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Abstract

In this communication, an analytical solution for the thermal transfer of Newtonian �uid �ow with quadratic
order thermal and velocity slips is presented for the �rst time. The �ow of a Newtonian �uid over a stretching
sheet which is embedded in a porous medium is considered. Karniadakis and Beskok's quadratic order slip
boundary conditions are taking into account. A closed form of analytical solution of momentum equation
is used to derive the analytical solution of heat transfer equation in terms of con�uent hyper-geometric
function with quadratic order thermal slip boundary condition. Accuracy of present results is assured with the
numerical solution obtained by Iterative Power Series method with shooting technique. The impacts of porous
medium parameter, tangential momentum accommodation coe�cient, energy accommodation coe�cient on
velocity and temperature pro�les, skin friction coe�cient and reduced Nusselt number are discussed. The
Nusselt number increases with the higher estimations of tangential momentum and energy accommodation
coe�cients.
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1. Introduction

The investigation of �uid �ow in the presence of slip boundary conditions has received considerable
interest due its accuracy of predicting the realistic behaviour in many engineering processes. For example,
the �uid �ow in micro pumps, micro nozzles, micro vales and hard disk experiences slip at wall. The use
of no-slip condition in the above cases does not predict the actual physical situation. The consideration of
velocity slip and temperature jump in this type of �ow regime is very important to determine the velocity
and temperature, respectively. The investigation of heat transfer in a �uid �ow induced by a moving surface
is very important in the processes of glass blowing, continuous casting, cool oil slurries, metal spinning and
plastic �lms etc. A primary investigation on this type of problem was done by Sakiadis [1,2] and Crane
[3]. Much attention has been given to this type of �uid �ow problem with various physical e�ects via both
analytical and numerical techniques [4-12].

Karniadakis and Beskok [13] proposed a quadratic order slip boundary condition. Xiou et al. [14] studied
the gas �ow in microtube with quadratic order slip conditions. Hamdan et al. [15] modelled the micro gas
�ow with quadratic order slip conditions. Fang et al. [16] considered the Wu's [17] quadratic order velocity
slip condition in the problem of viscous �uid �ow over a shrinking sheet. Fang et al. [16] derived closed
form analytical solutions for momentum equation. Nandeppanavar et al. [18] studied the quadratic order
velocity slip with heat transfer in a viscous �uid. A closed form analytical solution was presented for the
momentum equation and the energy equation was solved numerically in [18]. Turkyilmazoglu [19] derived the
analytical solution for MHD viscous �uid �ow using Laguerre polynomials with quadratic order velocity slip.
The quadratic order velocity slip e�ects on nano�uid �ow over a stretching/shrinking sheet were investigated
both numerically and analytically in the articles [20,21]. In the above articles, a closed form solution for
momentum equation was presented and the energy equation was solved using con�uent hyper-geometric
function. Numerous numerical investigations on the �uid �ow with quadratic order velocity slip can be
found in the literature [22-32]. In all the above studies [18-35], the e�ects of quadratic order temperature
boundary conditions were omitted and Wu's quadratic order velocity boundary condition was considered.
Arikoglu et al. [33] used di�erential transform method (DTM) to analyse the Karniadakis and Beskok's
quadratic order velocity slip and thermal jump impacts in a rotating disk problem. Recently, Ganesh et al.
[34] have carried out a numerical investigation on the Newtonian �uid over a vertical stretching sheet with
quadratic order velocity and thermal slip boundary conditions of Karniadakis and Beskok.

Having all the above literature in mind, we focused in this communication on the problem of Newtonian
�uid �ow over a stretching sheet immersed in a porous medium with suction. we aimed to derive an analytical
solution in terms of con�uent hyper-geometric function for energy equation in the presence of the following
quadratic order temperature and velocity slip boundary conditions [13]:

βv1

(
∂us
∂y

)
+ βv2

(
∂2us
∂y2

)
= − (uw − us) , (Quadratic order Velocity slip),

βt1

(
∂T

∂y

)
+ βt2

(
∂2T

∂y2

)
= − (Tw − Ts) , (Quadratic order Thermal slip).

It is worth mentioning herein that -to achieve this target-, we �rstly derived a closed form analytical solution
of momentum equation following the footsteps in [16, 18-21].

2. Mathematical formulation

We consider the steady, 2D laminar �ow of a Newtonian �uid over a stretching sheet in a Darcian porous
medium with suction e�ects. The sheet stretching velocity uw = dax with constant `a' and stretching
parameter `d' are assumed. The x-axis runs along the stretching surface with velocity `u'. The y-axis runs
perpendicular to the sheet with velocity `v'. The temperature at the stretching surface takes the constant
value Tw, while the ambient value, attained as y tends to in�nity, takes the constant value T∞. It is assumed
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that the �uid experiences both second order velocity and thermal slips. The governing equations of this
problem can be expressed as:

∂v

∂y
+
∂u

∂x
= 0, (1)

∂u

∂x
u+

∂u

∂y
v +

µ

ρ

u

K
− µ

ρ

∂2u

∂y2
= 0, (2)

∂T

∂x
u+

∂T

∂y
v − k

ρCp

∂2T

∂y2
= 0, (3)

where µ, ρ, K, k and Cp are representing the viscosity, density, permeability of the porous medium, thermal
conductivity, and speci�c heat capacity, respectively. The quadratic order velocity and temperature boundary
conditions of Eqs. (1)-(3) are considered as

u = dax+ βv1
∂u

∂y
+ βv2

∂2u

∂y2
,

v = vw,

T = Tw + βt1
∂T

∂y
+ βt2

∂2T

∂y2
, (Tw = T∞ + bx) , at y = 0,

u→ 0, T → T∞ as y →∞, (4)

where βv1 =
(2− σv)λ

σv
is the �rst order velocity factor, βv2 =

(σv)β
2
v1

2(2− σv)
is the quadratic order velocity slip

factor, βt1 =
2β(2− σt)λ
σtPr(β + 1)

represents the �rst-order thermal jump factor, βt2 =
β2t1(σt)(β + 1)Pr

4β(2− σt)
represents

the quadratic-order thermal slip factor. In addition, λ is the mean free path and β is speci�c heat ratio.

3. Solution of Momentum equation

The method of solution is based on the similarity transformations; given by:

u

a
= xg′(η),

v
√
avf

= −g(η), η

y
=

√
a

vf
, θ =

T − T∞
Tw − T∞

. (5)

Plugging the similarity transformations (5) into Equations (2) and (4); one obtains

g′′′ + gg′′ − g′2 = k1g
′, (6)

g(η) = s, g′(η) = d+ γvg
′′(η) + δvg

′′′(η) as η → 0,

g′(η)→ 0 as η →∞, (7)

where k1 =
µ

ρak
is porous medium parameter, γv = βv1

√
a

vf
is �rst order velocity slip parameter, δv = βv2

a

vf
is quadratic order velocity slip parameter and s is suction/injection parameter. An analytical solution of Eq.
(6) subject to boundary conditions (7), is obtained following similar procedure given in [16, 18-21]; hence,
we obtain

g(η) = s+
d (1− e−αη)

α (1 + γvα− δvα2)
and g′(η) =

de−αη

(1 + γvα− δvα2)
. (8)

Substituting Eq. (8) in Eq. (6) gives the following algebraic equation

d = −
(
1 + γvα− δvα2

)
[k1 + α(s− α)] ,
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which has four distinct roots expressed as

α = −−γv − sδv
4δv

− β4
2
−
√
β6 − β7
2

, (I)

α = −−γv − sδv
4δv

− β4
2

+

√
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2

, (II)
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+
β4
2
−
√
β6 + β7
2

, (III)
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4δv

+
β4
2

+

√
β6 + β7
2

, (IV ) (9)

where

β1 = 21/3
(
12(d+ k1)δv + (−1 + sγv − k1δv)2 − 3(s+ k1γv)(−γv − sδv)

)
,

β2 = 27(s+ k1γv)
2δ − 72(d+ k1)δv(−1 + sγv − k1δv) + 2(−1 + sγv − k1δv)3

−9(s+ k1γv)(−1 + sγv − k1δv)(−γv − sδv) + 27(d+ k1)(−γv − sδv)2,
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√
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,
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√
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3δv
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δv
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4(−1 + sγv − k1δv)(−γv − sδv)
δ2v

− (−γv − sδv)3

δ3v
,
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−4(−1 + sγv − k1δv)

3δv
+
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2δ2v
− β1

3δvβ3
− β3
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,

β7 =
β5
4β4

.

A physically meaningful solution is obtained using the IVth of Eq. (9). Notice that the non-dimensional
form of local skin friction coe�cient is obtained as follows:

Re1/2x Cf = −g′′(0) = αd

(1 + αγv − δvα2)
.

4. solution of Energy Equation

Plugging similarity transformations (5) into both Eq. (3) and the temperature boundary conditions in
(4), we obtain

θ′′ + Prgθ′ = Prg′θ, (10)

θ(η) = 1 + γtθ
′(η) + δtθ

′′(η), at η = 0 and θ(η)→ 0 as η →∞, (11)

where γt = βt1

√
a

vf
is �rst order thermal slip parameter, δt = βt2

a

vf
is quadratic order slip parameter and

Pr is the Prandtl number.

Substituting ξ =
−B
α
e−αη and Eqs. (8) into equations (10) & (11); we can derive the solution for the

energy equation with quadratic order thermal slip boundary condition, in terms of con�uent hyper-geometric
function which is given by

θ(η) =

(−α
B

)p
C −Dγt − Eδt

(
−B
α
e−αη

)p
M

(
p− 1, 1 + p,

−B
α
e−αη

)
, (12)
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where
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.

Here, M is the con�uent hyper-geometric function de�ned in [20,21]

M ([c] , [d] , z) = 1 +
c

d
z +

c(c+ 1)z2

d(d+ 1)2!
+ · · · =

∞∑
i=0

(c)i
(d)i

zi

i!
.

The non-dimensional form of reduced Nusselt number is derived as

Re−1/2x Nux = −θ′(0),

where

θ′(0) =

( (−α
B

)p
C −Dγt − Eδt

)(
−B
α

)p
[
−pαM

(
p− 1, 1 + p,

−B
α

)
+
B(p− 1)

(1 + p)
M

(
p, 2 + p,

−B
α

)]
.

5. Results and Discussion

The derived analytical solutions are veri�ed with numerical solutions of governing equations by Iterative
Power Series method with shooting method [35]. A comparison with Turkyilmazoglu [19] has been included
in Table 1 for −g′′(0) which gives con�dent on the accuracy of present results.

γv δv
Present Results Turkyilmazoglu [19] with Mn=0

Analytical solution Numerical solution

0 -1 0.38942825653 0.3894282565 0.38942826

3 -3 0.10449186634 0.1044918663 0.10449187

5 -5 0.06420511134 0.0642051113 0.06420511

Table 1

Comparison results of −g′′(0)

Table 2 Numerical values of local skin friction coe�cient and reduced Nusselt number with

d=1, s=1, Pr = 0.71 and β =0.5.

Parameters Values
−g′′(0) −θ′(0)

Analytical Numerical Analytical Numerical

σv and σt

0.4 2.000000000 2.000000000 0.4681211168 0.46812112
0.6 2.645816798 2.64581680 0.7021552540 0.70215525
0.8 4.373238534 4.37323853 1.0676155810 1.06761558

k1

0.0 5.199261870 5.19926187 0.9515851852 0.95158518
0.5 3.869356743 3.86935674 0.7016313171 0.70163131
1.0 2.000000000 2.000000000 0.4681211168 0.46812112
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Fig. 1. Impacts of tangential momentum accommodation coe�cient (σv) and porous medium parameter
(k1) on velocity pro�le with d=1 and s=1.

The results are discussed through graphical representations with following �xed values of parameters:
d=1, s=1, Pr = 0.71, β =0.5 and k1 = 0.5. The in�uences of porous medium parameter (k1), tangential
momentum accommodation coe�cient (σv) and energy accommodation coe�cient ((σt) on velocity pro�le,
temperature pro�le, skin friction and reduced Nusselt number are discussed through analytical solutions.
Both σv and σt are varied from 0.2 to 0.8. The �rst and quadratic order velocity and thermal slip parameters
are calculated using σv and σt. The numerical values of −g′′(0) are calculated by both numerical and
analytical methods and presented in Table. 2.

The behaviour of velocity pro�le with σv and k1 is shown in Fig.1. For higher estimations of σv (0.4, 0.6,
0.8), an increasing behaviour in velocity pro�le has been noted. The tangential momentum accommodation
coe�cient has a signi�cant e�ect on the velocity pro�le for a certain rage of η. This is due the fact that,
σv is inversely proportional of the �rst and quadratic order velocity slip parameters. Increase in σv leads to
decrease the velocity slip parameters. Hence the velocity pro�le increases. The velocity pro�le reduces with
porous medium parameter due to Darcian resistant force in the �ow region.

Features of σv, σt and k1 on the temperature pro�le portrayed in Fig 2. For higher estimations of σv
and σt (0.4, 0.6, 0.8), an augmentation in the temperature pro�le has been observed. This is because, an
increase in σv and σt causes the �rst and quadratic order velocity and thermal slip parameter to decrease.
A notable e�ect has been seen via k1. The temperature pro�le is decreased with k1 near the wall. Thermal
boundary layer thickness is enhanced with k1.

The variation of skin friction coe�cient and reduced Nusselt number with σv, σt and k1 is shown in Figs.
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Fig. 2 . Impacts of tangential momentum accommodation coe�cient (σv), energy accommodation
coe�cient (σt) and porous medium parameter (k1) on temperature pro�le with d=1, Pr= 0.71, β=0.5 and

s=1.

3 and 4 respectively. A comparison between analytical and numerical solution of present problem is also
highlighted. It is observed from Fig. 3, the magnitude of g′′(0), increases with k1 and reduced with σv. The
skin friction is lower in the slip �ow case compared to no-slip case. The magnitude of −θ′(0) decreases with
k1 and increases with σv and σt.

6. Conclusion

An analytical solution for the heat transport of Newtonian �uid �ow over a stretching sheet with
quadratatic velocity and thermal slips conditions is obtained. The obtained solutions are veri�ed with
the numerical solutions through Iterative Power Series method with shooting method. Important �ndings of
present analytical study are listed below:

• The velocity pro�le increases with tangential momentum accommodation coe�cient and decreases with
porous medium parameter.

• The thermal boundary layer thickness enhances with tangential momentum accommodation coe�cient,
energy accommodation coe�cient and porous medium parameter.

• The magnitude of skin friction increases via porous medium parameter and decreases via tangential
momentum and energy accommodation coe�cients.
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Fig. 3. Impacts of tangential momentum accommodation coe�cient (σv) and porous medium parameter
(k1) on local skin friction coe�cient with d=1 and s=1.

• Higher tangential momentum and energy accommodation coe�cients increase the Nusselt number.

• The accuracy of analytical results is assured with numerical results.
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