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Abstract
The present paper deals with bi-slant submanifolds in complex space forms. We obtain an
integral formula of Simons’ type for bi-slant submanifolds of a complex space form with
positive constant holomorphic sectional curvature. Then, we apply it to prove our main
result. We also discuss the same result in different submanifolds such as hemi-slant and
semi-slant submanifolds.
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1. Introduction
As a generalization of totally real submanifolds and holomorphic submanifolds, CR-

submanifolds of Kaehler manifolds were introduced by Bejancu in [2]. Since then, such
submanifolds have attracted many geometers (see for example [3,8,11,16,22]). As another
interesting subject, the notion of a slant submanifold in an almost Hermitian manifold was
introduced by B.-Y. Chen in [9, 10]. A. Lotta introduced the notion of slant immersions
of Riemannian manifolds into an almost contact metric manifolds. Afterwards, these sub-
manifolds were studied by J.L. Cabrerizo et al. in the setting of Sasakian manifolds. Now,
it has become a very active research area in both complex geometry and contact geometry
(see for example [5, 6, 20]). Further, N. Papaghiuc [17] defined semi-slant submanifolds
as a generalization of slant and CR-submanifolds. Slant and semi-slant submanifolds are
a generalization of invariant, anti-invariant, semi-invariant and totally real submanifolds.
In [4], J.L. Cabrerizo et al. generalized these notions by introducing bi-slant submani-
folds in almost Hermitian manifolds. One of the classes of bi-slant submanifolds is that
of anti-slant submanifolds which are studied by J.L. Cabrerizo et al. B. Şahin [20] named
these submanifolds as hemi-slant submanifolds and also called pseudo-slant submanifolds.
Since then, many geometers have studied these types of submanifolds in different ambient
spaces.

J. Simons [19] studied the basic exposition of immersed minimal varieties in a Riemann-
ian manifold. The principal result of this general investigation became the derivation of
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the linear elliptic second order equation, which was satisfied by the second fundamental
form of any minimal variety in any ambient manifold. In 1981, A. Bejancu et al. [3]
derived Simons’ type formula for CR-submanifolds of a complex space form. Since then,
many authors derived Simons’ type formula for different submanifolds in ambient spaces
(see for example [14, 15, 21]). Recently, A.N. Siddiqui et al. [18] studied Simons’ type
formula for Kaehlerian slant submanifolds in complex space forms. The purpose of the
present paper is to continue the study of bi-slant submanifolds and to construct Simons’
type formula for bi-slant, hemi-slant, and semi-slant submanifolds of complex space forms.

The paper has been organized as follows: Section 2 is preliminary in nature. Some
examples of semi-slant, hemi-slant, and bi-slant submanifolds in complex space forms are
also discussed. In Section 3, some lemmas are quoted for later use. We derive Simons’
type formula for a minimal bi-slant submanifold in a complex space form with positive
constant holomorphic sectional curvature and also construct for hemi-slant and semi-slant
submanifolds in the same ambient space. In Section 4, we prove the main result by using
an integral formula of Simons’ type and Hopf’s Lemma. Some immediate consequences
are also obtained.

2. Preliminaries
Let M be an n-dimensional submanifold of a Riemannian manifold (M, g) and ∇, ∇

denote the induced Riemannian and Riemannian connections on M and M, respectively.
The Gauss and Weingarten formulas are given by ∇XY = ∇XY + B(X, Y ) and ∇XV =
−AV (X) + ∇⊥

XV, for any vector fields X, Y tangent to M and a vector field V normal
to M , where ∇⊥ denotes the normal connection, B the second fundamental form and
AV the shape operator in the direction of V. If B = 0, then M is called totally geodesic
[8]. Let p ∈ M and {e1, . . . , en} be an orthonormal basis of TpM and {en+1, . . . , e2n} an
orthonormal basis of T ⊥

p M . The mean curvature vector H of a submanifold M at p is
defined by

H(p) = 1
n

n∑
i=1

B(ei, ei).

If H = 0, i.e., trace B ≡ 0, then M is called minimal [8].
Denote by R and R the curvature tensor fields of M and M , respectively. Then the

Gauss equation is given by
R(X, Y, Z, W ) = R(X, Y, Z, W ) − g(AB(Y,Z)X, W ) + g(AB(X,Z)Y, W ), (2.1)

for all vector fields X, Y, Z, W tangent to M [8].
For the Laplacian of the second fundamental form A of an n-dimensional minimal

submanifold M in an m-dimensional Riemannian manifold M , the following Simons’ type
formula is well known ([19], pg - 81):

∇2A = −A ◦
∼
A − A

∼
◦ A + R(A) + R′, (2.2)

where the operators
∼
A and A

∼
are defined as follows:

∼
A = At ◦ A and A

∼
=

m−n∑
a=1

adAaadAa

for a normal frame {ea}, a = 1, . . . , m − n, and Aa = Aea , where R(A) and R′ are given
by the following relations:

g(R(A)N (X), Y ) =
n∑

i=1

[
2g(R(ei, Y )B(X, ei), N) + 2g(R(ei, X)B(Y, ei), N)

−g(AN (X), R(ei, Y )ei) − g(AN (Y ), R(ei, X)ei)
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+g(R(ei, B(X, Y ))ei, N) − 2g(AN (ei), R(ei, X)Y )
]

(2.3)

and

g(R′N (X), Y ) =
n∑

i=1

(
g((∇XR)(ei, Y )ei, N) + g((∇eiR)(ei, X)Y, N)

)
(2.4)

for all vector fields X, Y tangent to M and N normal to M.
An almost Hermitian manifold M with an almost complex structure J is called a Kaehler

manifold if J is parallel with respect to the Levi-Civita connection ∇ of g, i.e., ∇J = 0.
A Kaehler manifold of constant holomorphic sectional curvature c is called a complex

space form and it is denoted by M(c) [23]. The Riemannian curvature tensor field of M(c)
is given by

R(X, Y )Z = c

4
{g(Y, Z)X − g(X, Z)Y + g(X, JZ)J Y

−g(Y, JZ)JX + 2g(X, JY )JZ} , (2.5)

for any vector fields X, Y, Z tangent to M(c) [23].
Now, let M be a real 2n-dimensional Kaehler manifold with complex structure J and

M be an isometrically immersed submanifold in M . For any vector field X tangent to
M, we put

JX = PX + FX, (2.6)
where PX and FX denote the tangential and normal components of JX, respectively.
Then P is an endomorphism of TM and F is the normal bundle valued 1-form on TM .

For any vector field V normal to M, we put

JV = tV + fV, (2.7)

where tV and fV denote tangential and normal components of JV , respectively.
By the use of Gauss equation (2.1) and (2.5), we can write the Riemannian curvature

tensor field R of M as

R(X, Y, Z, W ) = c

4
{g(Y, Z)g(X, W ) − g(X, Z)g(Y, W )

+g(PY, Z)g(PX, W ) − g(PX, Z)g(PY, W )
+2g(X, PY )g(PZ, W )} + g(AB(Y,Z)X, W )
−g(AB(X,Z)Y, W ) (2.8)

for any vector fields X, Y, Z tangent to TM .
A submanifold M of an almost Hermitian manifold M is called slant [9], if for each

non-zero vector X tangent to M , the angle θ(X) between JX and TpM is a constant, i.e.,
it does not depend on the choice of p ∈ M and X ∈ TpM .

Furthermore,
(i) A submanifold M of M is called a semi-slant submanifold [17] of M , if there exists

a pair of orthogonal distributions D and Dθ such that D is holomorphic and Dθ

is proper slant.
(ii) A submanifold M of M is called a hemi-slant submanifold (or pseudo-slant) [7] of

M , if there exists a pair of orthogonal distributions D⊥ and Dθ such that D⊥ is
totally real and Dθ is proper slant.

(iii) A submanifold M of M is called a bi-slant submanifold [4] of M , if there exists a
pair of orthogonal distributions Dθ1 and Dθ2 such that Dθ1 is proper slant with
slant angle θ1 and Dθ2 is proper slant with slant angle θ2.

Now we give some examples of bi-slant, semi-slant and hemi-slant submanifolds of com-
plex space forms.
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Example 2.1. [13] Let (R2m, J) be the Euclidean 2m−space and endowed with the Eu-
clidean metric g, where J is an almost complex structure on R2m. The Euclidean metric
g is defined by

g ((x1, . . . , xm, y1, . . . , ym), (z1, . . . , zm, w1, . . . , wm))
= x1z1 + · · · + xmzm + y1w1 + · · · + ymwm.

Now let φ : M → R6 defined by

φ(u, v, w, t) =
(
u

√
2, v

√
2, u + v, u − v, w − t, t − w

)
.

Then we have an orthonormal frame {e1, e2, e3, e4} of TpM , p ∈ M such that

e1 = 1
2

(
√

2, 0, 1, 1, 0, 0),

e2 = 1
2

(0,
√

2, 1, −1, 0, 0),

e3 = 1√
2

(0, 0, 0, 0, 1, −1),

e4 = 1√
2

(0, 0, 0, 0, 0, −1, 1).

Thus, M is a totally geodesic bi-slant submanifold of R6 such that Dθ1 = span{e1, e2}
with slant angle α and Dθ2 = span{e3, e4} with slant angle β, where

J(a, b, c, d, e, f) = (b, −a, d, −c, f, −e).

Using [12] (see page 10), we can state the following four examples.
Example 2.2. Let M(c) be a complex space form with two orthogonal submanifolds Mθ,
a slant submanifold with slant angle θ ̸= π

2 , and MT a holomorphic submanifold. Then
the Riemannian product M = Mθ × MT is a semi-slant submanifold of M(c).
Example 2.3. Let M(c) be a complex space form with two orthogonal submanifolds Mθ,
a slant submanifold with slant angle θ ̸= π

2 , and M⊥ a totally real submanifold. Then the
Riemannian product M = M⊥ × Mθ is a hemi-slant submanifold of M(c).
Example 2.4. Let M(c) be a complex space form with two orthogonal submanifolds Mθ,
a slant submanifold with slant angle θ, and MT a holomorphic submanifold. Then the
Riemannian product M = Mθ × MT is a bi-slant submanifold of M(c).
Example 2.5. Let M(c) be a complex space form with two orthogonal submanifolds Mθ1

and Mθ2 such that Mθ2 and Mθ2 are slant submanifolds of M(c) with slant angles θ1 and
θ2, respectively. Then the Riemannian product M = Mθ1 × Mθ2 is a bi-slant submanifold
of M(c).
Remark 2.6. It is easy to see that if M1 and M2 are minimal submanifolds, then the
Riemannian product M = M1 × M2 is also a minimal submanifold. Hence if we take
M1 and M2 as minimal submanifolds in the above four examples, we will have minimal
submanifolds.

3. Simons’ type formula
This section is devoted to some preparatory results while our main result of this paper

is given in the next section.
Lemma 3.1. [9] Let M be any submanifold of a Kaehler manifold M . Then ∇P = 0 if
and only if

AF X(Y ) = AF Y (X),
for any vector fields X, Y tangent to M .
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Lemma 3.2. [9] Let M be any submanifold of a Kaehler manifold M . Then ∇F = 0 if
and only if

AfN (X) = −AN (PX),
for any vector fields X tangent to M and N normal to M .

Lemma 3.3. [8] Let M be any submanifold of a Kaehler manifold M . If ∇P = 0, then
AN P + PAN = 0,

for any vector field N normal to M .

For a bi-slant submanifold M of dimension n = 2n1 + 2n2 in a complex space form
M(c), we have

TM = Dθ1 ⊕ Dθ2 ,

then

||P ||2 =
n∑

i,j=1
g2(Pei, ej) = 2(n1 cos2 θ1 + n2 cos2 θ2),

where dim(Dθ1) = 2n1 and dim(Dθ2) = 2n2.
Using above Lemmas and equations (2.2), (2.3) and (2.4), we obtain the following

result to get the required Simons’ type formula for an n-dimensional minimal bi-slant
submanifold in a complex space form M(c) of dimension 2n, also for hemi-slant and semi-
slant submanifolds, which play crucial role in working out the main results of this paper.

Theorem 3.4. Let M be an n-dimensional minimal bi-slant submanifold of a complex
space form M(c) of dimension 2n. If ∇P = 0, then

g(∇2A, A) = −g

(
A ◦

∼
A + A

∼
◦ A, A

)
+ c

4

[
n + 1 + 6(n1 cos2 θ1 + n2 cos2 θ2)

]
||A||2. (3.1)

Proof. Since M(c) is locally symmetric, i.e., ∇ R = 0, then (2.4) implies

g(R′N (X), Y ) = 0. (3.2)
Now, we compute g(R(A)N (X), Y ) by putting (2.5) into (2.3) and then from Lemmas
3.1-3.3, we get the following easily,

g(R(A)N (X), Y ) = c

4

[
ng(AN (X), Y ) − 2g(AF Y (X), tN) − 2g(AF X(Y ), tN)

−4g(AfN (X), PY ) − 4g(AfN (Y ), PX) + 3g(PX, PAN (Y ))

+3g(PY, PAN (X)) − 6g(AN (PX), PY ) − 2
n∑

i=1

(
g(AF ei(ei), X)g(FY, N)

+g(AF ei(ei), Y )g(FX, N) + 3
2

g(AF ei(X), Y )g(Fei, N)
)]

= c

4

[
n − 3 + 14(n1 cos2 θ1 + n2 cos2 θ2)

]
g(AN (X), Y )

− cg(AF Y (X), tN). (3.3)
With the help of (2.2), (3.2), and (3.3), we derive

g(∇2A(X), Y ) = −g

(
A ◦

∼
A(X) + A

∼
◦ A(X), Y

)
+ c

4

(
n − 3 + 14(n1 cos2 θ1 + n2 cos2 θ2)

)
g(AN (X), Y )

− cg(AF Y (X), tN). (3.4)
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We calculate the preceding equation (3.4) for X = ei and Y = AN (ei), we get

g(∇2A(ei), AN (ei)) = −g

(
A ◦

∼
A(ei) + A

∼
◦ A(ei), AN (ei)

)

+ c

4

(
n − 3 + 14(n1 cos2 θ1 + n2 cos2 θ2)

)
g(AN (ei), AN (ei))

− cg(AF AN (ei)(ei), tN). (3.5)

Again applying Lemmas 3.1-3.3 and by summation for i = 1, . . . , n, we find
n∑

i=1
g(AF AN (ei)(ei), tN) = −(1 − 2(n1 cos2 θ1 + n2 cos2 θ2))||A||2. (3.6)

Thus, our assertion (3.1) follows on combining equations (3.5) and (3.6). �

The following is Simons’ type formula for a hemi-slant submanifold in M(c).

Corollary 3.5. Let M be an n-dimensional minimal hemi-slant submanifold in a complex
space form M(c) of dimension 2n. If ∇P = 0, then

g(∇2A, A) = −g

(
A ◦

∼
A + A

∼
◦ A, A

)
+ c

4

[
n + 1 + 6n2 cos2 θ

]
||A||2. (3.7)

For a semi-slant submanifold in M(c), we have the following Simons’ type formula.

Corollary 3.6. Let M be an n-dimensional minimal semi-slant submanifold in a complex
space form M(c) of dimension 2n. If ∇P = 0, then

g(∇2A, A) = −g

(
A ◦

∼
A + A

∼
◦ A, A

)
+ c

4

[
n + 1 + 6(n1 + n2 cos2 θ)

]
||A||2. (3.8)

4. Main results
This section gives the applications of Simons’ type formula which has been derived in

the last section for different submanifolds in the same ambient space. At this moment, we
need to construct an inequality for minimal bi-slant submanifold in M(c), which shall be
used in proving our main theorem.

Lemma 4.1. Let M be an n-dimensional minimal bi-slant submanifold of a complex space
form M(c) of dimension 2n such that c > 0. If ∇P = 0, then

g(∇2A, A) ≥
{(

−2 + 1
n

)
||A||2 + c

4

[
n + 1 + 6(n1 cos2 θ1 + n2 cos2 θ2)

]}
||A||2. (4.1)

Proof. Using Lemma 5.3.1 of J. Simons ([19], pg - 93), i.e.,

g

(
A ◦

∼
A + A

∼
◦ A, A

)
≤
(

2 − 1
n

)
||A||4

in Theorem 3.4, we find

g(∇2A, A) ≥
(

−2 + 1
n

)
||A||4 + c

4

[
n + 1 + 6(n1 cos2 θ1 + n2 cos2 θ2)

]
||A||2.

Thus, our assertion follows. �

At this stage, we are ready to prove our main result by using the developed inequality
(4.1) and well known Hopf’s Lemma.
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Theorem 4.2. Let M be an n-dimensional compact minimal bi-slant submanifold of a
complex space form M(c) of dimension 2n such that c > 0 and ∇P = 0. If the second
fundamental form A satisfies

||A||2 ≤ c

4
(
2 − 1

n

) (n + 1 + 6(n1 cos2 θ1 + n2 cos2 θ2)
)

,

then either M is totally geodesic or

||A||2 = c

4
(
2 − 1

n

) (n + 1 + 6(n1 cos2 θ1 + n2 cos2 θ2)
)

.

Proof. Since M is compact, we have∫
M

g(∇2A, A) = −
∫

M
g(∇A, ∇A). (4.2)

Using Lemma 4.1 and (4.2), it follows that

0 ≤
∫

M
g(∇A, ∇A)

≤
∫

M

{[(
2 − 1

n

)
||A||2 − c

4

(
n + 1 + 6(n1 cos2 θ1 + n2 cos2 θ2)

)]
||A||2

}
. (4.3)

So, (4.3) is known as an integral formula of Simons’ type. Further, by considering the
hypothesis of the theorem, we find ∇A = 0 and hence ∇||A||2 is a constant, i.e., either
||A||2 = 0 or

||A||2 = c

4
(
2 − 1

n

) [n + 1 + 6(n1 cos2 θ1 + n2 cos2 θ2)
]

.

From A = 0, we conclude that M is totally geodesic. Hence, our assertions follow. �
Since we know that bi-slant submanifolds generalize the hemi-slant and semi-slant sub-

manifolds, therefore, we can easily state the following theorem by using Corollary 3.5.

Theorem 4.3. Let M be an n-dimensional compact minimal hemi-slant submanifold of
a complex space form M(c) of dimension 2n such that c > 0 and ∇P = 0. If the second
fundamental form A satisfies

||A||2 ≤ c

4
(
2 − 1

n

) [n + 1 + 6n2 cos2 θ
]

,

then either M is totally geodesic or

||A||2 = c

4
(
2 − 1

n

) [n + 1 + 6n2 cos2 θ
]

.

The following theorem can be stated by using Corollary 3.6.

Theorem 4.4. Let M be an n-dimensional compact minimal semi-slant submanifold of
a complex space form M(c) of dimension 2n such that c > 0 and ∇P = 0. If the second
fundamental form A satisfies

||A||2 ≤ c

4
(
2 − 1

n

) (n + 1 + 6(n1 + n2 cos2 θ)
)

,

then either M is totally geodesic or

||A||2 = c

4
(
2 − 1

n

) (n + 1 + 6(n1 + n2 cos2 θ)
)

.

As the ambient manifold is a complex space form M(c), we can take a complex projective
space CP 2n with constant holomorphic sectional curvature 4 of real dimension 2n. Then
the following corollary follows from Theorem 4.2 and Lemma 4 of K. Abe [1].
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Corollary 4.5. Let M be an n-dimensional complete, compact minimal bi-slant subman-
ifold of CP 2n. If the second fundamental form A satisfies

||A||2 <

(
n + 1 + 6(n1 cos2 θ1 + n2 cos2 θ2)

2 − 1
n

)
,

then M is either a
(1) complex projective space, or
(2) real projective space.

In the same manner, we can have the following corollaries based on Theorems 4.3 and
4.4, respectively.

Corollary 4.6. Let M be an n-dimensional complete, compact minimal hemi-slant sub-
manifold of CP 2n. If the second fundamental form A satisfies

||A||2 <

(
n + 1 + 6n2 cos2 θ

2 − 1
n

)
,

then M is either a
(1) complex projective space, or
(2) real projective space.

Corollary 4.7. Let M be an n-dimensional complete, compact minimal semi-slant sub-
manifold of CP 2n. If the second fundamental form A satisfies

||A||2 <

(
n + 1 + 6(n1 + n2 cos2 θ)

2 − 1
n

)
,

then M is either a
(1) complex projective space, or
(2) real projective space.
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