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Abstract. In the present paper, we establish generalized extension of k-

Bessel-Maitland function involving pathway integral operator. We obtain cer-

tain composition formulas with pathway fractional integral operators. Further
more, Some interesting special cases involving Bessel functions, generalized

Bessel functions, generalized Mittag-Leffer functions, generalized k-Mittag-

Leffer functions are deduced.

1. Introduction

The study of special functions play an important role in Mathematics, Physics,
Chemistry, Biology, Engineering and applied Sciences. It has a wide application
of almost all branches of Science and technology. The Bessel-Maitland function
[10, 28] is denoted by Jµν (z) and is defined as follows:

Jµν (z) =
∞∑
n=0

(−z)n

n!Γ(nµ+ ν + 1)
. (1.1)

The theory of Bessel functions is intimately connected with the theory of certain
types of differential equations. A detail account of applications of Bessel functions
are given in the book of Watson [27].

Now, Singh et al. [25] introduced and investigate of the following generalization
of Bessel-Maitland function as follows:

Jµ,qν,τ (z) =

∞∑
n=0

(τ)qn(−z)n

n!Γ(nµ+ ν + 1)
, (1.2)
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where µ, ν, τ ∈ C;<(µ) ≥ 0,<(ν) ≥ −1,<(τ) ≥ 0, and q ∈ (0, 1)
⋃

N and

(τ)qn = Γ(τ+qn)
Γ(τ) denotes the generalized Pochhammer symbol (see Rainville [21]).

Furthermore, Ghayasuddin et al. [7] investigate a new extension of Bessel-
Maitland function as follows:

Jµ,q,pν,τ,ζ (z) =

∞∑
n=0

(τ)qn(−z)n

Γ(nµ+ ν + 1)(ζ)pn
, (1.3)

where µ, ν, τ, ζ ∈ C;<(µ) ≥ 0,<(ν) ≥ −1,<(τ) ≥ 0,<(ζ) ≥ 0; p, q > 0, and
q < <(α) + p.

Recently, Khan et al. [9] consider a new generalized Bessel-Maitland function
which is defined as:

Jµ,ρ,τ,qα,β,ν,σ,ζ,p(z) =

∞∑
n=0

(µ)ρn(τ)qn(−z)n

Γ(nβ + α+ 1)(ζ)pn(ν)nσ
, (1.4)

where α, β, µ, ρ, ν, τ, ζ ∈ C;<(α) > 0,<(β) > 0,<(ρ) > 0,<(µ) ≥ 0,<(ν) ≥
−1,<(τ) ≥ 0,<(ζ) ≥ 0; p, q > 0, and q < <(α) + p.

In this paper, we consider a new extension of generalized k-Bessel-Maitland
function which is defined as:

Jµ,ρ,τ,qk,α,β,ν,σ,ζ,p(z) =

∞∑
n=0

(µ)ρn,k(τ)qn,k(−z)n

Γk(nβ + α+ 1)(δ)pn,k(ν)nσ,k
, (1.5)

where k, α, β, µ, ρ, ν, τ, ζ ∈ C;<(α) > 0,<(β) > 0,<(ρ) > 0,<(µ) ≥ 0,<(ν) ≥
−1,<(γ) ≥ 0,<(δ) ≥ 0; p, q > 0, and q < <(α) + p.

1.1. Relation with Mittag-Leffler function.

(1) If we put α by α− 1 in (1.5), we get the following result

Jµ,ρ,τ,qk,α−1,β,ν,σ,ζ,p(−x) = Eµ,ρ,τ,qk,α,β,ν,σ,ζ,p(x), (1.6)

where Eµ,ρ,τ,qk,α,β,ν,σ,ζ,p(x) is the Mittag-Leffler function defined by Khan and

Ahmad [8].

(2) If we put µ = ν = σ = ρ = k = 1 and replacing α by α− 1 in (1.5), we get

J1,1,γ,q
α−1,β,1,1,δ,p(−x) = Eζ,τ,qα,β,p(x), (1.7)

where Eζ,τ,qα,β,p(x) is the Mittag-Leffler function defined by Salim and Faraz

[23].

(3) If we put µ = ν = σ = ρ = ζ = p = 1 and replacing α by α− 1 in (1.5), we
get

J1,1,ζ,q
k,α−1,β,1,1,1,1(−x) = Eτ,qk,α,β(x), (1.8)

where Eτ,qk,α,β(x) is the k-Mittag-Leffler function defined by Chand et al. [4].
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(4) If we put µ = ν = σ = ρ = ζ = p = k = 1 and replacing α by α−1 in (1.5),
we get

J1,1,γ,q
α−1,β,1,1,1,1(−x) = Eτ,qα,β(x), (1.9)

where Eτ,qα,β(x) is the Mittag-Leffler function defined by Shukla and Pra-

japati [26].

(5) If we put µ = ν = σ = ρ = ζ = 1 and replacing α by α− 1 in (1.5), we get

J1,1,τ,ζ
α−1,β,1,1,1,1(−x) = Eτ,ζα,β(x), (1.10)

where Eτ,qα,β(x) is the Mittag-Leffler function defined by Salim [24].

(6) If we put µ = ν = σ = ρ = ζ = p = q = 1 and replacing α by α−1 in (1.5),
we get

J1,1,τ
k,α−1,β,1,1,1,1(−x) = Eτk,α,β(x), (1.11)

where Eτk,α,β(x) is the k-Mittag-Leffler function defined by Dorrego and

Cerutti [6].

(7) If we put µ = ν = σ = ρ = ζ = p = q = k = 1 and replacing α by α− 1 in
(1.5), we get

J1,1,τ
α−1,β,1,1,1,1(−x) = Eτα,β(x), (1.12)

where Eτα,β(x) is the Mittag-Leffler function defined by Prabhakar [22].

(8) If we put µ = ν = σ = ρ = ζ = τ = p = q = k = 1 and replacing α by α−1
in (1.5), we get

J1,1,1
α−1,β,1,1,1,1(−x) = Eα,β(x), (1.13)

where Eα,β(x) is the Mittag-Leffler function defined by Wiman [28].

(9) If we put µ = ν = σ = ρ = ζ = τ = p = q = k = 1, α = 0 and replacing α
by α− 1 in (1.5), we get

J1,1,1
0,β,1,1,1,1(−x) = Eβ(x), (1.14)

where Eβ(x) is the Mittag-Leffler function defined by Mittag-Leffler [16].

We investigate some special cases of the generalized Bessel Maitland function
(1.3) by particular values to the parameters µ, ν, δ, γ, p, q.

Now, we recall the classical Beta function denoted by B(a, b) and is defined as

B(a, b) =

1∫
0

ta−1(1− t)b−1dt =
Γ(a)Γ(b)

Γ(a+ b)
, (<(a) > 0,<(b) > 0). (1.15)

(see [21], and also see [10]). The integral representation of the k-Gamma function
is given as:

Γk(z) = k
z
k−1Γ(

z

k
) =

∫ ∞
0

e
−tk
k tz−1dt, (1.16)

k ∈ R, z ∈ C,
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and k-Beta function is defined as:

Bk(x, y) =
1

k

1∫
0

t
x
k−1(1− t)

y
k−1dt =

Γk(x)Γk(y)

Γk(x+ y)
, x > 0, y > 0. (1.17)

The generalized Wright function represented as follows [29, 30, 31]:

pΨq

 (α1, A1), ..., (αp, Ap);
z

(β1, B1), ..., (βp, Bp);

 =pΨq ((αj , Aj)1,p; (βj , Bj)1,q; z)

=

∞∑
n=0

Γ(α1 + nA1)...,Γ(αp + nAp)

Γ(β1 + nB1)...,Γ(βp + nBp)

zn

n!
. (1.18)

In 1961, MacRobert [11] investigate the following interesting result which is given
below: ∫ 1

0

tα−1(1− t)β−1[at+ b(1− t)]−α−βdt =
1

aαbβ
Γ(α)Γ(β)

Γ(α+ β)
, (1.19)

where a and b are non zero constants such that the expression at + b(1 − t), for
0 ≤ t ≤ 1, is non zero, provided <(α) > 0,<(β) > 0.

In this paper, we further apply the following useful result which is given below:∫ 1

0

t
α
k−1(1− t)

β
k−1[at+ b(1− t)]

−α−β
k dt =

1

a
α
k b

β
k

kΓk(α)Γk(β)

Γk(α+ β)
, (1.20)

where a and b are non zero constants such that the expression at + b(1 − t), for
0 ≤ t ≤ 1, is non zero, provided <(α) > 0,<(β) > 0.
It is easy to see that for k = 1 the equation (1.20) reduces to known result (1.19).

Recently, by using the pathway idea of Mathai [13] and developed further by
Mathai and Haubold [14, 15], Nair [17], we introduce a pathway fractional integral
operator which is given below.

Suppose f(x) ∈ L(a, b), η ∈ C,<(η) > 0, a > 0 and the pathway parameter α < 1
as (cf. [2]), then

(P
(η,α)
0+ f)(x) = xη

[ x
a(1−α)

]∫
0

[
1− a(1− α)t

x

] η
(1−α)

f(t)dt. (1.21)

For a real scalar α, the pathway model for scalar random variables is represented
by the following probability density function (p.d.f.):

f(x) = c|x|γ−1
[
1− a(1− α)|x|δ

] β
(1−α) , (1.22)
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provided that −∞ < x <∞, δ > 0, β ≥ 0,
[
1− a(1− α)|x|δ

]
> 0 and γ > 0, where

c is the normalizing constant and α is called the pathway parameter,

c =
1

2

δ (a(1− α))
γ
δ Γ
(
γ
δ + β

(1−α) + 1
)

Γ(γδ )Γ
(

β
(1−α) + 1

) , for α < 1 (1.23)

=
1

2

δ (a(1− α))
γ
δ Γ
(

β
(1−α)

)
Γ(γδ )Γ

(
β

(1−α) −
γ
δ

) , for
1

1− α
− γ

δ
> 0, α > 1 (1.24)

=
1

2

(aβ)
γ
δ

Γ(γδ )
, α→ 1. (1.25)

For α < 1, it is a finite range density with
[
1− a(1− α)|x|δ

]
> 0 and (1.21)

remains in the extended generalized type-1 beta family. The Pathway density in
(1.21), for α < 1, includes the extended type-1 beta density, the triangular density,
the uniform density and many other p.d.f’s. [2]. For α > 1,

f(x) = c|x|γ−1
[
1 + a(1− α)|x|δ

]− β
1−α , (1.26)

provided that −∞ < x <∞, δ > 0, β ≥ 0 and α > 0 which is extended generalized
type-2 modal for real x. It includes the type-2 beta density, the F density, the
student-t density, the cauchy density and many more. For instance, α > 1, writing
(1− α) = −(α− 1) gives:

(P
(η,α)
0+ f)(x) = xη

[ x
−a(1−α)

]∫
0

[
1 +

a(α− 1)t

x

]− η
(α−1)

f(t)dt. (1.27)

For more basic details about pathway integral operator, one may refer [1, 2, 18,
19, 20].

2. Main Results

The pathway integral operator of k-Bessel-Maitland function is given in the fol-
lowing theorems.

Theorem 2.1. Let k ∈ R, α, β, τ, ζ, µ, ν, ρ, σ ∈ C,<(α) > 0,<(β) > 0,<(τ) >
0,<(ζ) > 0,<(µ) > 0,<(ν) > 0,<(ρ) > 0,<(σ) > 0, p, q > 0 and q ≤ <(α) + p, η ∈
C,<( η

1−ξ ) > −1, λ > 1, w > R.

P
(η,λ)
0+

[
t
β
k−1Jµ,ρ,τ,qk,α,β,ν,σ,ζ,p(wt

α
k )
]

(x) =
xη+ β

k Γ( η
(1−λ) + 1)

(a(1− λ)
β
k k

α+1
k −1

Jµ,ρ,τ,q
k,α,β+k( η

1−λ ),ν,σ,ζ,p

(
w(

x

a(1− λ)
)
α
k

)
.

(2.1)

Proof. On taking L.H.S. of Theorem 2.1, and then expanding the definition of gen-
eralized k-Bessel-Maitland function Jµ,ρ,τ,qk,α,β,ν,σ,ζ,p(wt

α
k ), by using (1.18) we obtain:

P
(η,λ)
0+

[
t
β
k−1Jµ,ρ,τ,qk,α,β,ν,σ,ζ,p(wt

α
k )
]

(x)
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= xη

[ x
a(1−λ) ]∫

0

t
β
k−1

[
1− a(1− λ)t

x

] η
(1−λ)

Jµ,ρ,τ,qk,α,β,ν,σ,ζ,p(wt
α
k )dt,

= xη

[ x
a(1−λ) ]∫

0

t
β
k−1

[
1− a(1− λ)t

x

] η
(1−λ) ∞∑

n=0

(µ)ρn,k(τ)qn,k(−wtαk )n

Γk(nβ + α+ 1)(ζ)pn,k(ν)nσ,k
dt,

Interchanging the integration and summation under the suitable convergence con-
dition, we obtain

= xη
∞∑
n=0

(µ)ρn,k(τ)qn,k(−w)n

Γk(nβ + α+ 1)(ζ)pn,k(ν)nσ,k

[ x
a(1−λ) ]∫

0

t
β
k+nα

k −1

[
1− a(1− λ)t

x

] η
(1−λ)

dt,

Now, interchanging the inner integral by beta function formula (1.12), we get

= xη
∞∑
n=0

(µ)ρn,k(τ)qn,k(−w)n

Γk(nβ + α+ 1)(ζ)pn,k(ν)nσ,k

1∫
0

u
β
k+nα

k −1(1− u)
η

(1−λ)

(
x

a(1− λ)

)

×
(

x

a(1− λ)

) β
k+nα

k −1

du,

again applying the Beta function formula, we have

=
xη+ β

k

(a(1− λ)
β
k

∞∑
n=0

(µ)ρn,k(τ)qn,k(−w)nx
nα
k

Γk(nβ + α+ 1)(ζ)pn,k(ν)nσ,k

Γ( η
(1−λ) + 1)Γ(βk + nα

k )

Γ( η
(1−λ) + β

k + nα
k + 1)

1

(a(1− λ))
nα
k
.

Now, using the result,

Γk(λ) = k
λ
k−1Γ(

λ

k
), (2.2)

we get,

=
xη+ β

k Γ( η
(1−λ) + 1)

(a(1− λ)
β
k

∞∑
n=0

(µ)ρn,k(τ)qn,k(−w)nx
nα
k

k
nβ+α+1

k −1Γ(nβ+α+1
k )(ζ)pn,k(ν)nσ,k

Γ(βk + nα
k )

Γ( η
(1−λ) + β

k + nα
k + 1)

1

(a(1− λ))
nα
k
,

=
xη+ β

k Γ( η
(1−λ) + 1)

(a(1− λ)
β
k k

α+1
k −1

Jµ,ρ,τ,q
k,α,β+k( η

1−λ ),ν,σ,ζ,p

(
w(

x

a(1− λ)
)
α
k

)
,

which is our desired result (2.1).
Thus, the proof of Theorem 2.1 is complete. �



66 MOIN AHMAD, SAURABH PORWAL

Corollary 2.2. If we put τ = q = 1, ν = σ = p = 1 in Theorem 2.1, then we get
the result corresponding result of Nisar et al. [19] as:

P
(η,λ)
0+

[
t
β
k−1Jµ,ρ,1,1k,α,β,1,1,ζ,1(wt

α
k )
]

(x) =
xη+ β

k Γ( η
(1−λ) + 1)

(a(1− λ)
β
k k

α+1
k −1

Jµ,ρ,1,1
k,α,β+k( η

1−λ ),1,1,ζ,1

(
−w(

x

a(1− λ)
)
α
k

)
.

(2.3)

Corollary 2.3. If we put τ = q = 1, ν = σ = p = ζ = k = 1 in Theorem 2.1, then
we obtain the corresponding result of Nair [17] as:

P
(η,λ)
0+

[
tβ−1Jµ,ρ,1,11,α,β,1,1,1,1(wt

α
k )
]

(x) =
xη+βΓ( η

(1−λ) + 1)

(a(1− λ))β
Jµ,ρ,1,1

1,α,β+1( η
1−λ ),1,1,1,1

(
w(

x

a(1− λ)
)α
)
.

(2.4)

Theorem 2.4. Let k ∈ R, α, β, τ, ζ, µ, ν, ρ, σ ∈ C,<(α) > 0,<(β) > 0,<(τ) >
0,<(ζ) > 0,<(µ) > 0,<(ν) > 0,<(ρ) > 0,<(σ) > 0, p, q > 0 and q ≤ <(α) + p, η ∈
C,<( η

1−ξ ) > −1, λ > 1, w > R.

P
(η,λ)
0+

[
t
β
k
−1Jµ,ρ,τ,qk,α,β,ν,σ,ζ,p(wt

α
k )
]

(x) =
xη+

β
k
+1Γ(1 − η

(λ−1)
)

(−a(1 − λ)
β
k k

α+1
k

−1
Jµ,ρ,τ,q
k,α,β+k(nα+k− η

λ−1
),ν,σ,ζ,p

(
w(

x

−a(λ− 1)
)
α
k

)
.

(2.5)

Proof. On taking L.H.S of (2.5) and applying the definition (1.5) and (1.24), we
obtain

P
(η,λ)
0+

[
t
β
k−1Jµ,ρ,τ,qk,α,β,ν,σ,ζ,p(wt

α
k )
]

(x)

= xη

[ x
−a(1−λ) ]∫

0

t
β
k−1

[
1 +

a(λ− 1)t

x

] η
−(λ−1)

Jµ,ρ,τ,qk,α,β,ν,σ,ζ,p(wt
α
k )dt,

= xη

[ x
−a(1−λ) ]∫

0

t
β
k−1

[
1 +

a(λ− 1)t

x

] η
−(λ−1)

∞∑
n=0

(µ)ρn,k(τ)qn,k(−wtαk )n

Γk(nβ + α+ 1)(ζ)pn,k(ν)nσ,k
dt.

Interchanging the integration and summation under the suitable convergence con-
dition, we obtain

= xη
∞∑
n=0

(µ)ρn,k(τ)qn,k(−w)n

Γk(nβ + α+ 1)(ζ)pn,k(ν)nσ,k

[ x
−a(1−λ) ]∫

0

t
β
k+nα

k −1

[
1 +

a(λ− 1)t

x

] η
−(λ−1)

dt.

Now, interchanging the inner integral by beta function formula, we get

= xη
∞∑
n=0

(µ)ρn,k(τ)qn,k(−w)n

Γk(nβ + α+ 1)(ζ)pn,k(ν)nσ,k

1∫
0

u
β
k+nα

k −1(1− u)
η

(1−λ)

(
x

a(1− λ)

)



THE PATHWAY INTEGRAL OPERATOR INVOLVING EXTENSION OF K-BESSEL-MAITLAND FUNCTION67

×
(

x

a(1− λ)

) β
k+nα

k −1

du,

again applying the beta function formula, we have

=
xη+ β

k

(−a(1− λ)
β
k

∞∑
n=0

(µ)ρn,k(τ)qn,k(−w)nx
nα
k

Γk(nβ + α+ 1)(ζ)pn,k(ν)nσ,k

Γ(1− υ
(λ−1) )Γ(βk + nα

k )

Γ(1− υ
(λ−1) + β

k + nα
k )

1

(−a(λ− 1))
nα
k
.

Now, using the result,

Γk(λ) = k
λ
k−1Γ(

λ

k
), (2.6)

we obtain,

=
xη+ β

k+1Γ(1− η
(λ−1) )

(−a(1− λ)
β
k+1

∞∑
n=0

(µ)ρn,k(τ)qn,k(−w)nx
nα
k

k
nβ+α+1

k −1Γ(nβ+α+1
k )(ζ)pn,k(ν)nσ,k

Γ(βk + nα
k )

Γ(1− η
(1−λ) + β

k + nα
k )

1

(−a(1− λ))
nα
k
,

=
xη+ β

k+1Γ(1− η
(λ−1) )

(−a(1− λ)
β
k k

α+1
k −1

Jµ,ρ,τ,q
k,α,β+k(nα+k− η

λ−1 ),ν,σ,ζ,p

(
w(

x

−a(λ− 1)
)
α
k

)
,

which is our desired result (2.5). �

Corollary 2.5. If we put τ = q = 1, ν = σ = p = 1 in Theorem 2.4, then it reduces
to the corresponding result of [16]:

P
(η,λ)
0+

[
t
β
k−1Jµ,ρ,1,1k,α,β,1,1,ζ,1(wt

α
k )
]

(x) =
xη+ β

k+1Γ(1− η
(λ−1) )

(−a(1− λ)
β
k+1k

α+1
k −1

Jµ,ρ,1,1
k,α,β+k(nα+k− η

1−λ ),1,1,ζ,1

(
w(

x

−a(λ− 1)
)
α
k

)
.

(2.7)

Corollary 2.6. If we put τ = q = 1, ν = σ = p = ζ = k = 1 in Theorem 2.4, then
it reduces to the following result of Nair [17].

P
(η,λ)
0+

[
tβ−1Jµ,ρ,1,11,α,β,1,1,1,1(wtα)

]
(x) =

xη+β+1Γ(1− η
(1−λ) )

(−a(1− λ))β+1
Jµ,ρ,1,1

1,α,β+1(nα+1− η
λ−1 ),1,1,1,1

(
w(

x

a(1− λ)
)α
)
.

(2.8)

Theorem 2.7. Let k ∈ R, α, β, υ, ζ, µ, ν, ρ, σ, λ, τ ∈ C,<(α) > −1,<(β) > 0,<(υ) >
0,<(ζ) > 0,<(µ) > 0,<(ν) > 0,<(ρ) > 0,<(σ) > 0,<(λ) > 0,<(τ) > 0, p, q > 0
and q ≤ <(α) + p.∫ 1

0

t
υ
k−1(1− t)

ξ
k−1[at+ b(1− t)]

−υ−ξ
k Jµ,ρ,τ,qk,α,β,ν,σ,ζ,p

[
2abt(1− t)

(at+ b(1− t))2

] 1
k

dt

=
Γk(ζ)Γk(µ)

Γk(τ)Γk(µ)aυbλ

∞∑
s=0

Γk(µ+ sρ)Γk(γ + sq)(−2)
s
k a

s
k b

s
k

Γk(sβ + α+ 1)Γk(ζ + ps)Γk(ν + sσ)Γ

Γk(υ + s)Γk(λ+ s)

Γk(υ + λ+ 2s)
.

(2.9)



68 MOIN AHMAD, SAURABH PORWAL

Proof. On taking L.H.S. of Theorem 2.7, using the definition of generalized k-
Bessel-Maitland function (1.5) and (1.17), we obtain∫ 1

0

t
υ
k−1(1− t)

ξ
k−1[at+ b(1− t)]

−τ−ξ
k Jµ,ρ,τ,qk,α,β,ν,σ,ζ,p

[
2abt(1− t)

(at+ b(1− t))2

] 1
k

dt,

=

∫ 1

0

t
υ
k−1(1− t)

ξ
k−1[at+ b(1− t)]

−υ−ξ
k

∞∑
s=0

(µ)ρs,k(τ)qs,k
Γk(sβ + α+ 1)(ζ)ps,k(ν)sσ,k

(−2)
s
k (ab)

s
k t

s
k (1− t) sk

(at+ b(1− t)) 2s
k

dt,

=

∞∑
s=0

(µ)ρs,k(τ)qs,k
Γk(sβ + α+ 1)(ζ)ps,k(ν)sσ,k

(−2)
s
k (ab)

s
k

∫ 1

0

t
υ+s
k −1(1− t)

ξ+s
k −1[at+ b(1− t)]

−υ−ξ−2s
k dt,

by using the integral (1.17), we obtain

=
∞∑
s=0

(µ)ρs,k(τ)qs,k
Γk(sβ + α+ 1)(ζ)ps,k(ν)sσ,k

(−2)
s
k a

s
k b

s
k

a
τ
k b

λ
k

kΓk(τ + s)Γk(λ+ s)

Γk(υ + λ+ 2s)
,

=
Γk(ζ)Γk(µ)

Γk(τ)Γk(µ)aυbλ

∞∑
s=0

Γk(µ+ sρ)Γk(τ + sq)(−2)
s
k a

s
k b

s
k

Γk(sβ + α+ 1)Γk(ζ + ps)Γk(ν + sσ)Γ

Γk(υ + s)Γk(λ+ s)

Γk(υ + λ+ 2s)
,

we derive required result.
Thus, the proof of Theorem 2.7 is established. �

3. Special Case

In this section, we establish the following potentially useful integral operators in-
volving generalized k-Beta type functions as special cases of our main results:

(1) If we let α by α− 1 in Theorem 2.1, and then by using (1.6), we get:

P
(η,λ)
0+

[
t
β
k−1Eµ,ρ,τ,qk,α,β,ν,σ,ζ,p(wt

α)
]

(x) =
xη+ β

k Γ( η
(1−λ) + 1)

(a(1− λ)
β
k k

α
k−1

Eµ,ρ,τ,q
k,α,β+k( η

1−λ ),ν,σ,ζ,p

(
w(

x

a(1− λ)
)
α
k

)
(3.1)

(2) If we let µ = ν = σ = ρ = k = 1 and replacing α by α− 1 in Theorem 2.1,
and then by using (1.7), we obtain:

P
(η,λ)
0+

[
tβ−1Eζ,τ,qα,β,p(wt

α)
]

(x) =
xη+βΓ( η

(1−λ) + 1)

(a(1− λ))
β
k

Eζ,τ,q
α,β+1( η

1−λ ),p

(
w(

x

a(1− λ)
)α
)

(3.2)
(3) If we let µ = ν = σ = ρ = ζ = p = 1 and replacing α by α− 1 in Theorem

2.1, and then by using (1.8), we obtain

P
(η,λ)
0+

[
t
β
k−1Eτ,qk,α,β(wtα)

]
(x) =

xη+ β
k Γ( η

(1−λ) + 1)

(a(1− λ)
β
k k

α
k−1

E1,1,τ,q
k,α,β+k( η

1−λ ),1,1,1,1

(
w(

x

a(1− λ)
)
α
k

)
(3.3)

(4) If we let µ = ν = σ = ρ = ζ = p = k = 1 and replacing α by α − 1 in
Theorem 2.1, and then by using (1.9), we attain:

P
(η,λ)
0+

[
tβ−1Eτ,qα,β(wtα)

]
(x) =

xη+βΓ( η
(1−λ) + 1)

(a(1− λ))β
Eτ,q
α,β+1( η

1−λ )

(
w(

x

a(1− λ)
)α
)
(3.4)
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(5) If we let µ = ν = σ = ρ = q = 1 and replacing α by α− 1 in Theorem 2.1,
and then bu using (1.10), we get

P
(η,λ)
0+

[
tβ−1Eτ,ζα,β(wtα)

]
(x) =

xη+βΓ( η
(1−λ) + 1)

(a(1− λ))β
Eτ,ζ
α,β+1( η

1−λ )

(
w(

x

a(1− λ)
)α
)
(3.5)

(6) If we let µ = ν = σ = ρ = ζ = p = q = 1 and replacing α by α − 1 in
Theorem 2.1, and then by using (1.11), we attain:

P
(η,λ)
0+

[
t
β
k−1Eτk,α,β(wtα)

]
(x) =

xη+ β
k Γ( η

(1−λ) + 1)

(a(1− λ)
β
k k

α
k−1

Eτk,α,β+k( η
1−λ )

(
w(

x

a(1− λ)
)
α
k

)
(3.6)

(7) If we let µ = ν = σ = ρ = ζ = p = q = k = 1 and replacing α by α − 1 in
Theorem 2.1, and then by using (1.12), we obtain:

P
(η,λ)
0+

[
tβ−1Eτα,β(wtα)

]
(x) =

xη+βΓ( η
(1−λ) + 1)

(a(1− λ))β
Eγ
α,β+1( η

1−λ )

(
w(

x

a(1− λ)
)α
)
(3.7)

(8) If we let µ = ν = σ = ρ = ζ = τ = p = q = k = 1 and replacing α by α− 1
in Theorem 2.1, and then by using (1.13), we obtain:

P
(η,λ)
0+

[
tβ−1E1

α,β(wtα)
]

(x) =
xη+βΓ( η

(1−λ) + 1)

(a(1− λ))β
E1
α,β+1( η

1−λ )

(
w(

x

a(1− λ)
)α
)
(3.8)

(9) If we let µ = ν = σ = ρ = ζ = τ = p = q = k = 1, α = 0 and replacing α
by α− 1 in Theorem 2.1, and then by using (1.14), we find:

P
(η,λ)
0+

[
tβ−1E1

β(w)
]

(x) =
xη+βΓ( η

(1−λ) + 1)

(a(1− λ))β
E1
β+1( η

1−λ )

(
w(

x

a(1− λ)
)

)
(3.9)

(10) If we let α by α− 1 in Theorem 2.4, and then by using (1.6), we get:

P
(η,λ)
0+

[
t
β
k−1Eµ,ρ,τ,qk,α,β,ν,σ,ζ,p(wt

α
k )
]

(x) =
xη+ β

k+1Γ(1− η
(λ−1) )

(−a(1− λ)
β
k k

α+1
k −1

Eµ,ρ,τ,q
k,α,β+k(nα+k− η

λ−1 ),ν,σ,ζ,p

(
w(

x

−a(λ− 1)
)
α
k

)
.

(3.10)
(11) If we let µ = ν = σ = ρ = k = 1 and replacing α by α− 1 in Theorem 2.4,

and then by using (1.7), we get:

P
(η,λ)
0+

[
tβ−1Eτ,ζ,qα,β,p(wt

α)
]

(x) =
xη+β+1Γ(1− η

(λ−1) )

(−a(1− λ)β
Eζ,γ,q
α,β+1(nα+1− η

λ−1 ),p

(
w(

x

−a(λ− 1)
)α
)
.

(3.11)
(12) If we let µ = ν = σ = ρ = ζ = p = 1 and replacing α by α− 1 in Theorem

2.7, and then by using (1.8), we get:

P
(η,λ)
0+

[
t
β
k−1Eτ,qk,α,β(wt

α
k )
]

(x) =
xη+ β

k+1Γ(1− η
(λ−1) )

(−a(1− λ)
β
k k

α+1
k −1

Eγ,q
k,α,β+k(nα+k− η

λ−1 )

(
w(

x

−a(λ− 1)
)
α
k

)
.

(3.12)
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(13) If we let µ = ν = σ = ρ = ζ = p = q = k = 1 and replacing α by α − 1 in
Theorem 2.4, and then by using (1.9), we obtain:

P
(η,λ)
0+

[
tβ−1Eτ,qα,β(wtα)

]
(x) =

xη+β+1Γ(1− η
(λ−1) )

(−a(1− λ)β
Eτ,q
α,β+1(nα+1− η

λ−1 )

(
w(

x

−a(λ− 1)
)α
)
.

(3.13)
(14) If we let µ = ν = σ = ρ = q = 1 and replacing α by α− 1 in Theorem 2.4,

and then bu using (1.10), we get

P
(η,λ)
0+

[
tβ−1Eτ,ζα,β(wtα)

]
(x) =

xη+β+1Γ(1− η
(λ−1) )

(−a(1− λ)β
Eτ,ζ
α,β+1(nα+1− η

λ−1 )

(
w(

x

−a(λ− 1)
)α
)
.

(3.14)
(15) If we let µ = ν = σ = ρ = ζ = p = q = 1 and replacing α by α − 1 in

Theorem 2.4, and then by using (1.11), we attain:

P
(η,λ)
0+

[
t
β
k−1Eτk,α,β(wt

α
k )
]

(x) =
xη+ β

k+1Γ(1− η
(λ−1) )

(−a(1− λ)
β
k k

α+1
k −1

Eτk,α,β+k(nα+k− η
λ−1 )

(
w(

x

−a(λ− 1)
)
α
k

)
.

(3.15)
(16) If we let µ = ν = σ = ρ = ζ = p = q = k = 1 and replacing α by α − 1 in

Theorem 2.4, and then by using (1.12), we obtain:

P
(η,λ)
0+

[
tβ−1Eτ,q,α,β(wtα)

]
(x) =

xη+β+1Γ(1− η
(λ−1) )

(−a(1− λ)
β
k

Eτ,q
α,β+1(nα+1− η

λ−1 )

(
w(

x

−a(λ− 1)
)α
)
.

(3.16)
(17) If we let µ = ν = σ = ρ = ζ = τ = p = q = k = 1, α = 0 and replacing α

by α− 1 in Theorem 2.4, and then by using (1.13), we find:

P
(η,λ)
0+

[
tβ−1Eβ(w)

]
(x) =

xη+β+1Γ(1− η
(λ−1) )

(−a(1− λ)β
Eβ+1(1− η

λ−1 )

(
w(

x

−a(λ− 1)
)α
)
.

(3.17)
(18) If we let α by α− 1 in Theorem 2.7, and then by using (??), we get:∫ 1

0

t
υ
k−1(1− t)

ξ
k−1[at+ b(1− t)]

−υ−ξ
k Eµ,ρ,τ,qk,α,β,ν,σ,ζ,p

[
−2abt(1− t)

(at+ b(1− t))2

] 1
k

dt

=
Γk(ζ)Γk(µ)

Γk(τ)Γk(µ)aτ bλ

∞∑
s=0

Γk(µ+ sρ)Γk(γ + sq)(2)
s
k a

s
k b

s
k

Γk(sβ + α+ 1)Γk(ζ + ps)Γk(ν + sσ)Γ

Γk(υ + s)Γk(λ+ s)

Γk(υ + λ+ 2s)

(3.18)
(19) If we let µ = ν = σ = ρ = k = 1 and replacing α by α− 1 in Theorem 2.7,

and then by using (1.7), we get:∫ 1

0

tυ−1(1−t)ξ−1[at+b(1−t)]−υ−ξEτ,ζ,qα,β,p

[
−2abt(1− t)

(at+ b(1− t))2

]
dt = 4Ψ3

 (τ, q), (υ, 1), (λ, 1), (1, 1);
−2ab

(α, β), (ζ, p), (υ + λ, 2), ;

 .
(3.19)

(20) If we let µ = ν = σ = ρ = ζ = p = 1 and replacing α by α− 1 in Theorem
2.7, and then by using (1.8), we get:∫ 1

0

t
υ
k−1(1− t)

ξ
k−1[at+ b(1− t)]

−υ−ξ
k Eτ,qk,α,β

[
−2abt(1− t)

(at+ b(1− t))2

] 1
k

dt
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=
1

Γk(τ)aυbλ

∞∑
s=0

Γk(1 + s)Γk(τ + sq)(2)
s
k a

s
k b

s
k

Γk(sβ + α+ 1)Γk(1 + s)Γk(1 + s)Γ

Γk(υ + s)Γk(λ+ s)

Γk(υ + λ+ 2s)
. (3.20)

(21) If we let µ = ν = σ = ρ = ζ = p = k = 1 and replacing α by α − 1 in
Theorem 2.7,and then by using (1.9), we attain:∫ 1

0

tυ−1(1−t)ξ−1[at+b(1−t)]−υ−ξEτ,qα,β

[
2abt(1− t)

(at+ b(1− t))2

]
dt = 3Ψ2

 (τ, q), (υ, 1), (λ, 1);
−2ab

(α, β), (υ + λ, 2), ;

 .
(3.21)

(22) If we let µ = ν = σ = ρ = q = p = k = 1 and replacing α by α − 1 in
Theorem 2.7,and then by using (1.10), we attain:∫ 1

0

tυ−1(1−t)ξ−1[at+b(1−t)]−υ−ξEτ,ζα,β

[
2abt(1− t)

(at+ b(1− t))2

]
dt = 3Ψ3

 (τ, 1), (υ, 1), (λ, 1);
−2ab

(α, β), (υ + λ, 2), (ζ, 1), ;

 .
(3.22)

(23) If we let µ = ν = σ = ρ = ζ = p = q = 1 and replacing α by α − 1 in
Theorem 2.7, and then by using (1.11), we attain:∫ 1

0

t
υ
k−1(1− t)

ξ
k−1[at+ b(1− t)]

−υ−ξ
k Eτk,α,β

[
−2abt(1− t)

(at+ b(1− t))2

] 1
k

dt

=
1

Γk(τ)aυbλ

∞∑
s=0

Γk(1 + s)Γk(υ + s)(2)
s
k a

s
k b

s
k

Γk(sβ + α+ 1)Γk(1 + s)Γk(1 + s)Γ

Γk(υ + s)Γk(λ+ s)

Γk(υ + λ+ 2s)
. (3.23)

(24) If we let µ = ν = σ = ρ = ζ = p = q = k = 1 and replacing α by α − 1 in
Theorem 2.7, and then by using (1.12), we obtain:∫ 1

0

tυ−1(1−t)ξ−1[at+b(1−t)]−υ−ξEτα,β
[
−2abt(1− t)

(at+ b(1− t))2

]
dt = 3Ψ2

 (τ, 1), (υ, 1), (λ, 1);
−2ab

(α, β), (υ + λ, 2), ;

 .
(3.24)

(25) If we let µ = ν = σ = ρ = ζ = τ = p = q = k = 1 and replacing α by α− 1
in Theorem 2.7, and then by using (1.13) we obtain∫ 1

0

tυ−1(1−t)ξ−1[at+b(1−t)]−υ−ξEα,β
[
−2abt(1− t)

(at+ b(1− t))2

]
dt = 3Ψ2

 (1, 1), (υ, 1), (λ, 1);
−2ab

(α, β), (υ + λ, 2), ;

 .
(3.25)

(26) If we let µ = ν = σ = ρ = ζ = τ = p = q = k = 1, α = 0 and replacing α
by α− 1 in Theorem 2.7, and then by using (1.14) we obtain:∫ 1

0

tυ−1(1−t)ξ−1[at+b(1−t)]−υ−ξEβ
[
−2abt(1− t)

(at+ b(1− t))2

]
dt = 3Ψ2

 (1, 1), (υ, 1), (λ, 1);
−2ab

(0, β), (υ + λ, 2), ;

 .
(3.26)

4. Conclusion

In the present article, we derive a new generalization of k-Beseel Maitland function
and obtain the fractional calculus formula for the same. We also define and study
a new fractional integral operators, which contain the extended Bessel Maitland
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function. If k = 0, then all the results of extended Bessel Maitland function will
lead to the well-known results of Bessel Maitland function (see [9]).
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