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Abstract

Dry air is widely used in industrial and technological applications. Ideal gas EoS is used in dry air thermodynamic
property calculations. For most applications, it might be sufficient, but when applications with higher pressure zones
are considered, error level will increase. Peng-Robinson cubic Eq. of states is considered for better accuracy of the
thermodynamic properties for dry air in this paper. So, the objective of this study is to suggest a more accurate EoS
for thermodynamic and heat transfer analyses. Set of computer programs were developed in java language to calculate
thermodynamic properties like specific volume, internal energy, enthalpy, entropy, Gibbs energy, Helmholtz energy,
specific heat, thermal conductivity, and viscosity of dry air. The results are compared with the perfect gas EoS and
the Eq.s developed by The International Association for the Properties of Water and Steam (IAPWS).
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1. Introduction

Usually, perfect gas Eq. of state (EoS) is used in order to
calculate thermodynamic and thermophysical properties of
dry air because of its simplicity. It might be suitable for many
applications; however, error level will increase if high-
pressure applications are in the question. An Eq. of state with
better accuracy of thermodynamic properties will be required
for extreme cases. Moreover, in thermophysical property
predictions, the approach is to assume such properties as only
the function of temperature. But properties like viscosity and
thermal conductivity heavily depend on pressure as well as
temperature. Furthermore, such properties are quite a
nonlinear function of pressure so that a linear interpolation
type of correction of properties will not be correct.

Cubic Eq. of states are basically for the gas phase and can
be accurate enough for high pressure applications as well. It
is also possible to solve inverse Eq. v(T,P) avoiding of more
complex iterative root finding process.

In this paper, Peng-Robinson model is used for critical
properties and acentric factor for pure gases. The mixing rule
proposed by Harstad et al. is used to extend the Peng-
Robinson EoS to mixtures [1] and dry air (nitrogen, oxygen,
argon, carbon dioxide, neon, helium, methane, krypton,
hydrogen and xenon09 [2]. Peng-Robinson EoS model was
suggested by Ding-Yu Peng and Donald B. Robinson in 1976
to achieve simple and accurate predictions such as the
compressibility factor liquid phase [3-4]. Since 1976, it has
been widely used in thermodynamic calculations in
industrial and scientific studies [5].

The objective of this study is propose an accurate EoS for
dry air compared to the ideal gas EoS for thermodynamic and
heat transfer analyse. Set of computer programs were
developed by using Peng-Robinson EoS for determining
specific volume, internal energy, enthalpy, entropy, Gibbs
energy, Helmholtz energy, specific heat, thermal
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conductivity, and viscosity of dry air. The results were
compared with the perfect gas EoS and others Eo0Ss
developed by The International Association for the
Properties of Water and Steam (IAPWS) [6].

2. Methodology
2.1 Formulation of Eq. of State

Peng-Robinson cubic Eq. of state was considered for dry
exhaust gas mixture in this paper. Parameters of the Eq. is
defined in terms of the critical properties and the acentric

factor. Cubic Eq. of state has a general form of Eq. as [7]
a

p=f___ 2 (2.1)

v-b  vZ+ubv+wb?2

Peng-Robinson EoS coefficients: u=2, w=-1 so that Eq. took
the form:

RT a

P= v—b  v2+2bv—b? (2:2)
where
b — QO780RTerit (2.3)
Pcritz ,

= 2RI ]+ fo(1 - TP)]? (2.4)
fw = 037464 + 1.54226w — 0.269992w? (2.5)
w is the Pitzer’s acentric factor calculated as:
w = —l0g10Psaturatea vapor(at ,=07)-1 (2.6)
The reduced vapor pressure (B.=P/P,;) at T, =

T /T, = 0.7 is necessary to obtain the values of w. The Eq.
can be written in the following form as well:

73— (1 +B*—uB")Z?+ (A* + wB*? —uB* —uB**)Z —

A*B* — B*2 —wB*? —wB"3 = 0 (2.7)
where

N aP
A" = 73 (2.8)
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L bP
B* = o (2.9)

So far Eq.s given above are for a single gas only. We will
use the Peng-Robinson EoS for dry air as a mixture of
oxygen, nitrogen, argon, carbon dioxide, etc.. A detail list of
the component gases and their mole fractions in dry air is
given in Table 1. More recently, Harstad, Miller, and Bellan
[1] have presented computationally efficient forms of EoS
for gas mixtures, particularly of Peng-Robinson EoS. They
have also shown that it is possible to extend the Eq.s’ validity
beyond the range of data using departure functions. In this
study, the mixing rule proposed by Harstad et al. is used to
extend the PR Eq. of state to mixtures [1]. In particular, the
parameters a and b can be obtained by

a=%;%;yiyi%j (2.11)
b =Y;yib; (2.12)
where y is the mole fraction in the vapor phase and
_ 0.0780RT ¢rit ij
bl] - PCTlt l] (213)
0.45724R?T2 ¢ ; 2
ay == I[1+ foy (1 - T25)] (2.14)
fwij = 0.37464 + 1.54226w;; — 0.269992w; (2.15)
Trij = T/Terie ij (2.16)

The diagonal elements of the “critical coefficients”
matrices are equal to their corresponding pure substance
counterparts, i.e., Teyie ii = Terie is Perit it = Perie i @Nd wy; =
w; . The off-diagonal elements are evaluated through
additional rules:

cht LjR critij

Perit i = Voo (2.17)
crit ij
1/3
Verit ij = [( crit 11)1/3 + (Vcrit jj) ] (2.18)
Zeyitij =3 [Zcrit i ¥ Zerit jj] (2.19)
1
w :‘[wii +w ] (2.20)
Crlt ij \/ crtt ii cnt“(l ij) (2-21)

where interaction coefficient k;; can be calculated as:

(Verie iV )1/2
kl‘j =1— critii’crit jj (222)
Verit ij

Partial derivatives with respect to a are

da __ fwij Ty ij

6_T Z Z} (yly] I.] 1+fw; ](1_m)) (2.23)

a2 0.457236R? criti

67(;:—2 Z](yly]al](l fw”)PC ttj\/ ru)
(2.24)

The basic formulas to calculate cubic roots analytically
are as follows (Tartaglia & Cardano (1530)):

y =ay + a;x + a,x? + azx3 (2.25)
a=a,/a; b=a/a; c=ay/as (2.26)
y=c+bx+ax?+x3 (2.27)
Q =¥3b 243 —9ab +27¢ (2.28)

= 7/54 (2.29)
if(R2 <Q?
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( 0 = cos™?! (%) )

Xo = —2\/6003[9/3] —a/3
X, = 2\/5005[(9 —2m)/3]—a/3

X, = 2\/5005[(6 —2m)/3]—a/3
(2.30)

( )

a=-(R+RE= Q3)1/3
if(a==0)B=0
elseB=Q/A
Xo=(A+B—-a/3)

else . [(_# ) 3 ) [—m]l
v = [(_ﬁ [J3(A B]
2 2

To solve the Peng-Robinson EoS for dry air as a mixture
of gases, the specific heat, C,(T), for each component gas is
required. This is obtained from NIST (National Institute of
Standards and Technology) thermochemical tables [7]. Since
C,(T) value is for the ideal gas, ideal gas mixing rule
applied to establish C,(T) value of the mixture from the
given gases. For each individual gas, the following partial
difference curve fitting formula is used.

Cpi(T) = A; + B;10~ 3T+C‘10 +D;107°T2 T, <T < Ty
(2.31)
Component mole fractions and critical properties of dry

air are given in Table 1.

Table 1. Composition and critical properties of dry air.

Name Mol % Te Pc Zc ®

Nitrogen 78.084 126.2 339 0.29 0.039
Oxygen 20.946 154.6 50.4 0.288 0.025
Argon 0.934 150.8 48.7 0.291 0.001
Carbon dioxide 0.0397 3041 738 0.274 0.239
Neon 0.001818 44.4 27.6 0.311 -0.029
Helium 0.000524 5.19 227 0.302 -0.365
Methane 0.000179 190.4 46 0.288  0.011
Krypton 0.000001 2094 55 0.288  0.005
Hydrogen 0.0000005 33 129 0.303 -0.216
Xenon 0.00000009 289.7 58.4 0.287  0.008

The values of C, are predicted from Eq. (2.31) and the
values for nitrogen and oxygen are shown in Figures 1 and 3
respectively. The error values are given in Figures 2 and 4.
The curve fitting coefficents of argon, nitrogen and oxygen
are given in Table 2, 3 and 4, respectively.

Table 2. Cp (kJ/kmol K) partial continuous curve fitting
Eq. constants for Argon.

i Ai Bi Ci Di T Thi

0 20.786  0.00E+00 0.00E+00 0.00E+00 100 6000
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C©p specific heat KJ/kmolK
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Figure 1. Change of Cp with temperature for Nitrogen
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Figure 2. Change of error levels of predictions with
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Figure 3. Change of Cp with temperature for Oxygen

kJ/(kmol K).
error oxygen 02 Cp

0.002261

0.001779-,

0.001287-,

H

£ 0.0008152

&

2 00003332

a

9 000m

E 1

W .,0006308

2001413,

001595,

0.002077,

0002559 : :

000 6900 1280 1870 2460 3050 3640 420 480 5400 G0N0

T Temperature degree K

Figure 4. Change of error levels of predictions with
temperature of C, in Oxygen kJ/(kmol K).

Table 3. Cp (kJ/kmol K) curve fitting Eq. constants for

Nitrogen. Table 4. Cp (kJ/kmol K) curve fitting Eg. constants for
i Ai Bi Ci Di T Ta Oxygen.
0 29.40863  -2.25144  -0.01247 452088 100 350 i A Bi Ci Di Toi  Tai
1 27.64616  0.88235 077007 476442 350 700 0 3043604 -11.22375 -0.04709  26.32148 100 350
2 21.60170  14.87841  3.81280 -4.16546 700 1200 1 21.00131  23.61241  2.04654 -10.13517 350 700
3 29.83076 542156  -15.04309 -1.08961 1200 1700 2 2974259 7978910 -6.12334  -2.24031 700 1200
4 3547674 0097358  -4254762 -0.09746 1700 2200 3 3631276 0050814 -19.65528 0.45704 1200 1700
5 3492820 131940  -38.18419 -0.15991 2200 2700 4 3334540 232860  -4.52664  -0.03714 1700 2200
6 3626252 058150  -50.89836 -0.04573 2700 3200 5 3103636 3.80481  11.95127 -0.30141 2200 2700
7 35.65734  0.76616  -34.66593 -0.05981 3200 3700 6 2975055 450498  24.83303 -0.40859 2700 3200
8 3641804 043259  -44.18470 -0.02015 3700 4200 7 3214685 346653  -12.25985 -0.28271 3200 3700
9 38.07768  -0.15296  -80.31180 0.03679 4200 4700 8 4352700 -0.66976  -268.79475 0.14080 3700 4200
10  37.76028  -0.04994  -73.10115 0.02776 4700 5200 9 5476822 -4.21849  -604.90568 0.45650 4200 4700
11 3997385 -0.85455 -77.57593 0.10125 5200 6000 10 63.26081  -6.72640  -894.08145 0.66490 4700 5200
11 71.31479  -8.89365  -1220.2917 0.82844 5200 6000

2.2 Formulations of Thermodynamic Properties

Int. J. of Thermodynamics (1JoT)

Now we can establish other thermodynamic properties of

dry air which is not given directly by the Peng-Robinson
EoS. Entropy of dry air is expressed as

(D) AP (T v)

ds = 2D qr + ( z )vdv (2.32)
_ R=Cp(T) AP (Tv)

ds =28 qr + (28 )vdv (2.33)
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ST V) =50+ f; LT + [ (a—”) dv (2.34)
The last term of Eq. (2.34) can be evaluated as
da
fv ( ) va [u b ( 2+2bv bz) (E)v] dv =
v[ R da v 1
fvo [E dv - (5),, fvo (v2+2bv—b2) dv (2.:35)
v 1 v 1
f"o (v2+2bv—b2) dv = f”o ((v+b)2—2b2) dv (2'36)
X=w+b) A=+2b (2.37)
1 1
fXZ—AZ dx = f(X—A)(X+A) 2 [f_dX +
[—=dx (2.38)
v 1 _ 1 [, (w+b—v2p)  (vo+b—v2D)
va (v2+2bu—b2) dv = 2v2b [ln (v+b+v2b) (vo+b+v2b)
(2.39)
P a a da R
(BT) T b da (v2+2bu—b2) (E)v b
(v2+2bv bz) ( ) (2.40)
Internal energy of dry air can be derived similarly as
OP(T,v
du = C,(T)dT + (T (%)v — P(T,v))dv (2.41)
du = (R = C,(N)dT + (T (£E2) - P(T,v)) dv (2.42)
u(T,v) = uo + f; (G, (T) = RydT + [} (T (F52) -
P(T,v)) dv (2.43)

Second integral part of the Eq. 2.43 can be evaluated as

Llr G, —#l= 5[5~ G 7 (), - G5 -
=12 a7 (2 ) )2
(2.44)
26, - e - m
Lol
(2.45)
Enthalpy of dry air is expressed as
h(T,v) =u+vP(T,v) (2.46)
h(T,v) = h(T,v) — TP(T,v) (2.47)

Specific heat at constant pressure is expressed as

Co(T) = X150 yi Coi(T) = X150 i [Ai +B;1073T +
Cl“’ +D;10™ 6TZ] To <T < Tio (2.48)
Specific heat at constant volume is expressed as

Co(T) = Cp(T) — R = X150 yi Cui(T) (2.49)

Where C,,;(T) is the specific heat at constant volume of each
component gases.

C,(T) = 253 y; (A — R + B;10" 3T+C10 +

Di10‘6T2) (2.50)

142 / Vol. 23 (No. 3)

T — B; -
Jps, Co(D)aT = Tt 4; — R)(Tys = Tua) + 5 107 (T =
1 1 D;10™
T2) = G110 (7= 7-) + 25 (T3, = T3] + [ A (T = Tum) +

TLi
Bm 4 n— 1 D107
Pn1073(T2 = T2,) = € 10° (F — o) 2 (T - Ty

(2.51)
forTy =T, =100K and Ty, < T < Ty,
T
Iy, Co(TAT = 315 y; fr Cou(T)T (252)
for To =Ty = 100 Kand T, < T < Ty,
fT CV(T)dT Z fT Cpi(T)dT (2.53)

Ty T

To adopt Egs. (2.52) and (2.53) to any other reference point

Tr

T T T,

[} Cu(TdT = f Cu(TAT — 7 Cu(TdT  (2542)
T Coi™) o _ (T CoiT) o Ty CoilT)

Jp D qr = (7 D g — T D gy (2.54b)

2.4 Formulations of Thermophysical Properties
To estimate the thermal conductivity and viscosity of dry
air, equations suggested by Kadoya et al [8] are used.

H[n(T,) + An(p,)] (2.55)

(T pr) =
where

A A A A
No(T) = AT, + A T2® + A, + T—: + T—r‘; + T—; + T—; (2.56)

As it can be seen in Eg. (2.56), the n (low pressure

viscosity) depends on only temperature, and the An is the
difference between low and high pressure viscosity

An(p,) = Xty Bip} (2.57)
There is a similar approach for thermal conductivity.
K(T,, ) = Alko(T,) + Ak(p,)] (2.58)
where
(T)=C0T +C1T°'5+Cz+%+%+%+% (2.59)
Ak(pr) = Dipy (2.60)
=p/p* T =T/T* (2.61)

In Egs. (2.55) to (2.60), p*isequal to 314.3 kg/mS3,
Ais equal to 25.9778 (10~3W /(mK), H is equal to 6.1609
(10-6 Pas) and T is equal to 132.5 K. The coefficients of
Egs. (2.55) to (2.60) are given in Table 5.

Table 5. Coefficients of Eqs.(2.55) to (2.60). [8]

i A Bi Ci Di

0 0.128517  0.465601  0.239503 0.402287
1 2.60661 1.26469 0.006497 0.356603
2 -1 -0.511425 1 -0.163159
3 -0.709661 0.2746 -1.92615 0.138059
4 0.662534 2.00383 -0.020172
5 -0.197846 -1.07553

6 0.0077014 0.229414
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Table 6. Additional properties derived from Peng-
Robinson EoS
Properties Formula
Speed of
sound[10] v = UZCP (G_P)
s c,M ) \ov
T
(G ( RT 2a(v +b)
“J\CM J\(v—b)2 (v?+2bv —b?)
Thermal 1/0p
expansion = —— (—)
coefficient p\IT/p
Isothermal
compressibility Br =
_ v
- ( RT  2a(w+b) )
(v—0b)?> (v?+2bv —b?)?

3. Results

Several programs were developed in java language to
carry out the predictions. The names of programs are given
in Table 6. Air_IAPWS was developed by using IAPWS
formulations [6] and air_PG is for the perfect gas EoS for air.
The details of these programs are not described here, but they
are given for comparison purposes.

Table 6. Programs developed for calculating dry air
properties.

Reference and Description

IAPWS Formulation [6]

Peng-Robinson EoS for mixtures [11]

Perfect gas EoS as a single gas.

Model Name
air_IAPWS
air_PR
air_PG

E
-
=

0 1 2 3

P. pressure 100.0 kPA

T, temperature 300.0 deg K

v, specific volume  |0.86068925616902..._| m*kg

h, enthalpy 27.4978677275264...| KIkg

u, internal energvy  [19.7667000505451... | KTkg

s, entropy 0.00428980072652... | KTkgK

. quality 20 kg vap/ke mix

=]

air_PR 500 300 0.17178 26.32825 18.77558  -0.36967
air_PG 500 300 0.7222 27.01007 19.30280 -0.36388
air_IAPWS 500 300 0.17197 26.11119 18.48476 -0.36653
air_PR 1000 300 0.08568 24.88375 17.54150 -0.57105
air_PG 1000 300 0.08611 27.01007 19.30280  -0.56285
air_IAPWS 1000 300 0.08587 24.99335 17.48330 -0.56881
air_PR 3000 300 0.02832 19.30848 12.66731 -0.89554
air_PG 3000 300 0.02870 27.01007 19.30280 -0.87821
air_IAPWS 3000 300 0.02850 20.62849 13.47535 -0.89723
air_PR 100 500 1.43560 230.79834 165.57513 0.61237
air_PG 100 500 1.43524 230.10497 164.98788 0.61632
air_IAPWS 100 500 143571 230.10855 164.89739 0.61633
air_PR 500 500 0.28741 230.17163 164.80265 0.15019
air_PG 500 500 0.28704 230.10497 164.98788 0.15434
air_IAPWS 500 500 0.28752 229.90383 164.50290 0.15356
air_PR 1000 500 0.14389 229.39896 163.84406 -0.04900
air_PG 1000 500 0.14352 230.10497 164.98788 -0.04462
air_IAPWS 1000 500 0.14400 229.65482 164.01187 -0.04637
air_PR 3000 500 0.04822 226.42496 160.08668 -0.36516
air_PG 3000 500 0.04784 230.10497 164.98788 -0.35998
air_IAPWS 3000 500 0.04834 22873108 162.07077 -0.36553

In the following figures, the Peng-Robinson EoS is

compared with the perfect gas EoS and IAPWS for the dry
air EoS. IAPWS equation is based on the experimental data.
The results of Peng-Robinson EoS are falling between the
results of perfect gas EoS and IAPWS. This is the expected
behavior for such a general EoS based on acentric factor.

Enthalpy difference of Peng-Robinson EoS vs. Perfect Gas EoS

P=5000 kPa

Cp, specific heat at...

1.00484279166310...

KlkeK

Cv, specific heat at...
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Klkgk

O[O0 [ | O | | b | | b [ e

B isobaric thermal ..
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1K
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1 Dvnamic viscosity

1.855815234276%4...
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=)

t
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WimK

o Surface tension
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Nim
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Prandfl number
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p density

1.16185951208039.

ke/m"3

16 speed of sound___|347 5475043500632 | ms

Figure 5. Peng-Robinson EoS program graphic output for

P=100 kPa and T=300 K.

Results obtained for several thermodynamic properties
by using different EoSs are compared in Table 7.

Table 7. Comparisons of the three different EoS for dry air.

-
P v h u s

Mot e (5 k) (amg) (kg (Wkg k)

ar PR 100 300 086068 27.49786 1076670 0.09428

air PG 100 300 086114 27.01007 1930280 009809

air_IAPWS 100 300 086088 27.01361 1028572 0.09810
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Figure 6. Enthalpy difference of Peng-Robinson and perfect

gas EoS (for above 1000 kPa).
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Figure 7. Enthalpy differences of Peng-Robinson and perfect
gas EoS.

Vol. 23 (No. 3)/ 143

0.0



Entropy difference of Peng-Robinson EoS vs Perfect Gas Eos
0.07746

0.06955 -

P=5000 kPa

0.06165

0.05374

0.04584

-s_PR kdikg K

0.03793 -

0.03003

0.02243

0.01422

Entropy difference s_PG

0.006316

-0,001589 \
2000  250.0

3000 3500 4000 4500 5000 5500 6000 6500 7000

Temperature degree K

Figure 8. Entropy difference of Peng-Robinson and perfect
gas EoS.
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Figure 9. Speed of sound difference of Peng-Robinson and
perfect gas EoS.
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Figure 10. Enthalpy difference of Peng-Robinson and
IAPWS EoS.
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Figure 11. Entropy difference of Peng-Robinson and IAPWS
EoS.

4. Conclusions

There are accurate EoS already available for air as a real
gas. However, this package can be utilized as a calibration
tool for a gas mixture to be used in combustion processes.
Another basic application of such an EoS is to use it as a base
to define humid air, which will be carried out by the authors
in a separate publication.

Computer models for different set of real gas EoS by
IAPWS and perfect gas formulations are also derived and
results are compared. The results from the Peng-Robinson
equation are between the results of perfect gas EoS and
IAPWS. This is the expected for such a general EoS based
on the acentric factor.

All the coefficients of EoSs for property estimations of
dry air are given with details, which can be used for
computational purposes. Whole set of computer codes
developed in java programming language for researchers are
available at: www.turhancoban.com.

Nomenclature

a Cubic Eq. coefficient (Pa kmol/m?)
b Cubic Eq. coefficient (m® /kmol)
Co Specific heat capacity at constant pressure (J/kg K)

Cpi Individual gas specific heat capacity at constant
pressure (J/kg K)

Cv Specific heat capacity at constant volume (J/kg K)
Cui Individual gas specific heat capacity at constant
volume (J/kg K)

Fw A function of w specific for Peng-Robinson EoS
h Enthalpy (kJ/kg)

k Thermal conductivity (W/m K)

M Molecular weight (kg/kmol)

P Pressure (kPa)

R Universal gas constant (8.314 J/mol K)
S Entropy (kJ/kg K)

T Temperature (K)

T 132,5K

u Internal energy (kJ/kg)

v Specific volume (m3/kg)

\% Volume (m3)

z Compressibility factor

Greek symbols

B Thermal expansion coefficient (1/k)

Br Isothermal compressibility

n Viscosity (Pa s)
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® Pitzer’s acentric factor
An Viscosity increase (Pa s)
Ak Thermal conductivity increase (W/m K)
P Density (kg/m?®)

p* 314.3 (kg/m?)

s Speed of sound (m/s)

) Molar volume (m3kmol)
Subscripts

crit critical value

r reduced value
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