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Abstract

In this study, we asymptotically reconsider the relations between the pre-factors of a general
inhomogeneous second-order ordinary differential equation and the high-order coefficients
of its asymptotic power series for complex values of the asymptotic parameter ε1. The
study provides a general formula for its generic high-order coefficients with the associated
pre-factors for complex ε1 based on the use of a well-known factorial divided by a power
approach.

1. Introduction

Many of the essential properties of the ordinary differential equations (ODE) can be investigated by using asymptotic expansion
methods such as perturbation methods of Poincaré [1, 2], method of matched asymptotic expansion [3], WKB approximation
method [4, 5] and SCEM method [6]. The generic feature of the singular differential equations is that the high-order coefficients
of the singular perturbation expansions always behave in the characteristic factorial divided by a power (factorial/power) form,
and they factorially diverge for a wide range of singular perturbation problems. It is principally first discussed in detail by
Dingle [7] and Berry [8]. In the companion paper [9], we already considered the link between the pre-factor functions of a
particular type of second-order inhomogeneous ODEs and the associated high-order coefficients of the asymptotic expansion.
Motivated by the previous study, in this paper, we will reapply the same idea permitted us to obtain the formulae in [9] to the
asymptotic solution of the general differential equation in the case of small parameter ε1 is complex-valued. We will address
what difference it will make in the derived formulae. Once it is done, one could use them while addressing the asymptotic
properties of the differential equations such as superasymptotics, hyperasymptotics and Stokes rays [8], [10]-[12] since the
exponential asymptotics is usually discussed in the complex plane. For instance, Stokes rays are the local properties of the
differential equations and across which the exponentially growing terms occur along the complex plane. For this reason
alone, it is nice to interpret the findings of [9] in terms of the complex values of a small parameter. Moreover, the neglected
highest derivative of the singular differential equations at leading order becomes important as it varies rapidly. Therefore, the
asymptotic behavior of the differential equations (and integrals) has been comprehensively studied in detail in the last few
decades and, as a consequence, the subject of exponential asymptotics is introduced, see for example [13]-[17] and references
therein. For this reason, studying the asymptotic behavior of such equations, especially for the ones whose exact solutions
cannot be derived via conventional asymptotic techniques, are always of great interest.

In this paper, albeit briefly, we reconsider whether the formulas in [9] can be further extended for complex values of the
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small parameter while addressing the general representations of the general inhomogeneous second-order ODE. We again
take into account the factorial/power ansatz of high-order coefficients [7, 15, 18] to capture the formulas in the derivation
of the asymptotic expansions for the particular case of this paper. We present that the links between the pre-factors and the
coefficients of the asymptotic expansion of the ODE work for the complex values of ε1. The outline of the article is as follows:
First, we introduce the illustrative singular ordinary differential equation and re-define the small parameter of the ODE in
terms of its complex values in Section 2. We next expand the equation in the traditional asymptotic expansion method where
we derive the leading order solution along with the recurrence relationship of the successive terms of the expansion. To be able
to address and interpret the general form of the high-order coefficients in terms of the pre-factor functions of the ODE for the
complex parameter, we employ the common and powerful factorial/power formula whereby we determine their relationships in
the limit n→ ∞ in Section 3. We finish the study with the concluding remarks in Section 4.

2. The asymptotic expansion of ODE

In order to be able to capture the relationship between the high-order terms of the expansion and the pre-factor functions, we
will address the asymptotic expansion of the following singular inhomogeneous ODE of [9], that is,

ε1
d2w(z)

dz2 + ε1 f (z)
dw(z)

dz
+g(z)w(z) = t(z), (2.1)

in which ε1 ∈C is the small perturbation parameter and pre-factor functions f (z), g(z) and t(z) are not constant. Before starting
to study this section, let us first discuss the form of the asymptotic expansions occurring in exponential asymptotics. Divergent
solutions of the differential equations including this particular case mostly appear in the following nature in exponential
asymptotics [19]
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(2.2)

in which χi≥1(z)s are subject to every single singularity of the early ordered terms of each level, and R(ε1,z) is the resultant
remainder of the expansion with respect to the order of the first neglected term. As it suffices for this particular case, only
χ1(z), Ak(z) and β will be addressed in (3.1) of the following section. Functions χi≥2(z), Bl(z) and Ct(z) can be addressed, in
a similar way, when needed. It is indeed one of the main ideas lying behind the exponential asymptotics, see [19]. This will
particularly be discussed in the succeeding section. The reason that such expansions diverge is in fact the singular point(s)
of their early terms; most particularly, it is w0(z) in this general case. Moreover, the Stokes rays usually sprout from the
singular point(s) of the early terms. The exponentially small terms which occur in the form of exp(−χi≥1(z)/ε1) appear
and disappear across the active Stokes rays, and this can be observed when analytically continued in the Argand diagram;
particularly, this jump occurs smoothly via error function. Based on the sectors occurred by the Stokes rays in the diagram,
associated sub-dominant exponential terms come into play. Thence, the subject of exponential asymptotics deals with this
divergence and its relation with the exponentially small terms hidden behind algebraic order terms [20]. Furthermore, the
magnitude of the powers of the exponentially small terms of (2.2) shows at which point the asymptotic expansions change
their behavior from decreasing to diverging to infinity; for more details, see [19].

The equation (2.1) currently contains no complex parameter besides ε1. Since we are only interested in finding the asymptotic
solutions for ε1 in terms of pre-factor functions f (z), g(z) and t(z), we need to first introduce complex ε1 in a useful way.
Unlike to [21] where the independent variable is changed by multiplying complex factor, we re-scale the small perturbation
parameter in this case. In particular, to address whether the links between the factors and the expansion coefficients derived in
[9] work for the complex values of ε1 in the asymptotic procedure or not, we principally re-scale ε1, without loss of generality,
by

ε1 = eiθ
ε, (2.3)

where 0 < ε� 1. To express herein that we will focus on the general form of the first summation of (2.2) in terms of pre-factor
functions in our derivation since we are only concerned with the limits n→ ∞ and ε → 0 for the singular ODEs in the form
of this paper. Upon substitution of this re-scaled values of ε1 into the original differential equation (2.1), we may find the
following singular differential equation depending on θ

eiθ
ε

d2w(z)
dz2 + eiθ

ε f (z)
dw(z)

dz
+g(z)w(z) = t(z). (2.4)
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The solution of ODEs by conventional asymptotic methods usually proceeds in a similar way, see [1, 2] for details. Therefore,
we will first assume that a regular asymptotic expansion of the solution of equation (2.4) exists. We then substitute it into the
equation and equate the factors of like powers of the small parameter on both sides. In particular, let us proceed with the usual
approach that its asymptotic power series solution in powers of ε is

w(z)∼
∞

∑
n=0

ε
nwn(z), (2.5)

which is valid in the limit as ε → 0. Because this series expansion of w(z) must satisfy the differential equation (2.4), we
employ the summation in the equation. After rearranging into a hierarchy of powers of ε , we find

∞

∑
n=1

ε
n
[
w′′n−1(z)+ f (z)w′n−1(z)+ e−iθ g(z)wn(z)

]
+ e−iθ g(z)w0(z) = e−iθ t(z), (2.6)

where the prime ′ indicates the differentiation of the functions respecting to z. Once the factors of like powers of ε are equated
for both sides of the asymptotic equality (2.6), the leading order solution w0(z) at O(1) and the differential recurrence relation
of wn−1(z) and wn(z) of the expansion in (2.6) at O(εn) are derived, respectively, as follows

w0(z) =
t(z)
g(z)

, (2.7)

w′′n−1(z)+ f (z)w′n−1(z)+ e−iθ g(z)wn(z) = 0, (2.8)

for n≥ 1. An observant reader may notice that the low-ordered term w0(z) is not affected with the complex values of the small
parameter and it is the same as the corresponding one of [9]; in fact, this reinforces the consistency between the two pieces of
the works. When the leading order term and then the associated succeeding terms of the expansion are employed repeatedly in
the above sequence (2.8), one can derive the high-order terms as n increases in practice by earlier terms. However, one must
make sure that singularity or singularities of the low-ordered term(s) must be secured in the high-order terms of the expansion.
Calculation of the exact expansion coefficients at each order by this relation, unlike for the low-ordered terms, could be
challenging at times. Therefore, to describe the n→∞ behavior of the high-order terms as well as the size of the approximation
by seeking an asymptotic expansion of the solution in terms of the pre-factors, we may employ the factorial/power formula as
it generates the form of the expansion coefficients, without loss of generality. It is worth to point out that as one may notice
these approximated solutions will clearly be not exact when ε is small but nonzero, they only define their asymptotic equality
for sufficiently large n and small ε . Moreover, the presence of the singularity or singularities of (2.7) forces the asymptotic
expansion to diverge in the standard factorial divided by a power nature in the limits n→ ∞ and ε → 0 as the calculation of the
general terms requires the differentiation of the preceding terms at each order.

3. Asymptotic formula of the high-order terms

As discussed earlier, finding the exact solution of such equations in the form of (2.1) could be extremely difficult sometimes in
the asymptotic procedure. However, as before, our motivation is to study the general asymptotic form of the coefficients for
sufficiently large values of n in terms of the pre-factor functions of the particular ODE. These coefficients are governed by
the nearest singularity of the expansions. For this reason, we will approximate the higher-order coefficients of the expansion
using the powerful factorial/power method as they are naturally divergent in this nature in many cases in the limit ε → 0. We
consider the high-order terms wn(z) of a function w(z), which is asymptotic to a factorially divergent power series [7, 15],
diverge in the following form

wn(z) =
Γ(2n+β )

χ1(z)2n+β

(
∞

∑
k=0

Ak(z)
(2n+β )k

)
, as n→ ∞, (3.1)

where χ1(z) = 0 at the singular point(s) of the leading order term (2.7), β is a constant and Γ is the gamma function, or factorial
function, as described in [22]; it enables to extend the domain of the factorial to complex arguments for negative values of
the non-integers, see [23, pg. 149]. We remark that the ansatz given in (3.1) is the only leading order approximation of the
expansion (2.5) or (2.2) in most general form. There must be separate factorial/power ansatz for each singular points exist. It
indeed extracts the high-order term behavior of the expansion wherein derivation of the behavior of χ1(z) plays a pivotal role
in the asymptotic procedure. To fully determine all components of the high-order terms in (3.1), we substitute the ansatz (3.1)
into the relation (2.8). After performing some computations, we find at the leading order for sufficiently large values of n that

χ
′
1(z)

2 + e−iθ g(z) = 0,

through which we find that

χ
′
1(z) =±

√
−e−iθ g(z). (3.2)
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After having the integration of both sides in (3.2), we subsequently derive the denominator χ1(z) as a function of the pre-factor
g(z) such that

χ1(z) =±
∫ √

−e−iθ g(z)dz+ cχ1

=±
∫ √

exp(i(π−θ))g(z)dz+ cχ1 ,
(3.3)

in which cχ1 is an integration constant. χ1(z) requires to satisfy the singularity or singularities of the early term w0(z), which
precisely causes the general terms to diverge, by which the integration constant can be derived. The denominator of the
high-order coefficients is expressed as a multiplication of the pre-factor g(z) and eiθ as a result of the choice of re-scaled ε1 in
(2.3). Next, we will focus on deriving the general form of the leading A0(z) term in relation to the pre-factors f (z) and g(z) for
sufficiently large values of n since it contributes to the expansion before the subsequent An≥1(z) functions in the limit n→ ∞.
To be able to do this, we carry on the next order of balancing when the summation index n is sufficiently large. Similarly to
previous order of balancing, after doing the required calculations and simplifications, we attain the differential equation of
A0(z) as

χ
′′
1 (z)A0(z)+2χ

′
1(z)A

′
0(z)+ f (z)χ ′1(z)A0(z) = 0. (3.4)

Although it looks the same as its corresponding one in [9], A0(z) of (3.1) will be a complex function as well in this case as the
denominator function χ1(z) depends upon θ given by the relation in (3.3). Particularly for this expression (3.4), after doing the
simple separation and then doing the direct integration with respect to z, unknown A0(z) may be evaluated in the following
form

A0(z) = c0

exp
(
−
∫ f (z)dz

2

)
√

χ ′1(z)
. (3.5)

Back substitution of the relation obtained in (3.2) into (3.5) completely derives A0(z) as

A0(z) = c0

exp
(
−
∫ f (z)dz

2

)
[±exp(i(π−θ))g(z)]1/4 .

Note that all of the integration constants obtained so far can be absorbed into a single constant c0, without loss of generality. In
this conjecture, substituting all the relations derived by now for χ1(z) and A0(z) in (3.3) and (3.5) into the factorial/power form
in (3.1), we may generate the most general form of the high-order coefficients as following

wn(z)∼ c0
Γ(2n+β )

χ1(z)2n+β

 exp
(
−
∫ f (z)dz

2

)
[±exp(i(π−θ))g(z)]1/4

 , as n→ ∞. (3.6)

Substituting this coefficient (3.6) back into the summation of the singularly perturbed ODE completes the derivation of the
general asymptotic representation of the singular ODE in terms of f (z), g(z) and t(z) of (2.4) in powers of ε , wherein t(z)
and its zeros are crucial while deriving the low-ordered terms of the expansion, so does the high-order terms. Finally, to
establish the most general form of the solutions by the complex values of ε1, we should use the equation (2.3) and leave ε

alone. Once doing this and substituting it into the summation, we establish the leading order approximation of w(z) as a
function of pre-factor functions in powers of ε1 and exp(−iθ) such that

w(z)∼ c0

∞

∑
n=0

(
ε1e−iθ

)n Γ(2n+β )
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 exp
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 , as n→ ∞,

which is the leading high-order behavior of the asymptotic solution w(z) of equation (2.1) derived based on using the facto-
rial/power representation (3.1) with the limit n→ ∞. The choice of rescaling ε1 permits us to expand (2.1) as a power series of
its complex values. Again, the region of its validity depends on its singularity structure which may be addressed via exponential
asymptotics and it preserves all the features of the differential equation. Because the exact solutions of such type of equations
are rare in physics applications, one can implement this for the suitable choices of the pre-factor functions and can find the
limiting behavior of w(z) when needed. However, if it is not sufficient, this means that the perturbation parameter is not small
enough. Furthermore, as this expansion is naturally divergent due to increasing powers of the low-ordered terms, by taking
the ratio of the adjacent terms of the expansion, a general form of the optimal truncation point as well as the relation of the
resultant remainder, which is exponentially small, and divergent series can be directly and easily formulated and interpreted by
these specified formulas.
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4. Concluding remarks

This work has taken into consideration how to straightforwardly address the general form of the tail of the expansions for
complex ε1 by focusing on the pre-factor functions of the certain ODEs in the form of this paper along with their effects in
the asymptotic expansions. The obtained links in relation to pre-factors can be implemented for the complex values of ε1,
whence they are extendable to complex region. Moreover, as one may notice that being ε1 complex turns the pre-factors and
the right-hand side of the inhomogeneous singular equations into complex factors. Therefore, the formulas we have attained
are applicable for the study of the singular ODEs having the complex pre-factors as well.
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