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Abstract
In this paper, we introduce a new compounding distribution named Exponential Discrete Lindley
distribution which compounds the discrete Lindley distribution and exponential distribution. We obtain
several properties of the new distribution such as its probability density function, survival function,
hazard rate function, mean residual life function. Moments and expression for the Rényi entropy of the
proposed distribution are also given. Moreover, the maximum likelihood method using the EM algorithm
is developed for parameter estimation. Two real data sets are used to illustrate the usefulness of the
proposed distribution.
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1. Introduction
In recent years, many distributions have been proposed to model lifetime data by several authors. [1], introduced

a two-parameter exponential-geometric (E-G) distribution by compounding an exponential distribution with a
geometric distribution. Similarly, [2] introduced an exponential-Poisson (E-P) distribution by compounding an
exponential distribution with a Poisson distribution. [3] studied the exponential-logarithmic (EL) distribution. [4]
introduced the family of exponential-power series distributions (EPS). [5] proposed the Weibull-geometric (WG)
distribution. [6] studied a distribution family by mixing the Weibull and power-series distributions. [7] have con-
sidered the Lindley distribution which is composed of the mixture of the exponential and the gamma distributions.
Moreover, [8] proposed a new lifetime distribution by compounding exponential and modified-zero-truncated
discrete Lindley distributions.

The purpose of this paper is to introduce a new lifetime distribution with decreasing hazard rate by compound-
ing exponential and discrete Lindley distributions. In this context, we propose and improve the statistical properties
of Exponential Discrete Lindley (EDL) distribution and show that it is suitable to use this distribution for reliability
analysis. Some statistical properties such as the shapes of the density function and hazard rate function, moments,
moment generating function (MGF), and parameter estimation by using the maximum likelihood method and EM
algorithm are given in the study. Finally, applications on real data sets are presented to show the feasibility and
usefulness of the distribution.

This paper is organized as follows: In Section 2, the model and some of its statistical properties including
moments, survival and hazard rate functions are presented. In Section 3, the estimation of parameters is studied via
maximum likelihood and EM algorithm methods. Applications on real data sets are given in Section 4 and finally
conclusions are given in Section 5.
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2. Exponential Discrete Lindley Distribution (EDL) and Its Properties

In this section, we introduce pdf of EDL distribution, and investigate raw moments, survival, hazard rate and
mean residual life functions, an algorithm to generate random number.

2.1 Distribution and moments
Let Y1, Y2, . . . , YM be random sample from an exponential distribution with probability density function

fY (y;β) = βe−βy, y > 0, β > 0.

M is a random variable from zero truncated discrete Lindley distribution with probability function as follows:

P (M = m) =
e−θ

m−1

1 + 2θ

[
θ
(
1− 2e−θ

)
+ (1− e−θ)(1 + θm)

]
, θ > 0, m = 1, 2, 3, . . .

Suppose that Y and M are independent and X = min {Y1, Y2, . . . , YM }. Then the conditional density function of
X|M is

f (x|m;β) = βme−βmx,

and the marginal probability density function of X is

f (x; θ, β) = βe−βx(1− e−θ)

[
A1(θ)

1

(1− e−βx−θ)2
+A2(θ)

(1− e−θ)
(
1 + e−βx−θ

)
(1− e−βx−θ)3

]
,

where A1(θ) =
1−e−θ+θ(1−2e−θ)

(1−e−θ)(2θ+1)
and A2(θ) =

θ
(1−e−θ)(2θ+1)

with A1(θ) + A2(θ) = 1. This distribution defines as
Exponential Discrete Lindley (EDL) Distribution.

Moment generation function of X can be obtained as follows:

MX (t) = β
(
1− e−θ

)
eθ

A1(θ)

∞∑
j=1

je−θj

(βj − t)
+A2(θ)

(
1− e−θ

) ∞∑
j=1

j2e−θj

(βj − t)

 .
Furthermore, first two raw moments and k. th raw moment is calculated as follows:

E (X) =
(
1− e−θ

)
β−1

[
A2(θ)−A1(θ)e

θ
ln
(
1− e−θ

) ]
,

E
(
X2
)
=2
(
1− e−θ

)
eθβ−2

[
A1(θ)Li2

(
e−θ
)
−A2(θ)

(
1− e−θ

)
ln
(
1− e−θ

) ]
,

E
(
Xk
)
=k!

(
1− e−θ

)
eθβ−k

[
A1(θ)Lik

(
e−θ
)
+A2(θ)

(
1− e−θ

)
Lik−1

(
e−θ
)]
.

where Liv (z) denotes Polylogarithm function defined as
∑∞
j=1

zj

jv with |z| < 1.

2.2 The survival, hazard rate and mean residual life functions
The survival function of the EDL distribution is given by

S (x) = A1 (θ)
(
1− e−θ

) e−βx

(1− e−βx−θ)
+A2 (θ)

(
1− e−θ

)2 e−βx

(1− e−βx−θ)2
.

The hazard rate function of EDL distribution is given as

h (x) =
β

1− e−βx−θ

[
1 +

A2(θ)(1− e−θ)
(
e−βx−θ

)
A1(θ) (1− e−βx−θ) +A2(θ) (1− e−θ)

]
.

Let r = e−βx−θ, then we can rewrite the hazard rate function as

h (r) =
β

1− r

1 + r
A1(θ)

A2(θ)(1−e−θ) (1− r) + 1

 .
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This expression is an increasing function of r. Then we can say that hazard rate function is decreasing function of x,
and also the following expressions can be written:

limx→0 h(x) = β 1+A2(θ)e
−θ

(1−e−θ) ≥ β and limx→∞ h(x) = β.

The mean residual life function of EDL distribution is given as follows:

m (x) =

(
1− e−βx−θ

) [
A2(θ)

(
1− e−θ

) (
e−βx−θ

)
−A1(θ)

(
1− e−βx−θ

)
ln
(
1− e−βx−θ

)]
β (e−βx−θ) [A1(θ) (1− e−βx−θ) +A2(θ) (1− e−θ)]

.

2.3 Random number generation
An algorithm is given to generate random numbers from EDL distribution.

• Step0. Generate u ∼ U(0, 1).

• Step1. Input the values of parameters θ and β.

• Step2. If u <
1−e−θ+θ(1−2e−θ)

(1−e−θ)(2θ+1)
then go to Step 3 else go to Step 4.

• Step3. x =
−lnu +ln(u+eθ−1) −θ

β .

• Step4. x = 1
β

[
ln

(
1 + 1

2u (1− e
−θ)

2
u− (1−e−θ)eθ/2

u

√
u+ 1

4 (1− e−θ)
2
eθ
)
+ θ

]
.

2.4 Relationship Pareto Distribution
Under the transformation Y = eβX−e−θ

1−e−θ , the survival function can be written as

S (y) =
(
1−A2(θ)e

−θ
) 1

y
+A2(θ)e

−θ 1

y2
, y ≥ 1

The life function represents a mixture of Pareto Type I distributions with α = 1 and 2, respectively, with ratios of
1−A2(θ)e

−θ and A2(θ)e
−θ.

2.5 Rényi Entropy
The Rényi entropy is defined by

IR (γ) =
1

1− γ
log

∫ ∞
0

(f (x; θ, β))
γ
dx, γ > 0 and γ 6= 1.

By taking
[
A1(θ) +A2(θ)(1− e−θ)

(1+e−βx−θ)
(1−e−βx−θ)

]
= z , above integral can be written as

∫ ∞
0

(f (x; θ, β))
γ
dx =

∫ 1+A2(θ)e
−θ

1−A2(θ)e
−θ

(
eθ

2A2(θ)

)γ
zγdz

=eθγ(2A2(θ))
−γ


(
1 +A2(θ)e

−θ)γ+1 −
(
1−A2(θ)e

−θ
)γ+1

γ + 1


=
eθγ(2A2(θ))

−γ

γ + 1

(
1 +A2(θ)e

−θ
)γ+1

1−(1−A2(θ)e
−θ

1 +A2(θ)e
−θ

)γ+1
 .

Then the entropy is obtained as follows:

IR (γ) =
1

1− γ

 θγ − log (γ + 1)− γlog (2)− γlog (A2(θ)) + (γ + 1) log
(
1 +A2(θ)e

−θ)+
(γ + 1) log

(
1−

(
1−A2(θ)e

−θ

1+A2(θ)e−θ

)γ+1
)  .



24 S.A. Kemaloglu & M. Yılmaz

3. Estimation of the Parameters
To estimate parameters of EDL distribution, we apply two techniques that are Maximum Likelihood and

Expectation- Maximization (EM) algorithm.

3.1 Maximum Likelihood Estimation
Let X1, X2, ··· , Xn be a random sample from the EDL distribution with observed values x = x1, x2, ··· , xn and

(θ, β) be parameter vector. The log-likelihood function can be expressed

logL(θ, β|x) =2nlogβ − 2β

n∑
i=1

xi + 2log
(
1− e−θ

)
+ nlogA1 (θ) + nlogA2 (θ)

+ nlog
(
1− e−θ

)
+

n∑
i=1

log
(
1 + e−βxi−θ

)
− 5

n∑
i=1

log
(
1− e−βxi−θ

)
.

To obtain the maximum likelihood estimators, the derivative of the above statement based on parameters is taken
to zero as below:

∂logL

∂β
=
2n

β
− 2

n∑
i=1

xi −
n∑
i=1

xie
−βxi−θ

1 + e−βxi−θ
− 5

n∑
i=1

xie
−βxi−θ

1− e−βxi−θ
= 0,

∂logL

∂θ
=

2e−θ

1− e−θ
+ n

dA1(θ)
dθ

A1(θ)
+ n

dA2(θ)
dθ

A2(θ)
+ n

e−θ

1− e−θ
−

n∑
i=1

e−βxi−θ

1 + e−βxi−θ
− 5

n∑
i=1

e−βxi−θ

1− e−βxi−θ
= 0.

Since it has no closed form solution, we can use numerical methods such as the quasi-Newton algorithm to
numerically optimize the log-likelihood function.

3.2 EM Algorithm
To start the EM algorithm with an E-step, the pdf of the conditional distribution is obtained as follows:

f (m|x)=f (x|m)P (M = m)

f(x)
=
rm−1

[
A1 (θ)m+A2 (θ)

(
1− e−θ

)
m2
]
(1− r)2

A1 (θ) +A2 (θ) (1− e−θ) 1+r
1−r

, m = 1, 2, ..

For M step of EM algorithm, we take a sample with n sample size, then

n∑
i=1

∞∑
m=1

∂log (f (xi,m))

∂θ
f
(
m|xi; θ0, β0

)
=0, (3.1)

n∑
i=1

∞∑
m=1

∂log (f (xi,m))

∂β
f
(
m|xi; θ0, β0

)
=0. (3.2)

After the equations are solved simultaneously, we get the following expressions:

∂logf (x,m)

∂θ
=
∂log (f (x|m)P (M = m))

∂θ
= −m+

1

1− e−θ

+

dA1

dθ +
((

1− e−θ
) dA2(θ)

dθ +A2 (θ) e
−θ
)
m

A1 (θ) +A2 (θ) (1− e−θ)m
.

For simplicity, let a(1)1 = A1(θ)
A2(θ)(1−e−θ) , a(1)2 =

(
A2(θ)e

−θ+(1−e−θ) dA2(θ)
dθ

)
A2(θ)(1−e−θ) and a

(1)
3 =

dA1(θ)
dθ(

A2(θ)e−θ+(1−e−θ) dA2(θ)
dθ

) , and

taking derivative of logf (x,m) with respect to β, we get

∂logf (x,m)

∂β
=
∂log (f (x|m)P (M = m))

∂β
=

1

β
− xm.
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When we substitute the above expressions in equations (3.1) and (3.2), we have

n∑
i=1

∞∑
m=1

[
−m+

1

1− e−θ(1)
+ a

(1)
2

a
(1)
3 +m

a
(1)
1 +m

]
f
(
m
∣∣∣xi; θ(0), β(0)

)
= 0,

and
n∑
i=1

∞∑
m=1

[
1

β(1)
− xim

]
f
(
m
∣∣∣xi; θ(0), β(0)

)
= 0.

For simplicity the coefficients which include parameter in f
(
m
∣∣xi; θ(0), β(0)

)
, is reorganized as

f
(
m
∣∣∣xi; θ(0), β(0)

)
=

(
r
(0)
i

)m−1(
1− r(0)i

)2
m
[
a
(0)
1 +m

]
a
(0)
1 +

1+r
(0)
i

1−r(0)i

.

After simplifying the equations and performing some algebraic operations, the following expression is obtained:

−
n∑
i=1

E
[
M
∣∣∣xi; θ(0), β(0)

]
+

n

1− e−θ(1)
+ a

(1)
2

n∑
i=1

E

[
a
(1)
3 +M

a
(1)
1 +M

∣∣∣xi; θ(0), β(0)

]
=0, (3.3)

n

β(1)
−

n∑
i=1

xiE
[
M
∣∣∣xi; θ(0), β(0)

]
=0. (3.4)

Here, first conditional expectations in equation (3.3) are calculated respectively as follows:

E
[
M
∣∣∣xi; θ(0), β(0)

]
=

(
1− r(0)i

)2
a
(0)
1 +

1+
(
r
(0)
i

)2

1−r(0)i

∞∑
m=1

m2
[
a
(0)
1 +m

] (
r
(0)
i

)m−1

=

(
1− r(0)i

)1
a
(0)
1 +

1+r
(0)
i

1−r(0)i

[
a
(0)
1

∞∑
m=1

m2
(
r
(0)
i

)m−1 (
1− r(0)i

)
+

∞∑
m=1

m3
(
r
(0)
i

)m−1 (
1− r(0)i

)]

The above sums represent the second and third raw moment, respectively, of the geometric distribution with
probability of success

(
1− r(0)i

)
. Using this information, E

[
M
∣∣xi; θ(0), β(0)

]
can be written as follows:

E
[
M
∣∣∣xi; θ(0), β(0)

]
=

(
1− r(0)i

)1
a
(0)
1 +

1+r
(0)
i

1−r(0)i

a(0)1

1 + r
(0)
i(

1− r(0)i
)2 +

1 + 4r
(0)
i +

(
r
(0)
i

)2
(
1− r(0)i

)3


=

a
(0)
1

(
1−

(
r
(0)
i

)2)
+ 1 + 4r

(0)
i +

(
r
(0)
i

)2
a
(0)
1

(
1− r(0)i

)2
+

(
1−

(
r
(0)
i

)2) .

The second conditional expectation in equation (3.3) is calculated from the following expression

E

[
a
(1)
3 +M

a
(1)
1 +M

∣∣∣xi; θ(0), β(0)

]
=

(
1− r(0)i

)2
a
(0)
1 +

1+r
(0)
i

1−r(0)i

∞∑
m=1

m
[
a
(1)
3 +m

] [
a
(0)
1 +m

] (
r
(0)
i

)m−1
a
(1)
1 +m

. (3.5)

The sum at the right hand side of the above equation can be written as
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∞∑
m=1

m
[
a
(1)
3 +m

] [
a
(0)
1 +m

] (
r
(0)
i

)m−1
a
(1)
1 +m

=

∞∑
m=1

m
[
a
(1)
3 +m

] [
a
(0)
1 +m

] ∫ r
(0)
i

0

za
(1)
1 +m−1dz

(
r
(0)
i

)−a(1)1 −1

=
(
r
(0)
i

)−a(1)1 −1
∫ r

(0)
i

0

za
(1)
1

∞∑
m=1

zm−1
[
m3 +m2

(
a
(0)
1 + a

(1)
3

)
+ a

(0)
1 a

(1)
3 m

]
dz,

and the sum in the integral can be written as
∞∑
m=1

zm−1
[
m3 +m2

(
a
(0)
1 + a

(1)
3

)
+ a

(0)
1 a

(1)
3 m

]
=

∞∑
m=1

m3zm−1 +
(
a
(0)
1 + a

(1)
3

) ∞∑
m=1

m2zm−1 + a
(0)
1 a

(1)
3

∞∑
m=1

mzm−1

=
1 + 4z + z2

(1− z)4
+
(
a
(0)
1 + a

(1)
3

) 1 + z

(1− z)3
+ a

(0)
1 a

(1)
3

1

(1− z)2
.

After these results are substituted in (3.5), the sum in the expression can be written as follows:

∞∑
m=1

[
m3 +m2

(
a
(0)
1 + a

(1)
3

)
+ a

(0)
1 a

(1)
3 m

] (
r
(0)
i

)m−1
a
(1)
1 +m

=
(
r
(0)
i

)−a(1)1 −1
∫ r

(0)
i

0

za
(1)
1

(
1 + 4z + z2

(1− z)4
+
(
a
(0)
1 + a

(1)
3

) 1 + z

(1− z)3

+ a
(0)
1 a

(1)
3

1

(1− z)2

)
dz.

Taylor series expansions of 1+4z+z2

(1−z)4 , 1+z
(1−z)3 and 1

(1−z)2 expressions will be used to obtain a more simple expression
of the integral.

∫ r
(0)
i

0

za
(1)
1

(
1 + 4z + z2

(1− z)4
+
(
a
(0)
1 + a

(1)
3

) 1 + z

(1− z)3
+ a

(0)
1 a

(1)
3

1

(1− z)2

)
dz

=

∞∑
j=0

∫ r
(0)
i

0

za
(1)
1 +jdz

(
(1 + j)

3
+
(
a
(0)
1 + a

(1)
3

)
(1 + j)

2
+
(
a
(0)
1 a

(1)
3

)
(1 + j)

)
dz

=

∞∑
j=0

(
r
(0)
i

)a(1)1 +j+1

(
a
(1)
1 + j + 1

) ((1 + j)
3
+
(
a
(0)
1 + a

(1)
3

)
(1 + j)

2
+
(
a
(0)
1 a

(1)
3

)
(1 + j)

)
.

Then, we finally obtain E
[
a
(1)
3 +M

a
(1)
1 +M

∣∣xi; θ(0), β(0)

]
as follows:

E

[
a
(1)
3 +M

a
(1)
1 +M

∣∣∣xi; θ(0), β(0)

]
=

(
1− r(0)i

)2
a
(0)
1 +

1+r
(0)
i

1−r(0)i

×

∞∑
j=0

(
r
(0)
i

)j
(
a
(1)
1 + j + 1

) ((1 + j)
3
+
(
a
(0)
1 + a

(1)
3

)
(1 + j)

2
+
(
a
(0)
1 a

(1)
3

)
(1 + j)

)
After the expected values are submitted in equations (3.3) and (3.4), the following expressions are obtained:

n

1− e−θ(1)
+ a

(1)
2

n∑
i=1


(
1− r(0)i

)2
a
(0)
1 +

1+r
(0)
i

1−r(0)i

∞∑
j=0

(
r
(0)
i

)j
(
a
(1)
1 + j + 1

) ((1 + j)
3
+
(
a
(0)
1 + a

(1)
3

)
(1 + j)

2
+
(
a
(0)
1 a

(1)
3

)
(1 + j)

)

=

n∑
i=1

a
(0)
1

(
1−

(
r
(0)
i

)2)
+ 1 + 4r

(0)
i +

(
r
(0)
i

)2
a
(0)
1

(
1− r(0)i

)2
+

(
1−

(
r
(0)
i

)2)
,
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and
β(1) =

n∑n
i=1 xi

a
(0)
1

(
1−

(
r
(0)
i

)2
)
+1+4r

(0)
i +

(
r
(0)
i

)2

a
(0)
1

(
1−r(0)i

)2
+

(
1−

(
r
(0)
i

)2
)

.

So that, the parameter values are obtained iteratively. Here

a
(s)
1 =

1

θ(s)
+

(
1− 2e−θ

(s)
)

(
1− e−θ(s)

) , with s = 0, 1,

a
(1)
2 =

(
A2(θ)e

−θ +
(
1− e−θ

)
dA2

dθ

)
A2(θ) (1− e−θ)

=
1

θ(1)
(
2θ(1) + 1

) ,
a
(1)
3 =

dA1(θ)
dθ(

A2(θ)e
−θ

+ (1− e−θ) dA2(θ)
dθ

) =
e−θ

(1)
(
1 + θ(1) + 2θ(1)

2
)
− 1(

1− e−θ(1)
)2 ,

and
r
(0)
i = e−β

(0)xi−θ
(0)

.

If we want to obtain an equation for E
[
a
(1)
3 +M

a
(1)
1 +M

∣∣xi; θ(0), β(0)

]
using the generalized hypergeometric function,

we can write the following expression:

∞∑
m=1

m3 +m2
(
a
(0)
1 + a

(1)
3

)
+ a

(0)
1 a

(1)
3 m

(
r
(0)
i

)m−1
a
(1)
1 +m

=

∞∑
m=1

m3
(
r
(0)
i

)m−1
a
(1)
1 +m

+
(
a
(0)
1 + a

(1)
3

) ∞∑
m=1

m2
(
r
(0)
i

)m−1
a
(1)
1 +m

+
(
a
(0)
1 a

(1)
3

) ∞∑
m=1

m
(
r
(0)
i

)m−1
a
(1)
1 +m

=
1

a
(1)
1 + 1

{
4F 3

[
2, 2, 2, a

(1)
1 + 1; 1, 1, a

(1)
1 + 2; r

(0)
i

]
+
(
a
(0)
1 + a

(1)
3

)
3F 2

[
2, 2, a

(1)
1 + 1; 1, a

(1)
1 + 2; r

(0)
i

]
+ a

(0)
1 a

(1)
3 2F 1

[
2, a

(1)
1 + 1; a

(1)
1 + 2; r

(0)
i

]}
.

Thus, the iterative solution for θ is obtained as follows:

n

1− e−θ(1)
+

a
(1)
2

a
(1)
1 + 1

n∑
i=1

[ 4F 3

[
2, 2, 2, a

(1)
1 + 1; 1, 1, a

(1)
1 + 2; r

(0)
i

]
+
(
a
(0)
1 + a

(1)
3

)
3F 2

[
2, 2, a

(1)
1 + 1; 1, a

(1)
1 + 2; r

(0)
i

]
+a

(0)
1 a

(1)
3 2F 1

[
2, a

(1)
1 + 1; a

(1)
1 + 2; r

(0)
i

]
]

=

n∑
i=1

a
(0)
1

(
1−

(
r
(0)
i

)2)
+ 1 + 4r

(0)
i +

(
r
(0)
i

)2
a
(0)
1

(
1− r(0)i

)2
+

(
1−

(
r
(0)
i

)2) .

For simplicity, let e−θ ∼= 1− θ, θ ∈ (0, 1), except for ri, then the following expressions are obtained:

a
(1)
1 = a

(0)
1 = 2, a

(1)
2 =

1

θ(1)
(
2θ(1) + 1

) and a
(1)
3 = 1− 2θ(1),

f
(
m
∣∣∣xi; θ(0), β(0)

)
=

(
r
(0)
i

)m−1(
1− r(0)i

)3
m [2 +m]

3− r(0)i
,
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E
[
M
∣∣∣xi; θ(0), β(0)

]
=

3 + 4r
(0)
i −

(
r
(0)
i

)2
(
3− r(0)i

)(
1− r(0)i

) =
6(

3− r(0)i
)(

1− r(0)i
) − 1 =

3(
1− r(0)i

) +
−3(

3− r(0)i
) − 1,

E

[
1− 2θ(1) +M

2 +M

∣∣∣xi; θ(0), β(0)

]
=

(
1− r(0)i

)3
3− r(0)i

∞∑
m=1

m
(
1− 2θ(1) +m

)
[2 +m]

(
r
(0)
i

)m−1
2 +m

=

(
1− r(0)i

)3
3− r(0)i

[(
1− 2θ(1)

) ∞∑
m=1

m
(
r
(0)
i

)m−1
+

∞∑
m=1

m2
(
r
(0)
i

)m−1]

=
(
1− 2θ(1)

) 1− r(0)i
3− r(0)i

+
1 + r

(0)
i

3− r(0)i

=−
(
1 + 2θ(1)

) 1− r(0)i
3− r(0)i

+ 1.

When the above expressions are substituted in (3.3) and (3.4), the following equations are obtained:

2

θ(1)

n∑
i=1

1

3− r(0)i
+

n

θ(1)
(
1 + 2θ(1)

) = 3

n∑
i=1

1

1− r(0)i
− 3

n∑
i=1

1

3− r(0)i
− n,

β(1) =
n

6
∑n
i=1

xi(
3−r(0)i

)(
1−r(0)i

) −∑n
i=1 xi

.

Taking m1 = 1
n

∑n
i=1

1

1−r(0)i
and m2 = 1

n

∑n
i=1

1

3−r(0)i
, the derivative expression with respect to θ can be rewritten as

follows:
2

θ(1)
m2 +

1

θ(1)
(
1 + 2θ(1)

) = 3m1 − 3m2 − 1

After the necessary adjustments, a second-order polynomial for θ is obtained as;

2 (3m1 − 3m2 − 1) θ(1)
2
− θ(1) (1− 3m1 + 7m2)− 1− 2m2 = 0.

Then, the appropriate solution for θ is founded as

θ(1) =
(1− 3m1 + 7m2) +

√
(1− 3m1 + 7m2)

2
+ 8 (3m1 − 3m2 − 1) (1 + 2m2)

4 (3m1 − 3m2 − 1)
.

Let e−θ ∼= 1
1+θ , θ ≥ 1 , except for ri, then the following expressions are obtained:

a
(1)
1 = a

(0)
1 = 1, a

(1)
2 =

1

θ (1 + 2θ)
and a

(1)
3 = 2 (1 + θ) ,

f
(
m
∣∣∣xi; θ(0), β(0)

)
=

(
r
(0)
i

)m−1(
1− r(0)i

)3
m [1 +m]

2
,

E
[
M
∣∣∣xi; θ(0), β(0)

]
=

1 + 2r
(0)
i

1− r(0)i
,

E

[
2
(
1 + θ(1)

)
+M

1 +M

∣∣∣xi; θ(0), β(0)

]
=

(
1 + 2θ(1)

)
2

(
1− r(0)i

)
+ 1.
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When the above expressions are substituted in (3.3) and (3.4), the following equations are obtained:

n

(
1 + θ(1)

)
θ(1)

+
n

θ(1)
(
1 + 2θ(1)

) + 1

2θ(1)

n∑
i=1

(
1− r(0)i

)
=

n∑
i=1

1 + 2r
(0)
i

1− r(0)i
,

β(1) =
n

3
∑n
i=1

xi(
1−r(0)i

) − 2
∑n
i=1 xi

.

Taking m3 = 1
n

∑n
i=1

1+2r
(0)
i

1−r(0)i
and m4 = 1

n

∑n
i=1

1−r(0)i
2 , the derivative expression with respect to θ can be rewritten

as follows:
2 (m3 − 1) θ(1)

2
− θ(1) (3−m3 + 2m4)− (2+m4) = 0

Then, the appropriate solution for θ is founded as

θ(1) =
(3−m3 + 2m4) +

√
(3−m3 + 2m4)

2
+ 8 (m3 − 1) (2+m4)

4 (m3 − 1)
.

4. Application

To show the usefulness of EDL distribution, we take into consideration two different data sets. The parameters
are estimated with the ML method and to decide the best fit distribution, we use Kolmogorov-Simirnov (K-S)
statistics.

Data 1.
The first data set used by [9] is vinyl chloride data obtained from clean upgradient monitoring wells in mg/l.

The data are 5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8, 0.8, 0.4, 0.6, 0.9, 0.4, 2, 0.5, 5.3, 3.2, 2.7, 2.9, 2.5, 2.3, 1, 0.2, 0.1, 0.1, 1.8,
0.9, 2, 4, 6.8, 1.2, 0.4, 0.2.

Lindley, Weibull and exponential distributions are considered as the competitor because these are commonly
used in literature for fitting lifetime data. ML estimates for data set 1 of the parameters of the EDL distribution
respectively are calculated as θ̂ = 2.0363, β̂ = 0.4804.

Table 1. Kolmogorov-Smirnov and p values of the models based on data set 1
Model Kolmogorov-Smirnov p value
EDL 0.0878 0.9353
Lindley 0.1326 0.5880
Weibull 0.0919 0.9364
Exp 0.0889 0.9508

Table1 shows that the EDL distribution gives the better fit than the other three distributions.

Data 2.
The second data set corresponding to intervals in days between 109 successive coal-mining disasters in Great

Britain, for the period 1875-1951, published by [10]. The sorted data are given as follows: 1, 4, 4, 7, 11, 13, 15, 15, 17,
18, 19, 19, 20, 20, 22, 23, 28, 29, 31, 32, 36, 37, 47, 48, 49, 50, 54, 54, 55, 58, 59, 59, 61, 61, 66, 72, 72, 75, 78, 78, 81, 93, 96,
99, 108, 113, 114, 120, 120, 123, 124, 129, 131, 137, 145, 151, 156, 171, 176, 182, 188, 189, 195, 203, 208, 215, 217, 217, 217,
224, 228, 233, 255, 271, 275, 275, 275, 286, 291, 312, 312, 315, 326, 326, 329, 330, 336, 338, 345, 348, 354, 361, 364, 369,
378, 390, 457, 467, 498, 517, 566, 644, 745, 871, 1205, 1312, 1357, 1613, 1630.

[1] and [2] and some different authors are proposed many models on this data set.[1] suggested to use
Exponential-Geometric (E-G) and [2] suggested to use Exponential-Poisson (E-P) distributions. On the other
hand, [11] and [8] have proposed two-component mixed exponential distribution (2MED) and exponential modified
discrete Lindley distribution (EMDL) for modeling this data set. According to reported result of [12], Exponentiated
exponential (EE) distribution is also used for modeling this data set. ML estimates for data set 2 of the parameters
of the EDL distribution respectively are calculated as θ̂ = 0.7603, β̂ = 0.0025.

According to Kolmogorov-Smirnov values from Table 2, 2MED, E-P and EDL distributions give better fit than
the other three distributions. Note that, EDL has the third place within three competitors.
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Table 2. Kolmogorov-Smirnov and p values for E-P, E-G, 2MED, EMDL, EDL and EE.
Model Kolmogorov-Smirnov p value
E-P 0.0625 0.7876
E-G 0.0761 0.5524
2MED 0.0578 0.8386
EMDL 0.0752 0.5436
EDL 0.0748 0.5508
EE 0.0830 0.4402

Conclusions
In this article, we have proposed and discussed a new model named as the EDL distribution which compounds

the discrete Lindley distribution and exponential distribution. Some statistical properties of the proposed distribu-
tion including the survival, hazard rate and mean residual life functions, moments, moment generating function,
generating random number and Rènyi entropy are presented. Moreover, we have derived the ML estimates and
EM estimates of the parameters. The applicability of the proposed model is illustrated by using the real data sets.
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