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Abstract 

In the current study, we introduce an analytical form of the solution for the potential family 𝑽(𝒓) =
𝑨

𝒓 𝟐 −
𝑩

𝒓
+ 𝑪𝒓𝜿. 

The method which combines the perturbation theory (PT) and supersymmetric (SUSY) quantum theory results in 

an abstract equation of the energy eigenvalues (which can be named as closed analytical form method (CAFM)). 

The results of the asymptotic iteration method (AIM) and CAFM will be compared with the numerical method 

(NM) to test the validity of our approximation at the end of the work.  

 

Keywords: Solutions of wave equations: bound states, Supersymmetry, Algebraic methods.  

 

𝑽(𝒓) =
𝑨

𝒓 𝟐
−

𝑩

𝒓
+ 𝑪𝒓𝜿 Potansiyel Ailesinin Özdeğerlerini Veren Analitik İfade  

 

 

Öz 

Bu çalışmada, 𝑽(𝒓) =
𝑨

𝒓 𝟐 −
𝑩

𝒓
+ 𝑪𝒓𝜿 potansiyel ailesine ait çözümleri veren analitik bir ifade önerdik. 

Süpresimetrik kuantum teorisi ile pertürbasyon teorisini birleştiren bu metod enerji özdeğerlerini içeren bir 

denklem sağlamaktadır (metod kapalı analitik form olarak adlandırılabilir). Çalışmanın sonunda yaklaşımımızın 

geçerliliğini tespit etmek için,  asimptotik iterasyon metodu ve kapalı analitik form metoduna ait sonuçlar nümerik 

metodla karşılaştırılacaktır.  

 

Anahtar kelimeler: Dalga denklemi çözümü: bağlı durum, Süpersimetri, Cebirsel metodlar. 

 

1. Introduction 

 

In quantum mechanics, the successful description of a system formed by interacting particles can be 

achieved by using a convenient potential endowed with suitable parameters. Some numerical approaches 
or approximation techniques for solving the Schrödinger equation for non-solvable potentials play an 

important role to investigate the ground and excited electronic states of the quantum system. As well 

known, an exact analytical solution has been achieved for limited potentials. Coulomb and Harmonic 
oscillator potentials are two important examples of the solvable potentials [1]. The potentials such as 

Yukawa [2] and Woods-Saxon [3] have been numerically solved or analyzed by using some 

approximation techniques giving numerical eigenvalues and eigenfunction. 
 In our previous study, we have treated the Gaussian-type potential aiming to form a closed 

analytical equation of the corresponding eigenvalues [4]. In this work, we have followed a technique 

which was used to solve the Yukawa-type potentials. And we obtained a closed-form of eigenvalue 

equation for a single particle in Gaussian potential. 

 In current work, we are analyzing a potential family 𝑽(𝒓) =
𝑨

𝒓 𝟐 −
𝑩

𝒓
+ 𝑪𝒓𝜿 [5] of which 

importance is the result of the possibility to transform it into the different type of potentials by varying 
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the parameters 𝐴, 𝐵 and 𝐶. Aygun et. al. [5] reported that some cases of this potential family can be 

solved analytically and numerical treatment has been required to solve other cases.  

 Here, we concentrate on derivation of an analytical expression for the eigenvalues of a single 
particle in this potential family. For this purpose, we try to combine the perturbation theory and 

supersymmetric quantum theory following the treatment [6] performed in our previous study. 

 In the next section we present the theory and formalism. Section 3 provides the results. Section 
4 is devoted to our conclusions. 

 

2. Theory and Formalism 

 
In the study, we investigate the potential family 

𝑉(𝑟) =
𝐴

𝑟2
−

𝐵

𝑟
+ 𝐶𝑟𝜅  (1) 

where 𝑨, 𝑩 and 𝑪 and 𝜿 are the parameters which modify the potential terms. One should notice that 

for some special values of the parameters will give solvable potentials. For example, in the case of 𝑨 =

𝑪 = 𝟎 the potential turns into the Coulomb whereas the case of 𝑨 = 𝑩 = 𝟎 and  𝜿 = 𝟐 transforms the 

potential into the Harmonic Oscillator. 

 

2.1. Closed-Analytical-Form Method (CAFM)  

 

In principle, all the potentials can be considered as a different version of another one. The potential 
family in Eq. (1) can be assumed as the expansion of an exponential potential which reads 

𝑉(𝑟) = −𝐵
𝑒−𝛼𝑟𝜅+1

𝑟
 (2) 

 
In the case of Taylor expansion, it will be  

𝑉(𝑟) = −
𝐵

𝑟
+ 𝐵𝛼𝑟𝜅 −

𝛼2𝐵𝑟2𝜅−1

2!
+

𝛼3𝐵𝑟3𝜅−1

3!
− ⋯ (3) 

  
where the parameter 𝛼 should be considered as small value. The Coulomb potential term can be treated 

as an unperturbed part of Eq. (3). 

 The term or 𝐴 𝑟2⁄  or 𝐶 𝑟2⁄ in the case of 𝜿 = −𝟐 are the expressions which are very similar to 

the barrier term ℏ2ℓ(ℓ + 1)/2𝑚𝑟2. Because of the small value of 𝛼, the contribution of  𝐶 = 𝐵𝛼 and 
other expansion terms can be simply ignored. In that case, the summation of these three terms will be 

equal to the barrier term ℏ2ℓ′(ℓ′ + 1)/2𝑚𝑟2. In the case of 𝜿 = −1, the 𝐶/𝑟 term can be considered as 

a parameter in the Coulomb potential. In the case of 𝜿 = 0, the last term only provides additional energy. 

 Unfortunately, this method can not approximate the energy values in the case of 𝜿 < −2. Here, 
as a method, we assume that potential family is a kind of expansion of an exponential potential (as in 

the case of Gaussian or Yukawa potentials). 

 As well known from the literature, the normalized wave the function of the Coulomb potential 
is 

𝜒𝑛ℓ′ = (
2𝑚𝐵

(𝑛 + ℓ′ + 1)ℏ2
)

ℓ′+1

×
𝑟ℓ′+1

(𝑛 + ℓ′ + 1)√ℏ(𝑛 + 2ℓ′ + 1)! (𝑚𝐵𝑛!)⁄

× 𝑒
−

𝑚𝐵
(𝑛+ℓ′+1)ℏ2𝑟

𝐿𝑛
2ℓ′+1 (

2𝐵𝑚𝑟

ℏ2(𝑛 + 2ℓ′ + 1)
) 

(4) 

 

where 𝑚 and ℏ are electron mass and Planck's constant, respectively and 𝐿𝑛
2ℓ′+1 (

2𝐵𝑚𝑟

ℏ2(𝑛+2ℓ′+1)
) is 

Associated Laguerre polynomial. Here, the corresponding eigenvalue of the Coulomb potential term can 
be written as 

𝐸𝑛,ℓ′ = −
𝑚𝐵2

2ℏ2(𝑛 + ℓ′ + 1)2
 (5) 
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 Perturbative wavefunctions, energies and superpotentials corresponding to the modification 

potentials are 

∆𝑉(𝑟; 𝜖) = ∑ 𝜖𝑘
∞

𝑘=1
∆𝑉{𝑘}(𝑟) 

∆𝑊𝑛ℓ′(𝑟; 𝜖) = ∑ 𝜖𝑘
∞

𝑘=1
∆𝑊

𝑛ℓ′
{𝑘}(𝑟) 

∆𝐸𝑛ℓ′ (𝑟; 𝜖) = ∑ 𝜖𝑘
∞

𝑘=1
∆𝐸

𝑛ℓ′
{𝑘}

 

 

(6) 

where 𝑘 indicates the perturbation order. If the unknown perturbed wavefunction is 𝑅𝑃(𝑟) the 

Schrödinger's equation can be written as 

−
ℏ2

2𝑚
(

𝜒′′
𝑛ℓ′

𝜒𝑛ℓ′
+

𝑅′′
𝑃(𝑟)

𝑅𝑃(𝑟)
+ 2

𝜒′
𝑛ℓ′

𝜒𝑛ℓ′

𝑅′
𝑃(𝑟)

𝑅𝑃(𝑟)
) = 𝑉𝐻 + 𝑉𝑃 + 𝐸𝑛ℓ′ + ∆𝐸𝑛ℓ′  (7) 

 

 We endorse the detail of the calculation procedure of the theory over to our previous work [5-

7]. By following the procedure, we can write the eigenvalues for different 𝑛 values. The eigenvalue in 

the case of 𝑛 = 0 is 

𝐸𝑛=0,ℓ′ = −
𝑚𝐵2

2ℏ2(ℓ′ + 1)2
+

2𝑚2𝐵3

ℏ3(2ℓ′ + 1)(ℓ′ + 1)3
+

2−𝜅𝐶ℏ2𝜅+1(ℓ′ + 1)𝜅(2 + 2ℓ′ + 𝜅)!

(𝐵𝑚)𝜅(2 + 2ℓ′)!
 (8) 

 

The eigenvalue in the case of 𝑛 = 1 is 

𝐸𝑛=1,ℓ′ = −
𝑚𝐵2

2ℏ2(ℓ′ + 2)2
+

2𝑚2𝐵3

ℏ3(2ℓ′ + 1)(ℓ′ + 2)3

+
2−𝜅−1𝐶ℏ2𝜅+1(ℓ′ + 2)𝜅−1(2 + 2ℓ′ + 𝜅)! (4 + 2ℓ′ + 3𝜅 + 𝑝2)

(𝐵𝑚)𝜅(2 + 2ℓ′)!
 

(9) 

For 𝑛 = 2, the eigenvalue is 

𝐸𝑛=2,ℓ′ = −
𝑚𝐵2

2ℏ2(ℓ′ + 3)2
+

2𝑚2𝐵3

ℏ3(2ℓ′ + 1)(ℓ′ + 3)3

+
2−𝜅−2𝐶ℏ2𝜅+1(ℓ′ + 3)𝜅−1(2 + 2ℓ′ + 𝜅)!

(𝐵𝑚)𝜅(3 + 2ℓ′)!

× (36 + 8ℓ′2
+ 𝜅(3 + 𝜅)(14 + 𝜅(3 + 𝜅)) + 4ℓ′(9 + 2𝜅(3 + 𝜅))) 

(10) 

 

 These equations of eigenvalues for the first three 𝑛 values are obtained by solving some integrals 

of which the detail has been explained in our previous study [5]. All analytical calculations have been 

performed by Mathematica. By paying close attention to the equations Eqs. 8-10 and the energies for 

higher 𝑛 values, one can easily notice that the eigenvalues are changing on a regular basis. With the aid 

of this order, we can write a simple closed analytical form of the energy as following 

 

𝐸𝑛,ℓ = −
𝑚𝐵2

2ℏ2(𝑛 + ℓ + 1)2
+

2𝑚2𝐵3

ℏ3(2ℓ + 1)(𝑛 + ℓ + 1)3

+
2−𝜅−𝑛−1𝐶ℏ2𝜅+1(𝑛 + ℓ + 2)𝜅−1(2 + 2ℓ + 𝜅)!

(𝐵𝑚)𝜅(𝑛 + 2ℓ + 2)!
 

(11) 

 

where the potential describes the Coulomb interaction for 𝐶 = 0 while it depicts the harmonic oscillator 

behaviour for 𝜅 = 2 and 𝐵 = 0. 

 

2.2. The Asymptotic Iteration Method (AIM) 

 

In this part, we give the information about AIM used in our calculations. AIM is an analytical technique 

which has been introduced to solve the second-order differential equations in the form of [20-23] 
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𝑦′′ = 𝜆0(𝑥)𝑦′ + 𝑠0(𝑥)𝑦 (12) 

 

where 𝜆0(𝑥) ≠ 0, 𝑠0(𝑥) and 𝜆0(𝑥), are differentiable variables. Eq. 12 has a general solution [20] 

 

𝑦(𝑥) = 𝑒− ∫ 𝛼(𝑥′)𝑑𝑥′
𝑥

[𝐶2 + 𝐶1 ∫ 𝑒∫ [𝜆0(𝑥′′)+2𝛼(𝑥′′)]𝑑𝑥′′
𝑥′

𝑑𝑥′
𝑥

] (13) 

 

where in the case of sufficiently large 𝑘 > 0, 𝛼(𝑥) reads 

 
𝑠𝑘(𝑥)

𝜆𝑘(𝑥)
=

𝑠𝑘−1(𝑥)

𝜆𝑘−1(𝑥)
= 𝛼(𝑥), 𝑘 = 1,2,3, …  (14) 

 

where 

 

𝜆𝑘(𝑥) = 𝜆′𝑘−1(𝑥) + 𝑠𝑘−1(𝑥) + 𝜆0(𝑥)𝜆𝑘−1(𝑥)  
𝑠𝑘(𝑥) = 𝑠′𝑘−1(𝑥) + 𝑠0(𝑥)𝜆𝑘−1(𝑥), 𝑘 = 1,2,3, … 

(15) 

 

 Recurrence relations also can be used by starting from 𝑘 = 0 with the initial conditions 𝜆−1 =
0 and 𝑠−1 = 0 [22]. A radial Schrödinger equation with a given potential is transformed into the form 

of Eq. 12. After determining 𝑠0(𝑥) and 𝜆0(𝑥), one can find the parameters 𝑠𝑘(𝑥) and 𝜆𝑘(𝑥), parameters 

by using the recurrence relations which are given in the Eq. 15. 

The eigenvalues are calculated according to the Eq. 14. The Eq. 15 can also be written as 

 

𝛿𝑘(𝑥) = 𝜆𝑘(𝑥)𝑠𝑘−1(𝑥) − 𝜆𝑘−1(𝑥)𝑠𝑘(𝑥) = 0       𝑘 = 1,2,3, …  (16) 

 

which equation can be used if the problem is exactly solvable. In the case of non-solvable case, we 

choose a suitable 𝑥0 point for a specific 𝑛 principal quantum number which is maximum value of the 

asymptotic wave function or the minimum value of the potential. The approximate energy eigenvalues 

are calculated from this equation for sufficiently great values of 𝑘 with iteration. 

In order to generate the eigenfunctions, one needs to use the following equation  

 

𝑦𝑛(𝑥) = 𝐶2𝑒
− ∫

𝑠𝑘(𝑥′)
𝜆𝑘(𝑥′)𝑑𝑥′

𝑥

  (16) 

 

 where 𝑘 > 𝑛, 𝑛 and 𝑘 correspond to the radial quantum and iteration numbers, respectively. For 

exactly solvable potentials, 𝑛 is equal to 𝑘. Because nontrivial potentials do not have an exact solution, 

𝑘 is always greater than 𝑛 in these numerical solutions and the approximate energy eigenvalues are 

obtained from the Eq. 16  in the case of sufficiently great values of 𝑘 by iteration. 
 

3. Results  

 

In the present study, in order to make a comparative study, we have obtained the energy eigenvalues 

numerically for different 𝐴, 𝐵 and 𝐶 values in 𝜅 = 1 and 𝜅 = 2 cases. With some particular values of 

the parameters, in Figs. 1 and 2 it is possible to see the change of the ground state energy eigenvalues 

of the hydrogen atom in the 𝑉(𝑟) = 𝐶 𝑟2 potential, where 𝐴 = 0, 𝐵 = 1, 𝜅 = 2, 𝑚 = 1 and ℏ = 1. We 
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have seen that the analytical results have close agreement with the AIM results for small quantum 

numbers. 

 

 
Figure 1. The comparison of the ground state energies obtained by CAFM and AIM methods. 

 

 As seen from the Fig. 1, two methods are giving similar results. However, in the case of 

increasing in parameter 𝐶, the results of two methods have different values. It can be considered such 

that the approximation in CAFM is stronger than that of AIM because CAFM is only aiming to get a 

perfect analytical expression to obtain the trend of the eigenvalue.    
 

 

 
Figure 2. In the case of 𝐶 = 0.001, the comparison of the results of CAFM and AIM methods for different 

quantum numbers. 
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Table 1. Comparison of our results with the numerical ones for energy eigenvalues of the potential family where 

A=0.01, B=1, 𝜅 = −2, −1,0,1,2,   m=1 and ℏ = 1. 

𝜅 𝐴 ℓ = 0 

  𝑛 = 0  𝑛 = 1 𝑛 = 2  

  𝐸𝐴𝑛𝑎𝑙. 𝐸𝑁𝑢𝑚 𝐸𝐴𝑛𝑎𝑙. 𝐸𝑁𝑢𝑚 𝐸𝐴𝑛𝑎𝑙. 𝐸𝑁𝑢𝑚 

-2 0 -0.4980 -0.498068 -0.12475 -0.124758 -0.055481 -0.0554461 

-1 0 -0.4990 -0.499044 -0.12475 -0.124755 -0.055444 -0.0554839 

0 0 -0.4990 -0.499044 -0.12400 -0.124005 -0.054555 -0.0545572 

1 0 -0.4985 -0.498546 -0.11900 -0.119068 -0.042055 -0.0426312 

2 0 -0.4970 -0.497075 -0.08900 -0.090590  0.0507427 

-2 0.01 -0.4780 -0.479293 -0.122250 -0.122370 -0.054707 -0.0547724 

-1 0.01 -0.4790 -0.480131 -0.122250 -0.122357 -0.054703 -0.054732 

0 0.01 -0.4790 -0.480093 -0.121500 -0.121602 -0.053814 -0.05384 

1 0.01 -0.4785 -0.479546 -0.116500 -0.116561 -0.041314 -0.0417698 

2 0.01 -0.4770 -0.477940 -0.080500 -0.087209  0.0529242 
 

 
Table 2. Comparison of our results with the numerical ones for energy eigenvalues of the potential family where 

A=0.01, B=1, 𝜅 = −2, −1,0,1,2,   m=1 and ℏ = 1. 

𝜅 𝐴 𝑛 = 0 

ℓ = 1  

𝑛 = 1 

ℓ = 1 

 

𝑛 = 2 

ℓ = 2  

  𝐸𝐴𝑛𝑎𝑙. 𝐸𝑁𝑢𝑚 𝐸𝐴𝑛𝑎𝑙. 𝐸𝑁𝑢𝑚 𝐸𝐴𝑛𝑎𝑙. 𝐸𝑁𝑢𝑚 

-2 0 - 0.124917 - 0.124916 - 0.055530 - 0.055530 - 0.019676 - 0.019236 

-1 0 - 0.124750 - 0.12475 - 0.055444 - 0.055444 - 0.019960 - 0.019195 

0 0 - 0.124000 - 0.123999 - 0.054555 - 0.054555 - 0.019000 - 0.018240 

1 0 - 0.120000 - 0.120057 - 0.043055 - 0.043617 - 0.0145000 - 0.008067 

2 0 - 0.095000 - 0.100522  0.035599   

-2 0.01 - 0.124083 - 0.124090 - 0.055284 - 0.055285 - 0.019964 - 0.019196 

-1 0.01 - 0.123917 - 0.123924 - 0.055197 - 0.055199 - 0.019928 - 0.019155 

0 0.01 - 0.123167 - 0.123172 - 0.054308 - 0.054309 - 0.014532 - 0.018200 

1 0.01 - 0.119167 - 0.119200 - 0.042808 -0.043328 -0.041314 - 0.0081283 

2 0.01 - 0.094166 - 0.099469 0.036233  0.216440  
 

 In the Tables 1 and 2, we show the obtained eigenvalues for the different 𝜅 values in the case of 

𝐴 = 0 or 𝐴 = 0.01 and 𝐶 = 0.001. We compare the values with the numerical results which is obtained 

by shooting method. For the small values of  𝐴 and 𝐶, the values are very close to the numerical values. 

 In the Figs. 1 and 2, we show the obtained eigenvalues for the different 𝜅 values in the case of 

𝐴 = 0 or 𝐵 = 1 and for different 𝐵 values. We compare the values with that from AIM method which 
has been introduced previously. The results are almost consistent with each other. However, for the large 

values of quantum numbers, the consistency is vanishing. 
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 In the Tables 1 and 2, we calculate the eigenvalues for the potential family in the case of 𝐴 = 0 

or 𝐴 = 0.01 and 𝐶 = 0.001. Here the parameter 𝜅 between −2 and 2. We compare the eigenvalues with 

the results from numerical calculation which has been obtained by performing shooting method for the 
Schrödinger equation. 

 As can be seen from the tables and figures, the eigenvalues are close to the values obtained by 

numerical calculations. But as indicated before, the aim of the study is not to find exact solution, but to 
determine an analytical formulation for eigenvalues in order to see the trend of the variation with the 

quantum numbers and potential parameters. 

 

4. Conclusion  
 

AIM and CAFM have been used as approximation methods for the calculation of non-solvable potential 

family. Because of the numerical treatment, the AIM is able to predict the eigenvalues which are 
consistent with that obtained by numerical ones. Differently, main idea of the CAFM method is not 

finding an exact eigenvalue for the non-solvable potentials, but to obtain a closed analytical form of the 

eigenvalues and to give a well described relationship between potential parameters, quantum numbers 

and energy eigenvalues.  
 This potential family has been previously treated by using AIM and obtained successful results. 

But it is very hard to show a pure analytical expression by just using this method. By using CAFM, we 

would like to provide an analytical eigenvalue which cannot be obtained by AIM, at least for small 𝐶 
values.    

 Therefore, the equation Eq. 11 is describing the ground state energy values of a single particle 

trapped in potential family. We believe that this work will lead to another studies aiming to solve the 
non-solvable potentials and obtain closed analytical expressions of eigenvalues. 
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