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Abstract
In this study, we characterize some matrix transformations from the generalized absolute Cesaro series spaces |C/1,u|p

(p = 1) to the classical sequence spaces 4., ¢ and c,. Besides this, we obtain some identities or estimates for the norms
of the bounded linear operators corresponding these matrix transformations. Further, by applying the Hausdorff measure
of noncompactness, we give the necessary and sufficient conditions for such operators to be compact.
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Genellestirilmis Mutlak Cesaro Seri Uzaylarinda Nonkompakthk Olgiisiiniin
Uygulamalar

Oz
Bu ¢alismada, |C,W|p(p > 1) genellestirilmis mutlak Cesaro seri uzaylarindan £, ¢ ve ¢, klasik dizi uzaylarina bazi

matris doniisiimleri karakterize edilmistir. Bunun yani sira, bu matris doniisiimlerine karsilik gelen sinirli lineer

operatorlerin normlart i¢in bazi 6zdeslikler veya tahminler verilmistir. Ayrica, nonkompaktlik Hausdorff o6l¢tistntn

uygulamasi ile bu operatorlerin kompakt olmasi igin gerek ve yeter sartlar elde edilmistir.

Anahtar Kelimeler: Dizi Uzaylari, Matris Operatérleri, BK Uzaylari, Kompakt Operatorler, Nonkompaktlik Hausdorff
Olgsi.
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1. Introduction

One of the research areas in the theory of summability is absolute summability factors and
comparison of the methods, which plays an important role in Fourier Analysis and approximation
theory and has been widely studied by many authors in the literature (Borwein, 1958; Canak, 2020;
Das, 1970; Flett, 1957; Hazar and Sarigol, 2018a, b; Mazhar, 1971; Mehdi, 1960; Mohapatra and
Sarigdl, 2018; Nur and Gunawan, 2019; Sarigol, 2015, 2016; Sezer and Canak, 2015). Recently,
independently of these topics, some sequence spaces have been generated and examined by several
authors (Altay and Basar, 2007; Altay et al., 2009; Basarir and Kara, 2011a,b, 2012a,b, 2013; Et and
Isik, 2012; Hazar, 2020; {lkhan and Kara, 2019; flkhan, 2020; Kara and Ilkhan, 2016; Kara and Basarir,
2011; Karakaya et al., 2011; Sarigol, 2016; Zengin Alp and Ilkhan, 2019).

The Hausdorff measure of noncompactness was defined by Goldenstein et al. (1957). Using the
Hausdorff measure of noncompactness, several authors have characterized some classes of compact
operators on certain sequence spaces (Basarir and Kara, 2013; Djolovi¢, 2010; Malkowsky et al.,
2002; Malkowsky and Rakocevi¢, 2000; Mursaleen and Noman, 2010, 2011, 2014; Rakocevié, 1998).

Moreover, Hazar and Sarigol (2018) have introduced the new space |CM |p which is reduced to

|Cxl, (Sarigél, 2016) for u = 0, and proved some theorems related to its topological structures and
matrix mappings, where u and A + p are nonnegative integersand 1 < p < co.

The aim of this paper is to characterize the classes of infinite matrices (|C,1,ﬂ|p, X), where u and

A+ u are nonnegative integersand 1 < p < o0, X = {¥, ¢, ¢p}, and also to characterize the classes

of compact operators from |C/‘Lu|p t0 £, ¢, ¢ and £, 1 < p < oo by using the Hausdorff measure of

noncompactness.

Let (X, |I. ]|) be a normed space. The unit sphere in X is denoted by Sy = {x € X : [|x|| = 1}. If
X and Y are Banach spaces and L : X — Y is a linear operator, then, we write B(X,Y) for the set of
all bounded linear operators from X into Y, which is a Banach space with the operator norm given by
ILlleyy = supres, LGy

A linear operator L : X — Y is said to be compact if its domain is all of X and for every bounded
sequence x = (x,) € X, the sequence (L(x,)) has a convergent subsequence in Y. We denote the
class of such operators by C(X,Y).

Let w be the space of all complex sequences and 4, c, ¢, and ¢ denote the sets of all bounded,
convergent, null and finite sequences, respectively.

Further, £, ={x € w: X2, |x,|P <o} for 1 <p < oo, (¢, =4). We write e®™ (n=

0,1,...) for the sequence with e™ = 1, e = 0(v £ n) foralln > 0.
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A BK- space X is a Banach space with continuous coordinates B, : X — C, where C denotes the
complex field and B,(x) = x,, forall x € X and n > 0. Also, a BK- space X containing ¢ is said to
have AK if every sequence x = (x,) € X has a unique representation x = ¥, x,e(Altay et al.,
2009). For example, the classical sequence spaces £, ¢, ¢, and £,, are BK-spaces with their natural
norms. Moreover, the spaces ¢, and £, (1 < p < o) have AK (Malkowsky and Rakocevi¢, 2000).

The B-dual of asubset X of wistheset X# = {t e w : 2, t,x, is convergent for all x € X}.

If X D ¢ is a BK- space and t = (t,) € w, then we write

Itllx = sup|XoZo toXyl (1)
XESx

provided the expression on the right is defined and finite which is the case whenever t € X#
(Malkowsky et al., 2002).

Let T = (t,,,) be an infinite matrix of complex numbers, X and Y be subsets of w. Then, we
write T,, = (tn,)v=o for the sequence in the n-th row of T. Also, we say that T defines a matrix
mapping from X into Y, and we denoteitby T : X — Y, if, forall x = (x,) € X, the sequence T (x) =

(T (x)), the T-transform of x, exists and belongs to Y, where

e

Ta() = Dty

v=0

provided the series on the right converges for n > 0. The notation (X,Y) denotes the class of all
matrices T such that T : X —» Y. Thus, T € (X,Y) if and only if T, = (t,,,)>, € X? for each n and
T(x) €Y forall x € X.

The matrix domain of an infinite matrix T in X is defined by

Xr={xew:T(x) € X}. (2)

An infinite matrix T = (t,,) is called a triangle if t,,,, # 0, and t,,,, = 0 for v > n, which has a
unique inverse (Wilansky, 1984). Throughout paper, g denotes the conjugate of p > 1, i.e.,, 1/p +
1/g=1and1/g=0forp =1.

The following result is fundamental for our work.

Remark 1.1.

a-) (Malkowsky and Rakoc¢evi¢, 2000). Let 1 < p < oo and g = p/(p — 1). Then, we have

€fo =ch = cf =4, €f = {4 and J,’g = {,. Furthermore, let X denote any of the spaces ¢, c, ¢y, 1
and £,. Then, we have ||t||x = |[t][,s for all t € X8, where ||. |l is the natural norm on the dual
space XP.

b-) (Malkowsky and Rakocevi¢, 2000). Let X and Y be BK spaces. Then, we have (X,Y) c
B(X,Y), that is, every matrix T € (X,Y) defines an operator Ly € B(X,Y) by Ly(x) = T(x) for all
x € X.
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c-) (Djolovi¢, 2010). Let X D ¢ be a BK space and Y be any of the spaces ¢, c,cy. If T €
(X, ), then [|Lll = ITll .0y = supnliTully < oo.

Let (X,d) be a complete metric space, € > 0, and also S and H be subsets of X. Then, S is
called an e-net of H in X, if for every x € H there exists s € S such that d(x, s) < . Further, if S is
finite, then the e-net S of H is called a finite e-net of H.

By My, we denote the collection of all bounded subsets of a metric space (X, d). If Q € My,
then the Hausdorff measure of noncompactness of @, denoted by x(Q), is defined by

x(Q) = inf{e > 0 : Q has a finite € — net in X}.

The function y : My — [0, o) is called the Hausdorff measure of noncompactness (Rakocevic,
1998).

Lemma 1.2 (Djolovi¢, 2010). Let X and Y be Banach spaces, L € B(X,Y). Then, the Hausdorff
measure of noncompactness of L, denoted by [[L]|,, is defined by

LI, = x(L(SK),
and L is compact iff ||L||, =

Lemma 1.3 (Rakocevi¢, 1998). Let Q be a bounded subset of the normed space X, where X =
t,forl1 <p <oo.If P.:X — Xisthe operator defined by P.(x) = (x¢, x,...,%,,0,...) forall x €
X, then

x(@) = rlggloitégll(l —B)@)le,,

where I is the identity operator on X.
2. The Series Spaces of generalized absolute Cesaro methods

Let ¥ x,, be an infinite series with partial sums (s,,), and (o;1) be the nth Cesaro mean

(C,2) of order 1 > —1 of the sequence (s,), i.e., o/ = (E") yr_, EXLs,, where E} is the
binomial coefficient of z™ in the power series expansion of the function (1 — z) ™ 'in |z| < 1. Then,
the series Y. x,, is said to be summable |C, A|,, with index p > 1, if (Flett, 1957)
=1 np_1|(71il - 01%—1|p < . 3
Also, this method was extended by Das (1970) to summability |C, A, ul,, forA > =1, A+ pu #
-1,-2,...,using

[ee)

112, Au P
Z n? 1|0’Tl# - O-n—ul < @,

n=1
in place of (3), where (a,’}'“) is the nth Cesaro mean (C, A, u) of order (A, 1) of the sequence (s,,),

which was defined by Borwein (1958) as follows:
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n
Au _ 1 A-1rl
o, = E““Z En "k E) Sk-
n k=0

Now, we denote by ﬂﬁ'“ the nth Cesaro mean (C, A, ) of sequence (nx,,), i.e.,

n

—Au _ =AU _ 1 A-1H
Uy = Xo, U, _W En_kEkkxk.

n k=1
By the identity 7" = n(o,* — o*) (Das, 1970), the series space |C,L#|p (|CM|1 - |C/1,u|) is
stated by (Hazar and Sarigol, 2018)
_ _ . s _ Aup)
(ol = {x = ) €w: v @) = (VPP @) ) € 8,

where

n

z E}MEEMKx,, n>1
k=1

Aup) (A4u.p)
U X) = Xop, U xX) =
0 ( ) 0 n ( ) nl/pEr)lH-H

According to (2),
|Cﬂ.u|p = (fp)y(l.u,p)'

(Hazar and Sarigdl, 2018), where the matrix U*#P) = (ur(l’}('”"’)) is defined by uA*? = 1 and

E}MLEEK
A, —— - 1<k<n
ug P = nl/pEMH
0, k> n.

There exists the inverse matrix U®4#P) = (ﬁ,(l),l\;“'p)) of the matrix U*#P), which is given by

agﬁ"‘"’) =1and foru A+u+-1,-2,..,

E—A—1k1/pE/'l+u

n—k k
ﬁr(l/}c.u.p) _ —nE# , 1<k <n, (@)

0, k> n.
It is obvious that |C/1.u|p is the BK-space with the norm (Hazar and Sarigél, 2018), for u, A +

w+-1,-2,..,
Ixllc, ), = V@2 @), (5)

Throughout, for any given sequence x = (x,) € |C,Lu|p, we define the associated sequence

y = (¥,) as the UA#P) transform of x, that is, y = U*#P)(x), and so

— — 1 n A-1pHu
Yo = Xoand yn = ——m D= EnZi ik, n 2 1. (6)
n

If the sequences x and y are connected by the relation (6), then x € |C,1,M|p ifand only if y €

£y, furthermore, if x € [C,| , then Ixllic,, | = I1¥le, In fact, the linear operator U @mp) ;
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|C,1,M|p — ¢,, which maps every sequence x € |C,1,ﬂ|p to its associated sequence y € £, is bijective

and norm preserving.

Also, we state the notations A., A, and A, as follows:

. =m)
A, = {e Ew: limE, existsforallr € N},
m

—(m)
Mg = {5 €w : sup |[rEMHE, | < 00},

m,r

m
—(m) |1
Ag = {e Ew: Supz |r1/pEf+”Erm | < 00},
m r=1

where
m
—(m) E; M1
E, = Z %uk;m,r > 1.
k=r k

Also, we need the following known results for our investigation.
Lemma 2.1 (Sarigdl, 2015). Let 1 < p < co. Then, T = (t,) € (£,,€) if and only if

1/q

1Ty, 00 = {i (i |tnk|)q} <o,

k=0 ‘“n=0

and there exists 1 < ¢ < 4 such that ||T||’(t,p,t,) = §||T||(t,p,f).

Lemma 2.2 (Maddox, 1970). Let 1 < p < 0. Then, T = (t,) € (¢,4,) ifand only if

00 1/p
1Tl ge,) = sup {Z |tnk|p} <.
n=0

Lemma 2.3 (Hazar and Sarigol, 2018). If 1 < p < oo, 1 and 4 + u are nonnegative integers,
then, |CM|§ =A.nAg and |G| = Acn A
Now, we prove followings.

First, by taking into account the inverse T 4#P) of the U*#P), we state the following lemma

by the previous result.
B
Lemma2.4. Let Aand A + u be nonnegative integersand 1 < p < oo. Ift = (t;) € (|CM|p) )

then {® = (E,(cp)) € ¢, forp > 1and i € ¢, for p = 1 and the equality

Y tix, = Y2, Py, (7)

is satisfied for every x = (x;) € |CM|p, where y = UA#P)(x) is the associated sequence as in (6)

and {® = (&) is defined by



Karadeniz Fen Bilimleri Dergisi 10(1), 60-73, 2020 66

[o9) (o]

t
A+ LA e ~(Aup)
P) — i/p g uz — A1 :z £, g,
r=k T r=k
Lemma 2.5. If 1 < p < oo, then we have ||t|||C = ||t(p)|| and if p = 1, then we have

Itllic, = IE@,_, forallt € (|C/1,u|p) , where {®) = (E,(cp)) is as in Lemma 2.4, A and A + p are
nonnegative integers.

Proof.Let1 < p < candt € (|C,Lu|p)ﬁ. Then, by using Lemma 2.4, we write £ = (ff{p)) c
£, and the equality (7) holds for all sequence x € |C/1,u|p andy € £, which are connected by equation
(6). Further, it follows from (5) that x € S|C/W|p ifand only if y € Se,- Therefore, we deduce from

(1) and (7) that

e

k=1

e

2 W

k=1

= sup

el = su
|CA’“|P XES P
|C/1,u|

This completes the proof.

The proof is elementary and left to the reader for p = 1.

Throughout, we denote the associated matrix T® = (fr(ﬁc)) of an infinite matrix T = (t,;;) by

B = KPE SR 2B = S (8)

provided the series on the right converges for all n, k > 1.
Lemma 2.6. Let Z be a sequence space, T = (t,;) be an infinite matrixand 1 < p < . If T €
(|C,Lﬂ|p,Z), then T € (¢,,Z) such that T(x) = T®(y) for all x € |C,1,M|p and y € ¢, which are

connected by the equation (6), where T® associated matrix is defined by (8), A,u and A + p are
nonnegative integers.
Proof. This can be proved easily by using Lemma 2.4.

Finally, we end this section with the following Lemmas on operator norms.

Lemma 2.7. Let T = (t,;,) be an infinite matrix and T® associated matrix given by (8). If T
is in any of the classes (|C,1,H|p, CO)'(lc)L,u'p' c) and (|C,1,u|p,£’oo), then, we have, for 1 < p < oo,
A, u and 1 + u nonnegative integers,
— — 7 (p)
el =T e,y oy =50 |72,
and for p = 1 and A, i, A + p nonnegative integers,
— _ (1)
el = 1Ty ey = s | T2,

Proof. This can be obtained by combining Remark 1.1 and Lemma 2.5.
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Lemma 2.8. Let T = (t,,;) be an infinite matrix and T® = (E,(f,’()) be associated matrix given

by (8). Then, we have:
a-) If T € (|Cy |, £p), then, forp > 1,

HLrll = 1Tl ey ) = ITD M

b-)IfT € (|C,Lu|p,£’), then, for 1 < p < oo, there exists 1 < & < 4 such that

- Lison’
ol =0T e, o) = 17PN, ey = EIT N,

Proof. Part of a-) and b-) can be obtained by combining Remark 1.1 with Lemma 2.2 and

Lemma 2.1, respectively.

3. Compact matrix operators on |C,L”|p

In this section, we characterize the classes of infinite matrices (|C,Lu|p,X), wherep>1, X =

{co, ¢, €} Also, we establish the Hausdorff measures of noncompactness of certain matrix operators
on the generalized absolute Cesaro series spaces and using the Hausdorff measure of
noncompactness, we give the necessary and sufficient conditions for such operators to be compact.

Now, we are ready to give following results.

Lemma 3.1 (Stieglitz and Tietz, 1977).

a-) T = (tpy) € (£,c) & (i) limyt,, exists,r >0, (ii) supp, |ty | < .

b-)T = (t,) € (£,4,) < (ii) holds.

c)Letl <p < oo. T = (ty) € (€, ¢) & (i) holds, (iii) sup, X5%g [tnr]7 < oo.

d-)Let1 <p < oo. T = (tn) € (£5, %) < (iii) holds.

e-)Let1 <p < oo. T = (tn) € (€, co) & (iii) holds, (iv) limyt, = 0,7 = 0.

f-) T = (t,) € (£,¢cy) & (ii) and (iv) holds.

Now, we prove our first main result.

Theorem 3.2. Suppose that T = (t,,;) is an infinite matrix of complex numbers for all n, k >
1, the associated matrix T = (f,(j()) is defined by

T = KE " Sl T A, (©)

u and A + p are nonnegative integers. Then

a-) T € (|Cypl #) if and only if

—-A-1
. E;A 1t .
llrzln ym "kTTk”"k exists for n,r > 1, (10)
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sup B Y™ % < oo, for n > 1, (11)
sup|fr($()| < oo, (12)
nk

b-) T € (|Cy, ¢) if and only if (10), (11), (12) hold and
llmt(k)ex1sts for each k.
¢) T € (|Cau| o) ifand only if (10), (11), (12) hold and

limfr(j() = 0, for each k.
n

Proof. a-) T € (|Cy |, #0) Iff (tnp)ies € |C;Lu|ﬁ(n e N) and T(x) € 4., for every x € |Cy |,

and also, by Lemma 2.3, (t,,)p=1 € |CM|ﬂ iff (10) and (11) hold. Moreover, the series Y., t,, X,
converges uniformly in n and so

lignTn(x) =Yro ligntm,xv. (13)
To prove necessity and sufficiency of condition (12), for every given x € |CM| define the operator
UAHD 2 |Cy | = € by UMD (x) =y. It is clear that this operator is bijection and the matrix
corresponding to this operator is triangle. Further, U4#D(x) = y € ¢ iff x = TA#D(y), where

garD = (ﬁ,(l’};”'l)) is the inverse of U1 and it is defined by (4) with p = 1. Then it follows that
m m
e
Z bk X = Z Z nku]((]u g Yi = Z (py(::])YJ
k=1 ]:1 = ]:1

where the matrix o™ = ((pf,:‘])) for j,m = 1,2,,..., is defined by

m

~(A, .
m _ Z tucdi?, 1<j<m
(pm] k=j
0, j>m.

Thus, from (10) and (11), by applying the matrix ¢ = () to (13), we get that
To(x) = lim X7, oMy =32, (fo:, i 1)) y; =32, @y = TV ()

converges for all n > 1, where T = (fg)) is defined by Er(ll) = limpo™ for jm=12,...

mj

which is same as in (9).

This shows that the sequence T'(x) = (T, (x)) exists. So, we obtain that T : |C; .| = 4o iff
TM : ¢ ¢,,andalso a few calculations reveal that T() = ToT*# D, Thus, it follows by applying
Lemma 3.1 with the matrix T that T® : ¢ — ¢, iff (12) holds, and this concludes the proof of
the part a-).

Part b-) and c-) can be proved similarly by using Lemma 3.1.
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Theorem 3.3. Suppose that T = (t,,;) is an infinite matrix of complex numbers forall n,k > 1
and the associated matrix T® = (E,(f,’()) is defined by (8), u and A + u are nonnegative integers and
1 < p < . Then,

a)T € (|cM|p,£w) if and only if (10) holds, and

m |;1/ppAthym Er_—ai_ltvrq
sup Yty (UPET XL S| <o, v, (14)
m r
T
sup T, B < oo, (15)
n

b-) T € (l%lp: ) if and only if (10), (14), (15) hold and

“exists for each j.

z(p)
Enj

lim

n
)T € (lC/‘Lulp' o) if and only if (10), (14), (15) hold and
iy

limt’ = 0, for eachj.
n

Proof. a-) T € (|C,1,u|p,£’oo) iff (tn,)2, € |C,1,M|5 (neN) and T(x) € £, for every x €

|C,W|p. Also, using Lemma 2.3, it follows that (t,,,,)%., € |CM|5 iff (10) and (14) hold. Moreover,

the series Y., t,,x,, converges uniformly in n and so (13) holds.

To get the condition (15), as in the proof of Theorem 3.2, for every given x € |CM|p define the

operator UA#P) : |C, | — £, by UMD (x) = y. Also, the inverse matrix T#P) = (%P of
U p p nv

UA1P) s defined by (4). So we obtain that

m m m m
_ (A,
Z Xy = Z Z tnvuf;j#p) Vi = Z b'f(::j)yj
v=1 j=1 \v=j j=1
where for j,m = 1,2,..., the matrix B™ = (b,(:l’].)) is defined by
m
~(Au, .
b(n? — z tnvuf;jup); 1<j<m
mj 1.7=j
0, Jj>m.

Thus, from (10) and (14), by applying the matrix B™ = (b,(:])) to (13), it can be written that

. [o'e) [e) ~ )L, ) [e') i N
To() = Uim Ly b)Yy = T2 (Z6 tawy ™)y = B £y, = TP )

z(p)

converges for all n > 1, where T® = (E,S’;)) is defined by £, = limmb,(:l? forjm=1,2,..,asin

(8). This leads us that T : |C,1,M|p - ¢, if and only if T®) : ¢, > ¢,,. Further, it can be easily
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calculated that T® = ToT*#P), Hence, by Lemma 3.1, T®) : ¢, > ¢, iff (15) holds, and this
proves the part of a-).

Part b-) and c-) can be proved similarly by using Lemma 3.1.

We may state the following lemma on the Hausdorff measures of noncompactness.

Lemma 3.4. (Mursaleen and Noman, 2010; Theorem 3.7) Let X © ¢ be a BK space. Then, we
have:

a-) IfT € (X, %), then

0 < llLrlly = limsupl|Tyllx-
b-) If T € (X, ¢cp), then
Lzl = limsupl|T,llx.

c)If XhasAKorX =4, and T € (X, c), then

1. ) . \
5 limsuplIT, ~ vl < llLqll, < limsuplITy, ¥,
where y = (y,) with y,, = lim,,_,t,, forall v € N.
Now, let T = (t,;) be an infinite matrix and T® = (E,(f,’()) the associated matrix defined by

(8). Then connected with Lemma 3.4, we can prove next result using Lemma 2.5 and Lemma 2.6.

Theorem 3.5. Let 4 and A 4+ u be nonnegative integers and p > 1. Then, we have:

a)IfT € (|C,1,u|p,£’oo), then

0 <|Lrll, < limsup ”'T’,Ep) (16)
n—oo t’p
and
Ly is compact if lim ”T,Ep) , = 0. (17)
n—-oo P
b-) If T € (|CM|p, o), then
_ i @) ||”
ILrly = timsup | T.7]] (18)
and
Ly is compact if and only if lim ”T,Ep) , = 0. (19)
n—oo P
c)IfT € (|C/1,u|p'c)' then
1. =) _ S| . =) _ ||
3 dimsup (|70 =), < rlly < Jimsup |77 7], | (20)
and
Ly is compact if and only if lim ”T‘n(p) -7/l =0, (21)
n—>00

p
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where 7 = (7,) with 7, = lim,,_o, £ forall v € N.

Proof. Considering Lemma 1.2, we derive the conditions (17),(19) and (21) from the
conditions (16), (18) and (20), respectively. So, we may prove (16), (18) and (20).

Since |CM|p,p > 1 is a BK-space, by combining parts a-) and b-) of Lemma 3.4 with Lemma
2.5, we get the conditions (16) and (18), respectively.

Now, we show that the condition (20) holds. Let T € (|C;Lu|p, c) be given, then it follows from
Lemma 2.6 that 7® € (¢, ¢), where T®) is defined by (8). Also, if we take X = £, which has AK,

in part c-) of Lemma 3.4, then T® € (¢, ¢) implies that

Lo |7 7], < Mgl < fmsw |57 -7] . 2

where 7 = (7,) with 7, = lim,,_ ot forall v € N.
On the other hand, let S)¢, | Dbe the unit sphere in |C/1,u|p- Then, we can write that x € S, |
P P
ifandonly if y € Sty where Se, denotes the unit sphere in £, x € |C/1.u|p and y € £, since T(x) =
T®(y) by Lemma 2.6. For brevity, we use the notation S|CM| = S and Se, = S. So, this leads us
P

by Remark 1.1, Lemma 1.2, and Lemma 2.6 to the consequence that
ILrlly, = X(TS) = x(T®S) = ||zl (23)
This completes the proof by (22) and (23) .

Concerning the compactness characterizations of (|, ,|,4,) for 1 < p < o and (|CM|p,€)

for p > 1, we have next result.

Theorem 3.6 Let u and 1 + u be nonnegative integers, T = (t,;) be an infinite matrix and
T® = (E,(l’,’c)) the associated matrix defined by (8).

a-) If T € (|Cypl, £p), then, for 1 < p < oo,

P\ /P
ILrlly = limsup (Zisre |E5] ) (24)
T—00 v
and
. e 1 o P _
L is compact iff limsup Y041 |t,w =0. (25)
T—00 v

b-) IfT € (|C,1,M|p,£), then, for p > 1, there exists 1 < & < 4 such that

gl = lim (i ( MG >q>

v=1 n=r+1

and
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) © q
Ly is compact iff lim ( Z |f,(ﬁ, ) = 0.
r—oo

v=1 \n=r+1

Proof. a-) Let S, | be the unit sphere in |Ca,,u], that is, Sical = {x €|Cyul : llx|l = 1}. Then,
from (5), we know that x € S|CM| if and only if y € S,, where S, denotes the unit sphere in ¢, x €
|CM| and y € ¢ are connected by the equation (6). For brevity, we write S|CM| =SandS, =S. So,

using Remark 1.1, Lemma 1.2 and Lemma 1.3, we obtain

ILrll, = x(TS) = x(T™S)
limsup||(I = BAOTO )|
=0 yeg ‘p

00 1/p
(1P
= limsup( Z |t,(§,) ) )
T—00 v

n=r+1

where P. : £, - £, is defined by P.(y) = (¥o,Y1,---, ¥ 0,...), which completes the asserted by
Lemma 2.2,

Also, we get the condition (25) from the condition (24) using Lemma 1.2.

Since one can easily prove part b-) as in part a-) using Lemma 2.1 instead of Lemma 2.2, so we

omit the detail.
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