Therefore, ( — 1) =0, since ki +ko+ks+ks<1.
M(C, ¢ ¢ )
Hence we can conclude that C is the unique common fixed point of P, Q and R. |

Corollary 3. Let (Z,9, %) be a complete M-FCM Space where MM is triangular. If P: X — X is such that
for all (,n,w € X and c € int(C),

1 b (swchza — 1) + b2 (sweaioms — 1)
<mu?¢;m%?w,@'_1) = +k3(jiggwl)—1)-+k4?:;;aﬁl)—l)

where k; € [0,4+00],i =1,...,4 and k1 + 2(ke + k3) + kqy < 1. Then P has unique fized point.
Corollary 4. Theorem[q gives Theorem 1] when P = Q =R and ko = ks = ky = 0.

where , € = and a continuous t-norm .
Example 5. Consider(Z,0M, *) in which M : Z3 x (0, +o00) — [0,1] by

[ell
lell + (¢ =l + In = w| + v =)

where Z = {1,2,3} and € = R*. Then it is clear that (Z,9M,*) is a complete M-FCM Space and that M is
triangular. Consider the self mappings P,Q and R from Z to Z, given by P(1) =1, P(2) =2, P(3) =1
Q) =1,Q(2) =2, Q(3)=2, R(1) =3, R(2) =2 and R(3) = 2. Then each one of P,Q and R is not M-
FCC and it is not possible for the M-fuzzy cone Banach contraction theorem to assure the existence of their
respective fized points. But P,Q and R together satisfies the condition with k1 = ko = ks =

and ky = % Therefore P,Q and R have a unique common fized point which is 2

M, n,w,c) = for all {,n,w € Z and c € int(C)

107 25’

Theorem 6. Let (Z,9M,*) be a complete M-FCM Space where M is triangular. If P,Q, R Z — Z is such
that for all {,n,w € Z and ¢ € int(C),

! 1) <kt (6.1)
M(PC, A, Rw, c) - \Y(Gnw) 7 '
where ¥((,n,w) = min{M(¢, An, Rw, ¢), M(P, n, Rw, ¢), M(P(, n,w,c)} and k € (0,1). Then P,Q and R

have unique common fixed point.
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Proof. Let (o € Z be arbitrary. Define the sequence {(,} as in Theorem (2)).

< (s ):

. M (C3ny Qant1, Qant1, €) M(PC3n, Gnt1, Qant1, €),
where, W(G,m,w) = mm{ M(PC3n, Qan+1, (3nt15€)

_ min{ M (C3ns (3nt2> GBnr2s €), M(C3ng15 B, (3nt2s €); }
M (C3nt1, C3nr2s G, €)

= min { M(Csn, (3n+25 Gn+2, €), M(Cant1, Gnt15 Cangs €) } -
Case(i) ¥(¢,n,w) = M(C3n, (3n+25 (3042, €)-

1 1
—1) <k -1
<9ﬁ(C3n+1,C3n+2,C3n+270) ) - (m(C3n,C3n+2,C3n+2,C) )
1 1
< k{ M((3n+2,Can+2,03n+1,6) 1) T (W(CSn-H,CBmCamC) N 1) } )

Therefore,

1 k 1
(m(C3n+17C3n+2,C3n+2,C) - 1) = 1-Fk <W(C3n,C3n+1,C3n+1,C) B 1) .
Case(ii) V(¢,n,w) = M(Bn+15CBnt1, (3n42:C)-

1 1
-1 <k — 1], and, this gives
(m(ﬁ3n+1,C3n+2,C3n+27C) > - <W(C3n+1,C3n+17C3n+27C) > 8

1
— 1) =0, which is absurd.
(m(C?mH, (3n+2; C3n+2,€) )

Therefore,

1 k 1
-1 < —-1]. 6.2
(m(f3n+1,C3n+2,C3n+27C) > T 1-k <9ﬁ(C3mC3n+1743n+170) > (6.2)
From (6.1)),
M (C3n+2, C3n+3: (3n+3, €) M(Q¢3n+1, R3n+2, R3n2; €)

< (s )

 M(GBnr1, Rz, RG3nra, €), M(QCn 115 G2, RG3nr2; ©), }
h Y =
where, W(¢, ) mm{ M(QC3n+1, RC3n+25 (32, €)

_ min{ M (C3n+15C3n+3> C3n+3, €) M(C3n+2, (3nt2, (3n+3, €), }
M (C3n+2, C3n+35 (3nt2, €)

= min { M(Gnt1, (nt3: Bnts, €), M(Cnt2s (3nt2, (Bngs, €) |-

Case(i) V(¢,n,w) = M(3n+15(3n+3, (3043, C)-

1 1
(m(<3n+25 Cant3,C3nt3,C) 1> =k (m(<3n+la Cant3,Cant3,C) 1)

1 1
< k{ (m(c3n+37<3n+37<3n+27c) - 1) + (W(C3n+2743n+1,C3n+1,6) n 1) }
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Therefore,

1 k 1
<m(43n+27C3n+3,C3n+370) a 1) = 11—k (937((3n+1,C3n+27C3n+270) - 1> '
Case(ii) V(¢,n,w) = M(B3n+25 (3nt2, (30435 C)-

1 1
-1 <k — 1|, and, this gives
(m(43n+2,C3n+3,C3n+370) ) - (m(C3n+2,C3n+27C3n+3,C) ) 8

1
— 1) =0, which is absurd.
<§)Jt((3n+2, (3n+3, C3n+3: €) )

Therefore,

1 k 1
—1) < —1]. 6.3
(W(C3n+2,C3n+37C3n+3,C) ) T 1-k (m(C3n+17C3n+2,C3n+2,C) ) (6:3)
Again, from (6.1)),

1 1
<9ﬁ(C3n+3,C3n+47C3n+4,0) B 1) B (m(:RQ%n—l-Qv?C3n+3aTC3n+37C) B 1>

<+ (wrm )

. M(C3n2, PC3nts, Plans, €), M(REnt2, (3n+3, Pl3n+3, ¢), }
here, U((,n,w) =
where, W(¢,m,w) mm{ M(RC3n+2, PC3n+3, (3n+3: €)

— min { m(§3n+27 C3n+47 C3n+47 C)7 m((3n+37 C37L+3> C37L+47 C)) }
M(C3n+3, (3n+4, (3n+3, €)

= min { M((3nt2, Gnrd, Gnsas €); M(C3nt3, (3nr3, (3nas €) )

Case(i) V(¢,n,w) = M(C3n+2, 3ntd, (3ntd, €)-

1 1
(971((3n+3, Cantd, Gantd, €©) 1) =k (m(C?m—i—Qa Cantd, Gantd, ©) 1)

1 1
< k{ (W(C3n+4£3n+4,€3n+370) o 1) T <9ﬁ(C3n+37C3n+2,C3n+270) o 1) }

Therefore,

1 k 1
<W(C3n+37C3n+4,C3n+4,C) a 1) = 1-k (937@3%2,(3%37(3%270) - 1> '
Case(ii) ¥(¢,n,w) = M(¢3n+3, (3n+3, (3n+4, C)-

1 1
—-1) <k — 1], and, this gives
(m(C3n+S7C3n+4,C3n+47C) > N <9ﬁ(43n+37C3n+3,C3n+476) > &

1
— 1) =0, which is absurd.
(m(c3n+37 C3n+4a C3n+4> C) >

1 k 1
Therefore, —-1) < —-1). 6.4
(m(C3n+3,C3n+4,C3n+47C) > -k (m(C3n+2,C3n+37C3n+2,C) ) (64)
From (6.2)), (6.3) and (6.4), we obtain

1 k 1
-1 < — 1), and, this gives,
<m(<‘n+1v Cn+27 <n+2a C) ) 1-k (m(cna Cn-l-l: Cn—i-l? C) )

1 k " 1
<m(<n+lagn+27<n+27c) - 1> = (1_k> <m(<.07<.17€17c) - 1> ‘
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The above two inequalities imply that {¢,} is 9M-FCC and Cauchy. Therefore there is an element ¢ € Z

such that
lim (1 — 1) =0. (6.5)
n=to0 \9M((y, €, (5 1)

Since 9 is triangular,

<..1.—1>§< _ ! —1>+< L —1>. (6.6)
m((a Ca {‘PCa t) m(<7 <7 C3n+2a t) m(<3n+27 ?Cv TC) t)
From ,
(s )~ (F@ms Y
m(CSn-i-?y (PC, TCa t) m(QC?m-i-la fPC, ':PCu t)
1
Pl
Hlaces ) )
Wherea \I}(C’ m, (.U) = min { m(C?)n-i-la :PCv ':Pga t)) m(QC?)n-i-la C? ':ng t)) m(QC?)n-i-la TC? gv t) }
= min { m(cg’fkf-l? C3TL+17 ?Ca t)? Dﬁ(<3n+27 6‘7 fPCv t)a m(<3n+27 :PC7 é? t) }
— M, PEE) as n— +oo.
Therefore,
lim sup( L — —1>§k(..1.—1). (6.7)
n—=00 m(CSTLJrQ) CPC? ?Cv t) m(Cv Ca (‘PCv t)
From (6.5)), and (6.7)), we have that
<..1.—1>§k:<..1.—1>. (6.8)
M(¢, ¢ PC ) M(C, ¢, PC, t)
Therefore,
(1 - 1> 0
M(¢, ¢ P¢ 1)
This gives P¢ = ¢. Since 9 is triangular,
<..1.—1>§< _ ! —1>+< L —1>. (6.9)
m(C> Ca QC) t) m(47 Cv C3TL+37 t) m(c3n+3, QCa QC7 t)

From (6.1)),

1 1
— —1) = — -1
<9ﬁ(C3n+37 QCa QC) t) > <9:R(RC37L+27 QC; QC; t) )

< (s ):

where, ¥((,n,w) = min { M(Cznt2, ¢, 4, 1), M(RCant2, €, 4, 1), M(RCnp2, ¢, ¢, 1)
= min { m(CSn—i-Q, QCv QC7 t)? m((3n+37 év QC7 t)? 9LR(CSTH—E]) QCa é? t) }
— M, 6,96t as n— +oo.

Therefore,

lim sup ( ! — — 1) <k <1 - 1> . (6.10)
n—+0o0 m(c3n+37 Q<7 QC’ t) W(C, Ca QC? t)
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From (6.5)), and (6.10]), we have that
1 1
M(¢, ¢, (¢, ) M(¢, ¢, 9, 1)

Therefore, (1 — 1) =0, and this gives,
M(C, ¢, Q¢ 1)
Q¢ =¢. (6.11)
Since 9t is triangular,
1 1 1
<...—1>§< — —1>+< — —1). (6.12)
m(c’ Ca RC, t) m(ga Cv <3n+17 t) m(<3n+1; RC, RC, t)

From ,

1 1
— —1) = — —1
(m(C&n-ﬁ-l? RC) RC) t) ) <m(?€3n7 fRC; RC) t) )

< (s )

where, ¥(¢,n,w) = min { M(Csn, RE, RE, 1), M(Plan, €, RE, 1), M(PCan, RE, C, 1)}
= min { m((?)n; RC; RC7 t)v m({3n+17 é? RC? t)7 m(c&n-i—l; RC7 éa t) }
— m(é,é,ﬂlé,t) as n — 4oo.

Therefore,
1 1
lim sup < — — 1> <k < — — 1) . (6.13)
n—+oo (C3Tl+17 RCv iRC: t) fm(C; C7 '{RC7 t)
From (6.5)), and (6.13), we have
(et ) =* (wemes )
ccmg ccmg>
Therefore, < > 0, and this gives
m((, C R¢, 1)
=C. (6.14)

From (6.8)), and -, we get P( = QC RE = C.
Suppose ‘.PC QC TRC (. Then from ,

1 1 1
(W(C,C,C,t) 1) (W(?C, Q¢, R¢, 1) 1) = <‘1’(C,?7,W) 1)’

min { MEE G IEL DM EL D) )

eees ) = ey )
M, ¢, ¢ 1) M, ¢, ¢ 1)
Hence, <1 — 1> =0, , and this gives,
meCly )
¢=¢.

Hence we can conclude that P,Q and R have a unique common fixed point. |

Therefore,
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Example 7. Consider the MM-FCM Space given in Example (Eo']) with Z = [0, +00] and the self mappings
P.Q and R from Z to Z, given by P{ = %C +1, Onp = %7] + 2, and Rw = 3. It is easily seen that condition
(6.1) holds and therefore P,Q and R have a unique common fized point and it is 3.

Corollary 8. Let (Z,9M, %) be a complete M-FCM Space where M is triangular. If P : Z — Z is such that
for all {,n,w € Z and c € int(C),

<9ﬁ<ﬂ>c,ﬂ>1n,ﬂ>w,c> - 1) =k (‘I’(Clnw) - 1)

where ‘I’(Cﬂhw) = mln{m(C7?na wa,c),ZDT(fPC,n,Tw,c),mt(f]’(,f]’n,z,c)} and k € (07 1) Then P has a
unique fized point.

Conclusion:

We constructed 9i-fuzzy cone Banach contraction theorem and theorems which assure the com-
mon fixed points for three self mappings under generalized fuzzy contractive conditions in M-fuzzy cone
metric spaces. This work can be either extended or generalized to various kinds of other spaces.
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