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 Modeling of tubes containing fluid flow is widely used in the study of heat exchangers, nuclear 

reactors, micro and nano tools, etc. This system is structurally simple but very complex in terms 

of dynamic behavior and vibrations. In this paper, an analytical relationship for nonlinear 

vibrations of self-excitation of a nanocomposite conical tube containing fluid flow is extracted, 

one end of which is free and the other side is fixed and is under gravitational force. The base 

material is assumed to be 1200 series aluminum, which is reinforced with carbon nanotubes.  The 

Hamiltonian equations are obtained, assuming the Euler–Bernoulli beam theory and the use of the 

Galerkin method, dissected the partial derivative equations into Ordinary Differential Equations 

(ODE), then solved by MATLAB coding and investigated the effect of various parameters on 

system behavior. As the fluid velocity increases, the amplitude of the vibration increases and the 

nonlinear effects of the system increase, so more modes are needed to converge the responses. In 

a conical tube, the βT coefficient increases with increasing inner diameter along the tube and the 

system becomes more stable. Increasing the length of the pipe makes the opening conical pipe 

more stable and the closing conical pipe more unstable. The change in length has no effect on the 

stability of the cylindrical tube. 
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1. Introduction 

The issue of fluid flow pipes has been seriously studied 

since about 1950 to analyze the vibrations of oil pipelines. 

Although this system is structurally simple, it is very 

complex in terms of dynamic behavior. Various nonlinear 

phenomena are more pronounced in the dynamic behavior 

of these systems, especially in tubes with free ends. 

Modeling of such systems is used in heat exchangers, 

nuclear reactors, micro and nano tools, robots and 

underwater equipment, etc. One of the main features of 

these systems is that if the velocity of the material being 

transferred is high enough, the structure may suffer from 

deflection or oscillation instability in bending modes. For 

these structures, the rate of acceleration that leads to the 

onset of instability is called the critical mass transfer rate. 

In analyzing such systems, it is usually to determine two 

cases. The first is the critical velocity of the mass being 

transferred and the second is the relation between the 

characteristic frequencies (specific values) and the 

velocity of the transfer mass. The first is the main goal of 

sustainability analysis, and the second is important if the 

characteristics of the free frequency and the response to a 

set of specific excitation are considered. Extensive 

research has been done on various types of tubes 

containing fluid flow, but most of this research has been 

limited to linear models and a small number of variable 

cross-sections. Probing biomechanical properties with a 

centrifugal force quartz crystal microbalance [1]. This 

study examines flexible tubes containing flow. Lu et al. [2] 

investigated internal resonance and stress distribution of 

pipes conveying fluid in supercritical regime. Xinbo [3] 

showed in experimental device for the study of liquid–

solid coupled flutter instability of salt cavern leaching 

tubing. Amabili et al. [4] studied the effects of geometric 

defects on the nonlinear stability of a cylindrical shell 

containing fluid flow and the effect of Van der Waals 

force. Liang et al. [5] analyzing the vibrations caused by 

Nonlinear vibration and dynamic response of nano composite conical tube 

by conveying fluid flow   
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the flow and stability of double-walled carbon nanotubes 

based on the theory of coupling stress, investigated the side 

and fixed effect of Winkler elastic constant (spring 

stiffness). Sadeghi et al. [6] investigated the effect of mass 

at the end of the tube for three-dimensional mode. Ghayesh 

et al. [7] studied the motion of a tube integrated containing 

the flow, taking into account the flexibility of the tube in 

two dimensions. One of the areas that has received the 

most attention recently is the nanoscale and the use of 

nanocomposites. Farajpour et al. [8] investigated the 

nonlinear mechanics of nanotubes containing fluid flow. 

Liang et al. [9] investigated the free vibrations and 

dynamics of the rotating tube containing the fluid flow. 

Their study found that rotational motion reinforces tube 

strength and eliminates the buckling instability. Lu et al. 

[10] investigated the effects of nonlinear vibrations on the 

fatigue life of fluid transfer tubes made of Functionally 

Graded Material (FGM) materials. The results of fatigue 

analysis show that internal resonance shortens the life of 

fatigue and reduces the distribution coefficient of FGM 

tube, reduces resonance response and maximum tube 

tension. Mohammadi et al. [11] investigated an efficient 

solver for fully coupled solution of interaction between 

incompressible fluid flow and nanocomposite truncated 

conical shells. the dynamic instabilities of nanocomposite 

truncated conical shells containing a quiescent or a flowing 

inviscid fluid are scrutinized. Nonlinear dynamic 

equations are established according to the Novozhilov's 

nonlinear shell theory along with Green’s strains and 

Hamilton principle. Dinh et al. [12] investigated for 

electro-thermo-mechanical vibration of nanocomposite 

cylindrical shells with an internal fluid flow. Khudayarov 

et al. [13] investigated numerical simulation of vibration 

of composite pipelines conveying fluids with account for 

lumped masses. Sedighi [14] investigated divergence and 

flutter instability of magneto-thermo-elastic Cubic boron 

nitride (C-BN) hetero-nanotubes conveying fluid. On the 

basis of finite element analysis, an eigenvalue problem is 

performed to examine the vibrational characteristics of a 

hetero-nanotube made of C-BN nanotubes in magnetic and 

thermal environment. Bahaadini et al. [15] investigated 

dynamic stability of viscoelastic nanotubes conveying 

pulsating magnetic Nano flow under magnetic field. 

Dynamic stability analysis of viscoelastic carbon 

nanotubes (CNTs) conveying pulsating magnetic Nano 

flow subjected to a longitudinal magnetic field. Li et al. 

[16] analytically investigated Vibration of a Fluid-

Conveying Pipe Flexibly Restrained at the Ends. In their 

studies the effects of different spring stiffness coefficients 

on the parametric resonance responses are presented. 

According to a review of similar research, the nonlinear 

vibrations of the tube with the variable cross-section have 

not been analyzed analytically. In this study, a nonlinear 

analytical relation is obtained for the self-excitation 

vibrations of the nanocomposite conical tube with a free 

end that contains a fluid flow and is under gravity. 

 

2. Problem Statement  

Figure 1 shows the geometric parameters of the tube. In 

this study, it is assumed that the fluid is incompressible, so 

the volumetric flow rate is constant along the tube and the 

velocity obtained by dividing the flow rate by the fluid cross 

section. The total cross-sectional area at each point is 

determined by Ae (s), the area of the section containing the 

Af (s) fluid, and the cross-sectional area of the tube with Ap 

(s). The tube is assumed to be a fixed head. The flow entry’s 

the tube from the top and is under gravity and exits from the 

bottom of the tube.  

    The equations of motion in the form of a partial 

differential equation derivative are a function of x and t, 

which must be written to the matrix form of the finite 

element to solve the equations. The matrix form can be 

solved in a variety of ways, including the Runge-Kutta 

method. The steps for converting equations to the matrix 

form of finite element components are as follows, that is, 

first, using the Galerkin method, write the equations of the 

Partial Differential Equations as a weak form, and then the 

common matrix that you see these steps in Figure 2. 

The Galerkin method is a special case of the residual 

weight method, which is a function of weight equal to the 

approximation function.  

 

2.1 Fourth Order Runge-Kutta Method 

This method has several levels that in this article, the 

fourth order mode is used. Fourth Order Runge-Kutta 

Method is a numerical technique used to solve ordinary 

differential equation of the form. 

0( , ), (0)
dy

f x y y y
dx

= =  (1) 

 

Figure 1. Geometry of the problem 
 
 

 

 

Figure 2. Steps to convert partial derivative equations into a 

matrix form 
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K1, K2, K3, and K4 are the values of the Runge-Kutta 

method, which should be weighted average of these values 

with the values of displacement and velocity in the 

previous step in order to calculate the velocity and 

displacement in each step [17]. 

  

1
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 (2) 

in which h is time step of solving. Classical elasticity 

theories deal with issues in which the displacements are 

small, but in the case under consideration it is possible to 

make large displacements, which makes the importance of 

nonlinear terms important. In elasticity (x, y, z) it indicates 

the position of the material point in the elastic body and (u, 

v, w) corresponds to the displacements of the same 

material point. Properties of composite material reinforced 

by carbon nanotube are obtained using the following 

relations [18]: 
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    In this relation 𝐸11
𝐶𝑁𝑇  and 𝐸22

𝐶𝑁𝑇  are elastic modulus and 

𝐺12
𝐶𝑁𝑇  shear modulus of single-walled carbon nanotubes. 

1,2 and 3 are the carbon nanotube performance 

parameters. VCNT and Vm, respectively, are the volume 

fraction of carbon nanotubes and matrices that apply to the 

VCNT + Vm=1 relation. 12
𝐶𝑁𝑇and 𝜌0

𝐶𝑁𝑇  are Poisson's ratio 

and density of carbon nanotubes 𝑚 and 𝜌0
𝑚 are Poisson's 

ratio and density of matrix. In these relations, 𝛼11
𝐶𝑁𝑇 .  𝛼22

𝐶𝑁𝑇 

and  m are the thermal expansion coefficients of the 

carbon nanotube and the matrix.  The properties of carbon 

nanotubes are presented in Table 1 and the values of 

carbon nanotube performance parameters are presented in 

Table 2. 

The base material is assumed to be 1200 series 

aluminum, which is reinforced with carbon nanotubes. The 

fluid passing through the pipe is also assumed to be water. 
The main mechanical properties of aluminum are listed in 

Table 3. 

The assumption of the problem is that the fluid is 

incompressible and turbulent that the diameter of the tube 

is small compared to the length. Assuming the Euler–

Bernoulli beam theory was used for the problem, rotational 

inertia and shear deformation were ignored, assuming that 

the central axis of the tube did not change in length (the 

condition of non-expansion). The energy method is based 

on Hamilton's principle and is as follows: 
 

2 2

1 1

0

t t

t t

Ldt Wdt + =   (10) 

    

 In this relation, L is the Lagrangian system (L = TP + TF – 

VP - VF) where TP and Vp are kinetic energy and tube 

potential and TF and VF are kinetic energy and fluid 

potential, respectively. W virtual work is a force that is 

not included in Lagrangian. But Hamilton's original form 

is established for closed systems, that is, in a system where 

there is no mass flow in or out, the Hamilton principle 

should be used to investigate the problem, that the system 

is assumed to be independent of the lost forces 0W = : 

2 2

1 1

( ).

t t

t t

R
Ldt MU U R dt

t
 

→
→ → 

 = + 
 
 

   (11) 

   T
→

 and R
→

 are the position vectors and the vector unit 

tangent to the tube, respectively. The relation was 

established in 1961 by Benjamin [21] about flow tube that 

was modeled with the Euler–Bernoulli beam. The MU 

term coefficient is the amount of energy that is added to or 

reduced from the system by the end of the tube, the right 

side of the relation was considered as the transfer virtual 

momentum through the free surface of the end of the tube. 

This term is directly related to the instability mechanism. 

The energy finding by the tube is as follows: 
1

2

0

( . )

t

W MU R U R dt
→ →

 = − +  (12) 

Table 1. Material properties of single-walled carbon nanotube 

(10,10) (12
𝐶𝑁𝑇 = 0.175) [19] 

Temperature (K) 700 500 300 

𝐸11
𝐶𝑁𝑇 (TPa) 5.4744 5.5308 5.6466 

𝐸22
𝐶𝑁𝑇 (TPa) 6.8641 6.9348 7.0800 

𝐺12
𝐶𝑁𝑇  (TPa) 1.9644 1.9643 1.9445 

11
𝐶𝑁𝑇(10-6/K) 4.6677 4.5361 3.4584 

2
𝐶𝑁𝑇(10-6/K) 4.8943 8.0189 5.1682 

 

Table 2. Efficiency parameters for different values of VCNT  [19] 

3 2 1 VCNT 

0.934 0.934 0.149 0.11 

0.941 0.941 0.150 0.14 

1.381 1.381 0.149 0.17 



 

 
Table 3. Mechanical properties of 1200 series aluminum [20] 

properties E(Gpa) G(Gpa) (g/cm3)  

value 70 28 2.7 0.29 

     

     If the two ends of the tube are fixed W = 0  and the 

system is conservative. For small input velocity’s, the fluid 

is W < 0  and the system is stable, but for large enough 

velocity’s, the value of W  is positive and the system is 

unstable. Defining an exact relation for kinetic energy is 

very important in large deformations. Stoker [22] 

introduces the following relation for this purpose: 

2 2 2

0

[ 1(1 ) ]
2

L
E

V A k dx = + +  (13) 

    X the Lagrangian coordinates, A cross-sectional area, I 

moment of inertia, and   strain. The tube with the 

assumption of non-expandability 0 = , the relation is as 

follows: 

2 2

0 0
2 2

L L
EI EI

V k dx k ds= =   (14) 

   Gravitational energy is dependent on mass and is in a 

uniform field as follows: 

G gx dV=   (15) 

    The gravitational energy in the present case is written as 

follows: 

0

( ) ( )

L

G m M g X u ds= − + +  (16) 

   

The kinetic energy of the whole system is the sum of the 

kinetic energy of the tube, Tp, and the kinetic energy of the 

TF fluid, which is defined as follows: 
 

2 2

0 0

,
2 2

L L

P P F F

m m
T V ds T V ds= =   (17) 

 

Using the Hamilton principle, after performing the 

necessary calculations, the equation of motion is obtained 

as follows (for a fixed cross-sectional area): 
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(18) 

Assuming the steady flow is the dimensionless linear 

equation as follows: 

Table 4. Physical concepts in the equation of motion. 

Phrase Physical concept 
2

2
( )

y
m M

t


+
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2

2
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x t
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4
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
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M
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 The force of the unstable flow 

    

 𝜂′′′ + 𝜂̈ + 2𝑢√𝛽𝜂̇′ + 𝜂′′(𝑢2 − 𝛾(1 − 𝜉)) + 𝛾𝜂′

= 0 

(19) 

   Which are its dimensionless parameters: 
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Using these dimensionless parameters, Equation 18 

becomes the following form: 
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 (21) 

     

Physically, u is the dimensionless velocity of fluid, γ is 

the ratio of gravitational force to bending strength, and β 

is the ratio of fluid mass to total mass per unit length of 

pipe. Positive values of γ mean that the tube is hanging, ie 

the upper end of the tube is fixed and the lower end of the 

tube is free. Negative γ values mean that the lower end of 

the tube is fixed and the upper end of the tube is free. 

Considering the change in cross section, the equation of  

motion is as follows: 
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The geometric characteristics of the tube is shown in 

Figure 1. Geometric dimensionless parameters are written 

based on the geometric characteristics of the tube. The 

moment of inertia and mass, the cross-sectional area and 

density are dimensionless and the relations related to the 

radius and dimensionless dimension are obtained as: 
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By dividing the area and moment of inertia by their 

values at the beginning of their tube, it becomes 

dimensionless: 
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(24) 

    Therefore, the area and time of the dimensionless 

moment of inertia are as follows: 
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  Other dimensionless parameters are defined as follows: 
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    To shorten the equations, the following parameter is 

defined: 
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    Finally, dimensional equation in the form below: 
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    After obtaining the equations of motion, it is necessary 

to use the Galerkin method mentioned earlier to make the 

equations discrete and matrix. 
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   The final matrix form of motion equations will be as 

follows: 

 

Figure 3. Simulink model of nonlinear differential equation 

solution 
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(30) 

 

3. Results and Discussion 

Numerical methods must be used to solve the equations 

obtained in the relation. In this study, MATLAB software 

and Simulink part have been used to solve these equations. 

The equations in Simulink are solved by Runge-Kutta 

method. The time step and tolerance are also considered one 

thousandth. The values of entry of a matrix the coefficients 

are calculated by the codes written in MATLAB. The figure 

shows the Simulink model used. 

    First, it is necessary to evaluate the results with the work 

of other researchers, and for this purpose, two diagrams of 

the figures are presented is shown in Figure 4. The diagram 

of critical velocity changes in terms of coefficient using 

different modes for solution.  

 

 

Figure 4. Evaluate results with other research work in ref [23] 
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According to Figure 5, as the number of modes used in 

the Galerkin method for solving increases, the jumps that 

appear in the diagram increase, and the location of the 

jumps displacement to the left of the diagram. Figures 6 

are shown to investigate the effect of gravity and the length 

of the tube on the critical velocity of the diagrams. 

As mentioned, to solve the nonlinear equations, the 

Simulink model is created according to the figure, which 

solves the differential equations discretized by the 

Galerkin method by the Rang-Kota numerical method. To 

ensure the correctness of the nonlinear equations, as well 

as the correctness of the written program for integral 

calculations and the Simulink model, since the results have 

not been worked on the cone tube so far, the results for the 

cylindrical tube state are compared with the research of 

Wang et al [24]. The comparison is shown in Figure 5. 

(Dimensional parameters used for evaluation: β=0.213, 

γ=26.75). 

It can be seen that the results are in good agreement 

with each other. In both graphs the critical velocity is about 

8.5. 
 

 

Figure 5. Diagram of the range of motion of a cylindrical tube 

after the occurrence of instability with a change in velocity 

 (a) Wang et al [24] (b) current article. 

 

Table 5.Default values of dimensionless parameters. 

Parameter Value 

X 40 

γ 0 

* 2 

 0.5 

I* 2 

Ap* 0.14 

Af* 0.11 

    The values of the βT and i parameters are also  

indicated in each figure. Due to the fact that with 

increasing β coefficient, the modes that lead to system 

instability change, and considering that according to the 

observations of this change, the modes move towards 

higher modes, to see the jumps in the diagram, the modes 

used for solving must be increased. Otherwise jumps that 

occur at higher β coefficients will not appear in the graph. 
    According to Figure 6, as the number of modes used in 

the Galerkin method to solve increases, the number of 

jumps that appear in the graph increases and the location 

of the jumps shifts to the left of the graph. To investigate 

the effect of the direction of gravity and the length of the 

tube on the critical velocity is shown in Figures 7 and 8. 

(e= 0, β= 0.5, γ(H)= 0.00251(X/2)3) 
 

 

Figure 6. Critical velocity changes in different modes. 

 
Figure 7. The Effect of gravity and the length of the tube. 

 

 
Figure 8. The Effect of gravity and the length of the tube. 
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    As can be seen in Figures 7 and 8, the negative γ makes 

the system more unstable because the critical speed of the 

fluid is reduced. As γ increases, the critical speed of the 

fluid increases and the system becomes more stable. This 

effect is the same for conical and cylindrical pipes. It 

should be noted that i and e indicate the slope of the 

inner and outer wall of the pipe. Since γ is negative, it 

means that the free end of the tube is above the fixed end 

and the fluid flow is upwards. Therefore, the weight of the 

pipe and the fluid increases the tendency to deflection and 

instability in the pipe, thus becoming unstable at a lower 

speed. Fluid velocity is one of the main parameters of the 

problem. In the figure, the effect of velocity on changes in 

the amplitude of displacement after instability is shown in 

Figure 9. At high speeds, the predicted amplitude 

difference in different modes increases. In nonlinear 

systems, it is necessary to consider more modes to model 

the systems until the response is convergent. The speed 

limit of 11 differences is limited but then increases. 

    In Figure 10, the convergence is greater for the β value, 

and the fourth mode is well responsive. Therefore, less 

modes are required for β in modeling. 

In both Figures 11 and 12, the range of the studied 

velocity is from the beginning of the critical velocity to 

twice the critical velocity. The range of motion for a 

conical tube with different internal angles and with 

different βT coefficients is plotted in the following figures. 

 

 

Figure 9. The Effect of velocity on changes in the amplitude of 

displacement ( 0 , 0.5i Ta = = ) 
 

 

Figure 10. The Effect of velocity on changes in the amplitude of 

displacement ( 0 , 0.1i Ta = = ) 

 

 

Figure 11. The Effect of velocity on changes in the 

amplitude of displacement ( 0.007 , 0.1 0.5i Ta and= = ) 

 

According to Figure 12, the difference in response 

between the upper and lower modes in βT is further 

increased. The effect of changing the internal slope angle 

of the conical, the diagram shows the maximum velocity 

displacement for different interior angles in Figure 13. 

In Figures 14 and 15, the wider the internal angle of the 

wall, the lower the range of oscillations, and the narrower 

the internal angle, the higher the rate of growth of the 

oscillation range. Also, in lower beta coefficients, the 

scales obtained after instability have a larger size than 

more beta. Figure 16 shows the natural frequency of the 

system in terms of fluid velocity at different L/h (h is the 

shell thickness (Rs - rs)). As the parameter increases, the 

lateral ratio of the natural frequency of the system 

decreases and the damping frequency of the system 

increases. The critical velocity of the fluid is reduced and 

the system becomes prone to buckling. 

Weight percentage of carbon nanotubes is another 

parameter of this study, which is its effect on the 

Dimensionless frequency shown in Figure 17. increasing 

the Weight percentage of carbon nanotubes increases the 

frequency of the tube. Increasing the carbon nanotubes 

increases the strength of the tube and thus reduces the 

displacement amplitude. 
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Figure 12. The difference in response between high and 

low modes in βT. 

 

 

 
Figure 13. Maximum velocity displacement for different 

interior angles. 
 

 
Figure 14. Dimensionless natural frequency relative to flow 

rate. 

 

 

Figure 15. Dimensionless natural frequency relative to flow 

rate. 
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Figure 16. Natural frequency of the fluid velocity at different 

L/h. 

 

Figure 17. Frequency change by CNT weight percentage change. 
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