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Abstract

The notion of pseudoblocks is borrowed from [1] and introduced to finite dimensional
algebras. We determine the pseudoblocks for several known algebras such as the triangular
algebra and the cyclic group algebra. Also, we determine the pseudoblocks for the group
algebra of the special linear group SL(2, p) in the natural characteristic being the only finite
group of Lie type of finite representation type.

1. Introduction

In [1], the concept of pseudoblocks of the endomorphism algebra of a module over an algebra was introduced and shown
to have a control on the (Brauer) block distribution of the simple modules for the endomorphism algebra in the light of
the Brauer-Fitting correspondence. In this paper, we borrow the concept of pseudoblock from [1] to introduce it to finite
dimensional (not only endomorphism) algebras. We investigate the pseudoblocks for several known algebras such as the
triangular algebra and the cyclic group algebra. Towards the end, we investigate the pseudoblock distribution for the group
algebra of the special linear group SL(2, p) in the natural characteristic being the only finite group of Lie type of finite
representation type.

2. The pseudoblocks

The Brauer-Fitting correspondence relates the isomorphism classes of indecomposable direct summands of a module to the
projective indecomposable modules for its endomorphism algebra. This correspondence is shown in [1] to be incompatible
with the (Brauer) block distribution of modules in both sides. Instead, the concept of the pseudoblock of an endomorphism
algebra of a module over an algebra was introduced to ensure such compatibility. Here, we borrow this notion and introduce it
for any finite dimensional algebra. Let A be a finite dimensional algebra over an algebraically closed field F , modA denotes
the category of finitely generated A-modules, and we write IndA for the class of indecomposable A-modules. We also write
(X ,Y )A for the A-homomorphism space HomA(X ,Y ) between two modules X ,Y ∈ modA. The pseudoblock linkage relation
≈

PSA
is an equivalence relation defined on IndA in terms of the homomorphism space.

Definition 2.1. If X ,Y ∈ IndA, then X ≈
PSA

Y iff there is a sequence of modules X = X1,X2, ...,Xt = Y in IndA such that for all

i ∈ {1,2, ..., t} either (Xi,Xi+1)A 6= 0 or (Xi+1,Xi)A 6= 0.

Email addresses and ORCID numbers: s43880619@st.uqu.edu.sa, afaf.s@tu.edu.sa, afaf.saad.1438@hotmail.com, 0000-0001-5313-5919 (A. S. Alharthi), aakham-
mash@uqu.edu.sa, prof.khammash@gmail.com, 0000-0001-9404-1732 (A. A. Khammash).



62 Fundamental Journal of Mathematics and Applications

Clearly, ≈
PSA

is an equivalence relation on IndA. We call the equivalence classes IndA/ ≈
PSA

are called pseudoblocks of

the algebra A.

3. Connection with the Brauer blocks

The following shows that the pseudoblock linkage principle ≈
PSA

is stronger than the Brauer linkage principle ≈
A

relating

indecomposable modules which belong to the same block.

Lemma 3.1. If X ,Y ∈ IndA and X ≈
PSA

Y , then X ≈
A

Y.

Proof. If X ≈
PSA

Y , then there is a sequence of modules X = X1,X2, . . . ,Xt = Y in IndA such that for all i ∈ {1,2, . . . , t} either

(Xi,Xi+1)A 6= 0 or (Xi+1,Xi)A 6= 0. But this implies (see [2], p.93) that for all i ∈ {1,2, . . . , t} either Xi ≈
A

Xi+1 or Xi+1 ≈
A

Xi, and

so X ≈
A

Y .

Remark 3.2. The converse of lemma 3.1 does not hold. If we take A = FSL(2,4) and CharF = 2, then A has four simple
modules namely 1,21,22,4 (the latter being the Steinberg module) distributed into two Brauer blocks 1,21,22︸ ︷︷ ︸

B1

, 4︸︷︷︸
B2

. The two

indecomposable modules 1,
21
1
22

∈ IndA belong to the same (Brauer) block, but they lie in a two different pseudoblocks of A. To

see this,

Figure 3.1: Some blocks in IndA split into union of pseudoblocks

It follows that, in principle, some (Brauer) blocks of A split into a union of pseudoblocks, and so we have |IndA/ ≈
A
| 6

|IndA/ ≈
PSA
|.

Motivation 3.3. If we take Y ∈ modA (not necessary indecomposable) and write Inds(Y ) for the isomorphism class of
indecomposable A-summands of Y , then applying the linkage relation ≈

PSA
on Inds(Y ), it was shown in [1] that the (Brauer)

block distribution of the simple modules of the endomorphism algebra E(Y ) = EndA(Y ) is controlled by the pseudoblocks
distribution of Inds(Y ); that is if Yi,Yj ∈ Inds(Y ) and Si,S j ∈ Irr(E(Y )) are the corresponding simple E(Y )-modules under
the Brauer-Fitting correspondence, then Si ≈

E(Y )
S j⇔ Yi ≈

PSA
Yj.

A Useful Criterion 3.4. The pseudoblock equivalence relation ≈
PSA

is defined in terms of the homomorphism space (X ,Y )A. If

X ,Y ∈ IndA, then (X ,Y )A 6= 0 if and only if ∃K ≤A X : X/K ∼= submodule of Y . For, if 0 6= f ∈ (X ,Y )A, then K = ker f � X
and X/K ∼= Im f 6A Y . Conversely, if ∃K 6A X : X/K ∼= T 6A Y , then composing the map X/K ∼= T −→ Y with the natural
map X → X/K we get a nonzero map θ : X → Y . Therefore, we have the figure 3.2

Lemma 3.5. (X ,Y )A 6= 0 if and only if ∃K 6A X: X/K ∼= a submodule of Y .

4. Connection with tensor algebras

Suppose that A1, A2 are two finite dimensional F-algebras. If Xi ∈ Ind(Ai); i = 1,2, then it is known (by considering
endomorphism algebras) that X1⊗X2 ∈ Ind(A1⊗A2). The following theorem shows that the concept of pseudo-blocks is
compatible with tensor operation of modules.

Theorem 4.1. [3]. If Xi,X ′i ∈ Ind(Ai); i = 1,2, then X1⊗X2 ≈
PS(A1⊗A2)

X ′1⊗X ′2 if and only if X1 ≈
PSA1

X ′1 ∧ X2 ≈
PSA2

X ′2.
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Figure 3.2

Proof. Since X1 ≈
PSA1

X ′1, there is a sequence X1 = U1,U2, . . . ,Ut = X ′1 in IndA1 such that for all j ∈ {1,2, . . . , t} either

(U j,U j+1)A1 6= 0 or (U j+1,U j)A1 6= 0 . Similarly, since X2 ≈
PSA2

X ′2, there is a sequence X2 = V1,V2, . . . ,Vt = X ′2 in IndA2

such that for all j ∈ {1,2, . . . , t} either (Vj,Vj+1)A2 6= 0 or (Vj+1,Vj)A2 6= 0 if and only if we have a sequence (with refining
sequences if necessary) X1⊗X2 =U1⊗V1,U2⊗V2, . . . ,Ut ⊗Vt = X ′1⊗X ′2 such that for all j ∈ {1,2, . . . , t} either

(U j⊗Vj,U j+1⊗Vj+1)A1⊗A2 6= 0 or (U j+1⊗Vj+1,U j⊗Vj)A1⊗A2 6= 0

(by taking the tensor homomorphisms). Therefore, X1⊗X2 ≈
PS(A1⊗A2)

X ′1⊗X ′2.

5. The pseudoblocks of certain finite dimensional algebras

Here, we determine the pseudoblocks for some finite dimensional algebras. It turns out that the two concepts; blocks and
pseudo-blocks, coincide for all.

5.1. Semisimple algebras

It is clear that the two notions; blocks and pseudoblocks, coincide for any finite dimensional semisimple algebra A; that is
IndA/ ≈

PSA
= IndA/≈

A
. �

5.2. The symmetric group algebra FS3

Let A = FS3.

1. If CharF - |S3|, then A = FS3 is semisimple, and so IndA/ ≈
PSA

= IndA/≈
A

as shown above.

2. If CharF = 2, then A has two simple module 1,2 and IndA (consists of three indecomposable modules) has the following

block distribution: 1,
1
1︸︷︷︸

B1

, 2︸︷︷︸
B2

which clearly coincides with the pseudoblock distribution.

3. If CharF = 3, then A has two simple modules both of dimension 1; S0 (the trivial module) and S1 (the sign module), and
IndA consists of six indecomposable modules all lie in one Brauer block and are connected by the following sequence
of A-maps

S1→
S0
S1
→

S1
S0
S1

→ S1
S0
→

S0
S1
S0

→ S0
S1
→ S0.

Hence, A = FS3 has a single pseudoblock in this case. Therefore, we have the following

Theorem 5.1. For A = FS3 and in all characteristic of F, we have IndA/ ≈
PSA

= IndA/≈
A

. �
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5.3. The triangular algebra

Now take

A = {(ai j) ∈Mn(F)|ai j = 0;∀i > j}=

{
a =


a11 a12 . . . a1n

a22 . . . a2n
. . .

...
ann

 ;ai j ∈ F

}
;

the algebra of n×n upper triangular matrices (which is isomorphic to the algebra of lower triangular matrices). Then, A is
isomorphic to the path algebra of an equi-oriented quiver of type An. By Gabriel’s theorem (see [4, Chapter11]), this quiver has
n(n+1)/2 indecomposable modules corresponding to the positive roots of Lie algebra of type An. In fact, A acts on the space
of column vectors U = Fn by matrix multiplication and

N =

{
0 a12 . . . . . . a1n

0 a23 . . . a2n
. . . . . .

...
0 an−1n

0


}

= J(A);

the Jacobson radical of A, and consequently A has n simple (1-dimensional) representations ψv : A−→ F (a 7−→ avv);v =
1,2, . . . ,n ( ψv is an algebra map ψv = ψµ ⇔ v = µ). We also have

NU =

{
v1
v2
...

vn−1
0

 : vi ∈ F

}
, and NiU =

{
v1
...

vn−i
0
0

 : vi ∈ F

}
, so U ⊃ NU ⊃ N2U ⊃ . . .⊃ Nn−1U ⊃ 0 is a composition series

with dimNi−1U/NiU = 1;∀i = 1,2, . . . ,n and Ni−1U/NiU ∼= ψn−i+1. Therefore, as A-module, U = Fn has the following
(unique) composition series

U ⊃ NU ⊃ N2U ⊃ . . .⊃ Nn−1U ⊃ 0

ψn ψn−1 ψn−2 . . .ψ2 ψ1.

It follows that the quotient module Ui,α = Nn−iU/Nn−i+αU is a uniserial (hence indecomposable) with the following (unique)
composition series

Figure 5.1

and hence Ui,α = Nn−iU/Nn−i+αU ; (i = 1,2, . . . ,n and α = 1,2, . . . , i) give a complete set of indecomposable A-modules. Not
that Ui,α ∼=U j,β ⇔ i = j∧α = β and Ui,1 = ψi. The modules U1,1,U2,2, . . . ,Un,n give a complete set of projective indecom-

posable A-modules. In fact, it is clear that Uv,v = Lv =

{


0 0 a1v . . . 0
0 0 a2v . . . 0
...

...
...

...
...

...
... avv

...
...

0 0 0 0 0

 : aiv ∈ F, i ≤ v;v = 1,2, . . . ,n

}
CA. Note

that the composition factors of Uv,v = Nn−vU/NnU = Nn−1U are as follows:
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Figure 5.2

The triangular algebra A is not semisimple (J(A) = N 6= 0), hence it has a nontrivial block theory. In fact, A = ∑
⊕
1≤v≤n Uv,v

(projective indecomposable A-modules PIM decomposition) is known to be connected; i.e. it has a single non-zero central
idempotent, namely In, and so it has a single block. On the other hand, from the structure of the objects Ui,α =Nn−iU/Nn−i+αU
(i = 1,2, . . . ,n and α = 1,2, . . . , i) of Ind(A), the objects of the class Ind(A) can be connected by a series of A-maps as follows:

Un,1
↑
...
↑

U4,1 → . . . → Un,n−3
↑ ↑

U3,1 → U4,2 → . . . → Un,n−2
↑ ↑ ↑

U2,1 → U3,2 → U4,3 → . . . → Un,n−1
↑ ↑ ↑ ↑

U1,1 → U2,2 → U3,3 → U4,4 → . . . → Un,n

︸ ︷︷ ︸
n=2︸ ︷︷ ︸

n=3︸ ︷︷ ︸
n=4

Therefore, A has a single pseudo-block, and so we have:

Theorem 5.2. For the triangular algebra A over a field F, we have IndA/ ≈
PSA

= IndA/≈
A

. �

5.4. The group algebra of cylic groups

We now consider the group algebra of cyclic group A = FCn;n = pae; p - e over a field of characteristic p. It is known (see [2],
p.34) that A = FCn has e simple (all are 1-dimensional) modules {Sλ |λ is an e-th root of 1}, where Sλ = F on which Cn acts
by multiplication with λ . It is also known that A = FCn has a total of n = pae indecomposable modules. For each integer
1 ≤ m ≤ pa, there is a uniserial module Lλ ,m of dimension m with all composition factors are isomorphic to Sλ (note that
Lλ ,1 = Sλ ). The set {Lλ ,m|λ ,m} gives a complete set of n = pae indecomposable FCn-modules. Clearly, PIM= {Lλ ,pa |λ}
(Lλ ,pa = P(Sλ ) is the projective cover of Sλ ), and FCn = ∑

⊕
λ

Lλ ,pa . The group algebra FCn has e blocks {Bλ |λ}, where
Bλ = {Lλ ,m|1≤ m≤ pa}. It is clear from the structure of Lλ ,m that FCn has e pseudo-blocks.

Theorem 5.3. For the group algebra FCn over a field F, IndFCn/ ≈
PSFCn

= IndFCn/ ≈
FCn

. �

5.5. p-group algebra in characteristic p

The group algebra FG of a finite p-group over a field F of characteristic p is known to be indecomposable and has a single
simple module, namely the trivial module 1 = FG, and hence has a single block. All indecomposable FG-modules are uniserial
with all of its composition factors are isomorphic to FG. Hence, IndFG forms a single pseudo-block of FG.

Theorem 5.4. For the group algebra FG of a finite p-group over a field F of characteristic p, IndFG/ ≈
PSFG

= IndFG/ ≈
FG

. �
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6. The special linear group SL(2, p)

We now consider the group algebra A = FSL(2, p) in characteristic odd prime number p. It is known that SL(2, p) is the
only finite group of Lie type which is of finite representation type in the natural characteristic (see [5, Chapter1] ). It is
known that SL(2, p) has p (p-regular) conjugacy classes and (hence) p isomorphism classes of simple FSL(2, p)-modules of
dimensions 1,2,3, . . . , p distributed in three blocks B1,B2,B3 (see [6], p.469). We refer to each simple module by its dimension;
hence 1 is the natural representation of SL(2, p) and p is the Steinberg representation. There are p2− p+1 indecomposable
FSL(2, p)-modules of which 2p−1 of them are either simple or projective (The Steinberg representation is both simple and
projective). The number of remaining indecomposable (non-simple non-projective) FSL(2, p)-modules is (p− 1)(p− 2).
Denote by Pi;1≤ i≤ p, the projective cover of the simple FSL(2, p)-module i. The following theorem describes the structure
of the projective indecomposable modules.

Theorem 6.1. [2]. The projective indecomposable FSL(2, p)-modules have the following structures:

Figure 6.1

The structures of the other indecomposable (non-simple, non-projective) FSL(2, p)-modules are explained in the following
theorem

Theorem 6.2. [7]. Every (non-simple,non-projective) indecomposable FSL(2, p)-module M has two socle layers. The socle
of M consists of the modules i, i+2, . . . , j(i 6 j), and the top consists of the modules p− j+ ε, p− j+ ε +2, . . . , p− i+δ ,
where ε,δ =±1.

The following theorem shows that, the compatiblity between the pseudoblock of FSL(2, p) and block theory.

Theorem 6.3. For the group algebra A = FG;G = SL(2, p) over a field F of characteristic prime number p,

IndA/ ≈
PSA

= IndA/≈
A
.

Proof. First: The block B3 (which contains the Steinberg module p∼= Pp) is clearly pseudoblock.

Second: Since B1 contains all odd-dimensional simple A-modules except p, let Pm,Pi be projective indecomposable A-
modules, let m, i be simple A-modules; for all m, i ∈ {1,3, . . . , p− 2}, and let Mi8 be non-simple, non-projective, indecom-
posable A-modules; i8 = {1,2, . . . ,r}; in which Pm, Pi, m, i and Mi8 in B1 for all m, i, i8. Let Pi = i/p− 1− i, p+ 1− i/i,
Pm = m/p− 1−m, p + 1−m/m, M1 = i/p− 1− i, p + 1− i, M2 = p + 1− i/i, M3 = p + 1−m, p− 1−m/m,
M4 = p+1−m, p−1−m/i,m, M5 = m/p−1−m, p+1−m, M6 = p+1− i, p−1− i/i.

Then, we have six cases as follows:

1. Let i,m be any two simple A-modules. Hence,
i→M2→ m.

Then, all odd-dimensional simple A-modules are connected either ways by a sequence of A-module homomorphisms.
2. Let i,m be simple A-modules, and let Pi,Pm be projective indecomposable A-modules. Hence,

Pi→M1→ i, m→M3→ Pm.
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Then, all odd-dimensional simple A-modules and all projective indecomposable A-modules are connected either ways by
a sequence of A-module homomorphisms.

3. Let Mi8 ; i8 = {1,2,3,5} be any non-simple, non-projective, indecomposable A-modules, and let i,m be any two simple
A-modules. Hence,

M1→ i, M2→ m, M3→ Pm→M5→ m.

Then, all odd-dimensional simple A-modules and all non-simple, non-projective, indecomposable A-modules Mi8 ; i8 =
{1,2, . . . ,r} are connected either ways by a sequence of A-module homomorphisms.

4. Let Pi,Pm be any two projective indecomposable A-modules. Hence,

Pi→M1→ i→M2→ p+1− i→M3→ Pm.

Then, all projective indecomposable A-modules Pm,∀m = {1,3, . . . , p−2} are connected either ways by a sequence of
A-module homomorphisms.

5. Let Pi,Pm be any two projective indecomposable A-modules, and let M1,M3,M5,M6 be non-simple, non-projective,
indecomposable A-modules. Hence,

Pi→M1, Pm→M5.

Also,
M6→ Pi, M3→ Pm.

Then, all projective indecomposable A-modules Pm,∀m = {1,3, . . . , p−2} and all non-simple, non-projective, indecom-
posable A-modules Mi8 ; i8 = {1,2, . . . ,r} are connected either ways by a sequence of A-module homomorphisms.

6. Let M1,M2,M3,M4,M5,M6 be any non-simple, non-projective, indecomposable A-modules. Hence,

M6→ Pi→M1,

M1→ i→M2,

M3→ Pm→M5,

and
M4→M3.

Then, all non-simple, non-projective, indecomposable A-modules are connected either ways by a sequence of A-module
homomorphisms.

The previous six cases are enough without loss of generality. So, all indecomposable A-modules in B1 are connected either
ways by a sequence of A-module homomorphisms as follows:

Pi→Mi8 → i→ . . .←M8i8 ← m←M88i8 ← Pm;

for all i,m ∈ {1,3,5, . . . , p−2} and i8 = {1,2, . . . ,r}.

Thus, the block B1 does not split into union of pseudoblocks. So, B1 is one pseudoblock.

Third: Similarly, since the block B2 contains all even-dimensional simple A-modules.
Let Pe,Pj be projective indecomposable A-modules, let e, j be simple A-modules; for all j,e ∈ {2,4, . . . , p− 1}, and let
N j8 be non-simple, non-projective, indecomposable A-modules; j8 = {1,2, . . . ,r}; in which Pe,Pj, e, j, and N j8 in B2 for all
e, j, j8. Let Pj = j/p−1− j, p+1− j/ j, Pe = e/p−1−e, p+1−e/e, N1 = j/p−1− j, p+1− j, N2 = p+1− j/ j,
N3 = p−1− e, p+1− e/e, N4 = p−1− e, p+1− e/e, j, N5 = e/p−1− e, p+1− e, N6 = p−1− j, p+1− j/ j.

Then, we have six cases as follows:

1. Let j,e be any two simple A-modules. Hence,
j→ N2→ e.

Then, all even-dimensional simple A-modules are connected either ways by a sequence of A-module homomorphisms.
2. Let j,e be simple A-modules, and let Pj,Pe be projective indecomposable A-modules. Hence,

Pj→ N1→ j, e→ N3→ Pe.

Then, all even-dimensional simple A-modules and all projective indecomposable A-modules are connected either ways
by a sequence of A-module homomorphisms.
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3. Let N j8 ; j8 = {1,2,3,5} be any non-simple, non-projective, indecomposable A-modules, and let j,e be any two simple
A-modules. Hence,

N1→ j, N2→ e, N3→ Pe→ N5→ e.

Then, all even-dimensional simple A-modules and all non-simple, non-projective, indecomposable A-modules N j8 ; j8 =
{1,2, . . . ,r} are connected either ways by a sequence of A-module homomorphisms.

4. Let Pj,Pe be any two projective indecomposable A-modules. Hence,

Pj→ N1→ j→ N2→ p+1− j→ N3→ Pe.

Then, all projective indecomposable A-modules Pe,∀e = {2,4, . . . , p−1} are connected either ways by a sequence of
A-module homomorphisms.

5. Let Pj,Pe be any two projective indecomposable A-modules, and let N1,N3,N5,N6 be non-simple, non-projective,
indecomposable A-modules. Hence,

Pj→ N1, Pe→ N5.

Also,
N6→ Pj, N3→ Pe.

Then, all projective indecomposable A-modules Pe;∀e = {2,4, . . . , p−1} and all non-simple, non-projective, indecom-
posable A-modules N j8 ; j8 = {1,2, . . . ,r} are connected either ways by a sequence of A-module homomorphisms.

6. Let N1,N2,N3,N4,N5,N6 be any non-simple, non-projective, indecomposable A-modules. Hence,

N6→ Pj→ N1,

N1→ j→ N2,

N3→ Pe→ N5,

and
N4→ N3.

Then, all non-simple, non-projective, indecomposable A-modules are connected either ways by a sequence of A-module
homomorphisms.

The previous six cases are enough without loss of generality. So, all indecomposable A-modules in B2 are connected either
ways by a sequence of A-module homomorphisms as follows:

Pj→ N j8 → j→ . . .← N8j8 ← e← N88j8 ← Pe;

for all j,e ∈ {2,4, . . . , p−1} and j8 = {1,2, . . . ,r}.

Thus, the block B2 does not split into union of pseudoblocks. So, B2 is one pseudoblock.

Thus, for group algebra FSL(2, p) in characteristic odd prime p the two notions blocks and pseudoblocks coincide.

Example 6.4. If p = 2, then the representations of SL(2,2) ∼= S3 in characteristic 2; hence the two notions blocks and
pseudoblocks coincide as stated in section 5.

If p = 7, then the following are the indecomposable FSL(2,7)-modules:

• The simple FSL(2,7)-modules are: 1,3,5︸ ︷︷ ︸
B1

, 2,4,6︸ ︷︷ ︸
B2

, 7︸︷︷︸ .
B3

• The projective indecomposable FSL(2,7)-modules are:

1/5/1, 3/3,5/3, 5/1,3/5, 4/2,4/4, 2/4,6/2, 6/2/6, 7.

• The (non-projective non-simple) indecomposable FSL(2,7)-modules are:
5/1, 1/5, 3/5, 5/3, 3/3, 3,5/3, 3/3,5 1,3/5, 5/1,3, 3,5/1,3,5,
1,3,5/3,5, 1,3,5/1,3,5, 3,5/1,3, 3,5/3,5, 1,3/3,5. (in B1)

2/6, 6/2, 4/2, 2/4, 4/4, 4,6/2, 2/4,6, 2,4/4, 4/2,4, 2,4/2,4,6,
2,4,6/2,4, 2,4,6/2,4,6, 2,4/2,4, 2,4/4,6, 4,6/2,4. (in B2)
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The total number of indecomposable modules is 43 = 72−7+1, where ExtFSL(2,7)(i, j) are 1-dimension for all indecompos-
able FSL(2,7)-modules as stated in ([5], p.117).

The indecomposable FSL(2,7)-modules in B1 forms a single pseudoblock via the following sequence of homomorphisms:
3/3→ 1,3,5/1,3,5→ 1,3,5/3,5→ 1,3/3,5→ 1,3/5→ 5/1,3/5→ 5/1,3→ 3,5/1,3→ 3,5/1,3,5→ 3,5/3,5→ 3,5/3→
3/3,5/3→ 3/3,5→ 3/5→ 3→ 5/3→ 5→ 1/5→ 1→ 5/1→ 1/5/1.

The indecomposable FSL(2,7)-modules in B2 forms a single pseudoblock via the following sequence of homomorphisms:
4/4→ 2,4,6/2,4,6→ 2,4,6/2,4→ 4,6/2,4→ 4,6/2→ 2/4,6/2→ 2/4,6→ 2,4/4,6→ 2,4/2,4,6→ 2,4/2,4→ 2,4/4→
4/2,4/4→ 4/2,4→ 4/2→ 4→ 2/4→ 2→ 6/2→ 6→ 2/6→ 6/2/6.
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