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Abstract

This paper studies the long-time stability behavior of the Navier-Stokes equations (NSE) in a rotating frame of
reference with atime accurate and adaptive finite element method. The proposed numerical scheme consists of two
decoupled steps. In the first step, the Navier-Stokes equations are solved with the standard linearized backward-
Euler finite element method (BE-FEM). In the second step, the approximate velocity solution obtained in the first
step is post proceeded with a 2-step, linear time filter. It is proven that the approximate velocity solution is stable
with respect toL2-norm at all times. The novelty of the stability analysis is that the stability bound obtained for the
approximate velocity solution does not use any Gronwall-type estimate and is polynomially dependent on the
Reynolds number, which is not common in long-time stability notion. The paper also provides two numerical
experiments to test the algorithm. The first numerical experiment compares the L2-norm of the velocity solution
of the proposed algorithmusing pressure-robust and non pressure-robustFE over longer time intervals. The results
reveal that the scheme gives much more accurate velocity solutions with pressure-robust methods, especially for
the smaller v. The second experiment, on the other hand, shows that the filter step increasesthe accuracy of the
proposed numerical method over long-time intervals.

Keywords:Pressure-robust FEM, long-time stability, mass conservation.

Donen bir referans sisteminde verilen navier-stokes denklemlerinin sonlu
elemanlarla ¢coziimlerinin uzun zamanh kararhhgi iizerine

Oz

Bu makale, Navier-Stokes denklemlerinin uzun zamanh kararlilik davranigini zamana gére dogru ve uyarlanabilir
sonlu elemanlar yontemiile dénen bir referans sistemin igindecalisir. Onerilen sayisal sema iki
ayristirilmigbasamaktan olusur. Birincibasamakta, Navier-Stokes denklemleri standart,dogrusallastirilmis,geri-
Euler (GE) sonlu elemanlar yontemi (SEY) ile ¢éziiliir. Ikinci basamakta, birinci basamakta elde edilen yaklagik
hiz ¢éziimii iki adimli, dogrusal bir zaman filtresiyle diizeltilir. Yaklasik hiz ¢6ziimiiniinL?-normuna goére tiim
zamanlarda kararli oldugu ispatlanir. Kararlilik analizinin yeniligi, yaklasik hiz ¢6ziimii i¢in elde edilen karalilik
siirmin herhangi bir Gronwall tipi degerlendirmekullanmamasive Reynolds sayisina polinomsal olarak bagimli
olmasidir ki bu uzun zamanl kararlilik konusunda ¢ok yaygin degildir. Makale ayrica algoritmayi test etmek icin
iki sayisal deney sunar. Birincisayisal deneynormunu daha uzun zaman araliklarinde basinca dayanikli ve basinca
dayanikli olmayan SE kullanarakonerilen algoritmanm hiz ¢dziimiiniin L?-normunukarsilastirr. Sonuglar,
ozellikle daha kiiciik v degerleri i¢in, semanmbasinca dayanikliyontemlerle ¢ok daha dogru hiz ¢odziimleri
verdigini gosterir. Diger taraftan ikinci deney ise filter basamaginin uzun zaman araliklar1 {izerindeonerilensayisal
yontemin dogrulugunu artirdigin gosterir.

Anahtar kelimeler: Basinca-dayanikli SEY, uzun zamanl kararlilik, kiitlenin korunumu.
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1. Introduction

In this paper, we focus on time dependent incompressible Navier-Stokes equations (NSE) in a rotating
frame of reference which read as: for a given force fieldf, and velocity solution at t = 0, u(., 0), find
the velocityu and the pressurep such that it holds

u, — vAu + (u-V)u + 20xu + Vp = f + OAx(Qxr), in D,
V'll = 0, in ID’
(1.1)
u(',O) = uOI ln ]D)'
u =0, along dD,

where I is a bounded domain inR? or R3 with Lipschitz continuous boundary. The first equation is the
conservation of the momentum, and the second the conservation of the mass. Here v: = 1/Re is the
dimensionless kinematic viscosity, where Re denotes the dimensionless Reynolds number, Q is the
angular velocity, 2Q x u is the Coriolis force, Q x (Q X r)is the centrifugal force where r denotes the
distance to the orijin.

The NSE in a rotating reference frame contains two additional forces: the Coriolis and the
centrifugal forces. While the Coriolis force depends on the fluid velocity, the centrifugal force is
independent of the fluid unknowns; the pressure and the velocity. On the other hand, the centrifugal
force is a gradient of some scalar function ¢, i.e., Q x (Q X r) := V¢. Hence, this force can be treated
as a bodyforce or included in the pressure in (1.1), which is also gradient.

There are two main difficulties in the finite element simulations of (1.1). The first one is that the
small values of v leads to spurious oscillations in finite element velocity solutions. This is due to the
fact the continuous pressure acts as a Lagrange multiplier for the incompressibility condition, i.e., for
the conservation of mass. The second one is that the discrete velocity and the pressure spaces have to
satisfy some compatibility condition to guarantee the uniqueness of the finite element solutions, which
is called the discrete inf-sup or the Ladyzhenskaya-Babuska-Brezzi (LBB) stability condition [5]. While
the LBB condition leads to well-posed methods thatcan yield non-pressure robust discretization due to
the enforcement of the divergence constraint discretely.

On the other hand, most classical FEM for the incompressible flows gives solutions which are
stable only for short times. In longer time simulations, these solutions may not reflect the correct
physical behavior of the flows. This is due to their linear/exponential increment with time. Therefore,
designing a numerical algorithm possessing stability and accuracy at all times is a big challenge in the
field of finite element theory, and the long time stability analysis.

The topic of long-time stability of the incompressible flows has attracted great interest over the
years, due to the importance of predicting weather and climate events. For some valuable long-time
stability results for the NSE, we cite the works of F. Tone, X. Wang, S. Gottlieb, D. Wirosoetisno and
coworkers [2, 6, 15, 17, 18], and for Magnetohydrodynamics (MHD) with backward Euler schemes, and
for the Boussinesq equations, the works [4,16]. In particular, for second order type algorithms, we give
references [3, 7]. All long-time stability results in these papers use a variant of the discrete Gronwall
lemma, which produces a bound relying on the Reynolds number of the exponential form. Even though
these bounds are independent of time, they are impractical for simulations of the incompressible flows
with higher Reynolds' number, see [10].

Recently, a numerical approach to increase the accuracy of the BE method was introduced for
ordinary differential equations in [8], and extended to the incompressible Navier-Stokes equations
(NSE) in [4]. In this paper, we study the long-time stability behavior of the incompressible NSE in a
rotational frame by applying this idea. The proposed method combines the standard linearly implicit BE
time-stepping scheme and a linear time filter step for (3.1). In other words, the algorithm consists of two
decoupled steps, and can be plugging into an existence BE-FEM solver with an only one additional line
of code.
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We prove that discrete velocity solutions are long-time stable in L,-norm providedf €

L®(RY; H' (D)). Our stability bound does not use any Gronwall type inequality, and the dependence
on the Reynolds number is polynomial, not exponential.

In view of numerical experiments, the contribution of our paper is twofold. First, the paper
reveals that the pressure-robust discretization plays a crucial role on the long-time behavior of the
proposed scheme's solution. Since the velocity errors in such a discretization do not depend on the
continuous pressure, the velocity solutions behave in a robust way when the critical parameter v attains
small values; see [8, 11, 12, 13]. The first numerical experimentverifies this theoretical finding for our
method. The stability properties of the proposednumerical scheme is compared with the linearly implicit
BE-FEM over longer time intervals in the second experiment, and the results shows that the proposed
algorithm has better mass conservation, particularly for smaller viscosity values.

The rest of the paper is organized as follows. All necessary mathematical preliminaries are
collected in Section 2. Section 3 presents an adaptive time filter FEM for approximating (1.1), and
studies its long-time stability properties. Section 4 tests the proposed method with two numerical
experiments. Section 5 gives the results of the study.

2. Mathematical preliminaries

In this section, we will present mathematical preliminaries and notation used throughout this paper. We
consider a domainD, and use the standard notations for Sobolev spaces and their norms as in [1]. The
norm in H* (D)is labelled with]|. ||, and the norms in LP (D), 1 < p < oo with ||. ||,», and ||. || for p =
oo, Vectors valued functions related to these spaces will be indicated with bold letters.

The natural velocity and pressure spaces for (1.1) are taken by

axd

X = (H&(D))d ={ve ()" we (12m)", v=0onob},

Q= L3(D) = {q € L*(D): [, qdx = 0}.
The skew-symmetrized trilinear form is labelled by
a(v,s, w):= %((v Vs, w)— (v:Vw, s)),‘v’v, w,s € X.
We note that a(v,s, s) =0, and a(v,s, w) enjoys the following property and the results [9].
Lemma 2.1. For allv,s, w € X, a(v,s, w)satisfies
a(v,s, w)=(v-Vs, w) +%((Vv)s, w),
a(v,s, w) < ClIVvll2[[Vs]l2|lVwl| 2,
a(v,s, w) < ClIvIZZIvvI22 Vs 2 lIvwll 2,
where C is constant.
Forthe finite element setting, let S5, stand for a decomposition of the domain ID into triangles in 2d or
tetrahedron in 3d. To approximate velocity-pressure solutions of the NSE in a rotational frame, we study
with conforming, inf-sup stable (LBB) finite element spaces, and label them with (X, Q) < (X, Q).

Recall that LBBcondition is given as follows

in su , V.v
f p (qn h) >8>0,
dn € Qn Vi € Xy llqnll 2Vl L2
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where Bis independent onh. The discretely divergence- free subspace is given
Vh = {Vh (S Xh: (qh' \Y/ 'Vh) = 0, th (S Qh}
The dual space of V,will be identified by V;, and is endowed with the following dual form:

sup |(w, v;)|

wllys = —_—
Wllvi =, e v, Towall,

For a chosen time step At, we introduce the notation ¢t := (n + 1)At, and indicate v**?1 :=
v(t™1). Our stability analysis frequently uses the Young's inequality, which is given below

[9]
Lemma 2.2(Young’s Inequality) Let A, @ be non-negative real numbers. Then for any € > 0

ha <+ %aq, 2.1)
where % +$ =1 withp,q € [1, o).
3. Numerical scheme
Algorithm 3.1. Let body force f, initial velocities u® u® be given. Set u), ujito be the
nodalinterpolant of u° u! € X,, and selecta time stepAt>0 . Then for any n >0, find

(ul*l, prt1) € (X,, Qp)via the following two steps:

Step 1: Compute(@t?, p*t) € (X, Qp)such that for each(vy, qi) € (Xi, Qp)it holds

i+l _u
<u vh> +v(Vartt, V) +b(2u} —ul Al v,) — (pRtY, V.vy)

At

(3.1)
+(2a x 0L, vy,) = (™41, ),
(V-3 q,) = 0. 3.2)

Step 2: Compute ul*?! € X satisfyingfor eachy;, € Xy,

(un+1' Xh) (An+1, Xh) __(An+1 Zuz + uﬁ‘l, Xh)-

Assume that the time step is constant. For any v;, € X, insertthe following in the first step of Algorithm
3.1

(’\TL+1' Vh) = —(3un+1 - zu;ll + u;ll_l' vh)'

Then we have the following equivalence method.

Algorithm 3.2. Let body forcef, initial velocitiesu®, u'be given. Setul, u? to be the nodalinterpolant
of u® u'€ (X, Q) and select a time step At > 0. Then for any n >0, find (ul*?, p2*t) €
Xy, Qh) such that for al I(vy, qn) € (X, Q) it holds
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6[11;1“'1] n+1 n n-1 n+1 n+1
Af Vi |+ v(VE[uh ], vh) + b(2uh —u; -, E[uh ],vh) — (ph , V- vh)
+(ZQ X E[u;l”l], vh) = (f**1, vp), (3.3)
(V- E[u**], qn) = 0. (3.4)
where
S[uptt] = uﬁ“ —2ult +-= u” L E[uit]:= uZ“ —ul + %uZ‘l.

Remark 3.1. Notice that Algorithm 3.2 is not the standard linearizedtwo-step backward difference
formula (BDF2)since it onlyusesBDF2 for the time derivative term, and does not use that for the
remaining terms.
We now prove that velocity solution of Algorithm 3.2 is long-time stable.

2
Lemma 3.1. Letf € L°(R*; V;), u®, u' € H'(D), and At > 0 be any time step satisfying At < %
Then for any non-negative integer n, the velocity solution of Algorithm 3.2 satisfies the bound

A
o + ll2ui ™ = wgll + e = g + 255 g+ 25 2(1+y) ouge P

vAt
<(1+y)" (”“h” +[|2uf, - “h” + [|uj — “h” _”“h” )
88C
+ max {ZAt, P} v Il oo e, vy
wherey = min {% %}.

Proof. To prove the bound on the velocity, first set (vy, ) = (E[u?*t], pp*?) in (3.3)~(3.4) which
vanishes the non linear term, the Coriolis force, and the pressure term

b(2u} —u}t, E[ultt], E[u}t]), (ZQXE[u”“] E[u?*t], (pp*, V.E[u} +1]))

Then use the algebraic identity

2 2
[a? + (2a — b)? + (a — b)?] — % [b%2 + (2b — ¢)? + (b — ¢)?]

(3a—4b+c><3a—2b+0)

Wi | =

+Z(a—2b +¢)?,
to get
1
4At (”“h“” — lluilI? + ||2“n+1 - “h” + ||2“h —uj 1” + ||“n+1 “2”2 - ”“Z - “2_1”2)
ol = 2ug + w1+ o VE[w | < (62, Efugt])]. (3.5)

Applying the Cauchy-Schwarz and Young's Inequality (2.1) with & = v on the forcing term yields
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(0, Bl D) < 1 OB < 5 W e, + 5 9B L

Inserting this estimate into (3.5), reducing and multiplying by 4At produces

ozt + l2uptt = wp ]| + ot — w2 + 3ot — 2uf + w2+ 2vad]|VE[up+ |
< ”u;ll”Z + ||2u;ll - u;ll—1||2 + ”u?l — u?l—l”2 + Zv_lAt”f”Eoo(R+; V) (3.6)

Now rewrite the last left hand side term as follows
3uft! — 2ul + ull” 1) V(Bu’,}“ —2u} +u}” 1))

2 2

+1 1 +1 1
= 2vAt <Vu;;+1 + v<uﬁ ~ 2uh Uk ) vupt! + \7<u1’} ~ 2uh +uh- ))

2ont|VE[ur+] | = 20at <v<

2 2
= 2vAt||vupt?|” + 2 —[|V(ui** — 2uf + uf | + vae (Vuh“, V(uptt — 2u} + uﬁ_l)).

Now use this estimate in (3.6) to get

]| + ||211"+1 uh||  [lupt =+ 3wyt — 20 + |+ 2vae ||
+ - ||V(u"+1 - 2uft +up )|’
< ||uh||2 +||2uf - “;11_1”2 + ”ll;ll _ n—1”2 + 2U_1At||f||iw(R+; Vg)(3-7)
+vAt |(Vuh+1, V(uptt — 2u} + ul 1))|

Now apply the Cauchy-Schwarz and Young's inequalities on the last term to obtain

vAt|(Vu§{+1, V(u”Jr1 2uﬁ+uﬁ‘1))| < UAt”Vu +1||Ch 1||un+1 —ZUQ+uﬁ‘1||
vAtCEh™?

vat n+1

lug* — 203 + w1

Plug this estimate into (3.7) to get

AtCPh~
i+ ow = il = w+ (3 =25 i - 2+
S v 25 9 — 2+ )

< gl + [|2up — wp= | + lup — up= || + 20~ Al 110 o )

+vAt |(Vuh+1, V(ul*t —2ul + uﬁ‘l))|. (3.8)

Now using the assumption on the time step, dropping the non-negative fourth and sixth left hand side
terms, and adding — vat ||Vuh||2 to the both side yields
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vAt VAt
A * A 2
VAL 2 VAL 2
+ [ (Iwar [ + nvugii2) + 2= g |

a2+ fl2uptt — w2 + [t = up ] + == vt + == [|vup+t|®

A
< Mg+ [z = o [ — w2+ 2 I

+207 At [l o g, viry- (3.9)
Now use the algebraic inequality |la + bl|?> < 2(||all? + ||b||?) to get
2wt —wpl|” < 2 (2w + ugii?) = 8l + 21l
gt — il < 2 (g 17 + i) = 2flups | + 20312,
and sum these two inequalities by adding |[ul**||” to the both sides. This produces
22| + (20t — w2 || + [juptt —up]® < 12]jupt || + 4llu?)? < 11 (||u7;+1||2 + IIuﬁIIZ).

Using the Poincare-Friedrich inequality for the last term on the left hand side of (3.9) together
with this estimate gives

At At
— (v + ivwz?) + = [[vug 2|

vat z vAt 5
= 4_6‘13("“2“” + ”“ﬁ”z) + T”V“ﬁ“”
vAt

A
2 (e 1+ fl2ug = wgll + g — wgl*) + 22 owge |

>
= 44C?

o 1 vAt
= min -, 44?2

A
b (b et =l + e = i+ 25 v IF),

1 vAt

Now insert this estimate into (3.9), denote y: = min {E' W}' This yields
P

A A
) (g 1+ 2 = ol + e — gl + 25 w2 ) + 22 v

A
< (g2 + l2ug — =" + g — i~ + 5= 1vu?)

- 2
+2v 1At||f||Loo(]R+: V]:)
Fix an integer M > 0, and divide the above inequality by (1 + y)™~™ to obtain

A
@+ (e P+ oo — gl + g = wp*+ 25 g2
vAt

+(1 + ]/)_M+n T ||Vuﬁ+1 ||zz
< Lty (zu = P + - i+ 22 a2,

+2(1+ )M o ANl o g, viy-

Summing up forn = 0,1, ..., M — 1 and reducing yields
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M-1
2 2 .2 VAt 2 VAt 1 M=n 2
e e R e Ry ) (f55) v,
At
< @+ (k] + 12wk = wgll” + [hak — g + 2= [vud 7
M-1
4207 8, ) D (1+7) 7T,
n=0

Using the fact that

_ —-(n+1)
20((L+ 1) + L+ )2 + -+ (L +7)" D) = 28¢6(1 + ) (1 (1+7y) )

1-(1+y)?
1
<2At(1+y)7? (—)
A==
44CE
< maxjAt, o [

finishes the proof.
4. Numerical experiments

In this section, we present two numerical experiments. Each of them uses the same test problem.The
system is studied on a unit square domain ID := (0, 1)? with a constant inflow u := (0, 1), and angular
velocity ©.=(0,0, y). The pressure is chosen as a quadratic polynomial p(x,y) = —y?+1/3 such that

fD p dxdy =0. In this case, right hand side forcing term f would be zero.

4.1. Mass conservation

In this numerical experiment, we will show that divergence-free FEM behaves in a robust way, and has
better mass conservation when the criticial parameter v —0. To show that, we compute solutions of
Algorithm 3.1 with divergence-free, the Scott-Vogelius (SV), and non-divergence free elements, the
Taylor-Hood (TH), Mini and Crouzeix-Raviart (CR), on the same 16x16 barycenter refined uniform
mesh of domain ID. We fix end time to T=100, and take time step dt=0.05. (We also run dt = 0.01, dt =

0.1, and got the similar results.) For each element choice, we compute [luj**|| 2 for varying v. As can

be seen from Table 1, all elements give the exact velocity solution for v =1.0, 10~3However, only the
SV-FE solutions behaves in a robust way for smaller values of v. (see also Figure 1 and Figure 2.)

We also compute the divergence of approximate velocity solutions for these element choice at
end time T=100taking the same flow parameters. The results in Table 2 reveal that Taylor-Hood and
Mini elements lead to very poor mass conservation, but CR and SV strong mass conservation, which is
due to the fact that CR and SV enforce the divergence constraint strongly, not discretely.

Table 1. Discrete velocities in L,-norm at T=100 for varying v.

TH (P,, P,) Mini(Pbu®, P,) CR(PY¢, Py) SV (Py, P{)
v llu, (Dl 2 llu, (Dl 2 lluy, (Dl 2 (Dl 2
100 1.0 1.0 1.0 1.0
102 1.0 1.0 1.0 1.0
1073 1.2597 1.0 1.0795 1.0
104 1.7372 1.0980 1.1432 1.0
105 2.0841 1.3297 1.1562 1.0
106 2.1467 1.4129 1.1524 1.0
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Table 2.Divergence of velocity solutions in L,-norm at T=100 for varying v.
TH (PZI Pl) MInI(Plljubl Pl) CR(PTllC' PO) SV (PZJ Pldc)

v 1V - up) (D)l 2 1V - up) (DI (V- u) (DI (V- u)(Dl
10° 2.4387-14 3.8077-14 1.2046-14 6.3479-14
1072 2.8404-14 2.9734-14 1.2284-14 5.9303-14
1073 111.6 4.2587-14 1.4865-7 5.8514-14
1074 236.5 84.8 2.0844-7 6.1256-14
1075 318.2 159.6 2.1986-7 6.0862-14
10 330.9 188.9 2.0990-7 1.3439-10

1
Tine

Figure 1. Shown above plots of L,-norm of the computed solutions |[u}*||,2 versus time for v = 1073
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Figure 2. Shown above plots of L,-norm of the computed solutions |luj**|| , versus time for v = 107.
4.2. Stability behaviour

In the second numerical experiment, we show the effect of the filter step. Therefore, we compare the
stability of velocity solution of Algorithm 3.1 with the those of standard linearized BE-FEM,
i.e.,algorithm without the second step. We use the same flow parameters as in the previous experiment,
and run algorithms taking TH-FEM, which is not divergence free, with time step dt = 0.05. (We also
rundt = 0.01, dt=0.25and dt = 0.1, and got the similar results.) The plots of the computed approximate
solutions in the L,- norm are presented in Figure 3 and Figure 4. For v = 1.0, both algorithms give the
exact velocity solution. As v is smaller and smaller, BE-FEM deviates from the exact solution, but TH-
FEM qgives the exact velocity solutions. This is due to the fact that filter step increases the accuracy of
BE-FEM.

. HEFEN [73 serem

.....

558



M. Akbas / BEU Fen Bilimleri Dergisi 9 (2), 549-560, 2020

e S R
1

Figure 4. Shown above plots of L,-norm of Algorithm 3.1’s and BE-FEM’s solutions versus time for

11
Y= 500°1000°

Yazarlarin Katkisi

Calismada tiim yazarlar esit oranda katki sunmustur.

Cikar Catismas1 Beyam

Yazarlar arasinda herhangi bir ¢ikar ¢atigmasi bulunmamaktadir.

Arastirma ve Yayin Etigi Beyam

Yapilan ¢aligmada arastirma ve yayin etigine uyulmustur.
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