

Dicle University Journal of Engineering (DUJE)

web: http://dergipark.gov.tr/dumf

Araştırma Makalesi / Research Article

İçinden Akışkan Geçen Boru Doğal Frekansının Genelleştirilmiş Regresyon Yapay Sinir Ağları Yöntemi İle Tahmini

Natural Frequency Estimation of Pipe Conveying Fluid by Using Generalized Regression Neural Networks

Begum Yurdanur Dagli^{1*}, Abdulkerim Ergut², Mustafa Erkan Turan³

¹ Manisa Celal Bayar Üniversitesi, Manisa Teknik Bilimler MYO, İnşaat Bölümü, Manisa, begum.dagli@cbu.edu.tr

 $^2 \ Manisa \ Celal \ Bayar \ \ddot{U}niversitesi, \ \dot{I}nşaat \ M\ddot{u}hendisliği \ B\"{o}l\ddot{u}m\ddot{u}, \ Manisa, \ abdulkerim.ergut@cbu.edu.tr$

³ Manisa Celal Bayar Üniversitesi, İnşaat Mühendisliği Bölümü, Manisa, mustafaerkan.turan@cbu.edu.tr

MAKALE BİLGİLERİ	ÖZET
Makale geçmişi:	Bu çalışmada içinden akışkan geçen silindirik borunun dinamik davranışı farklı mesnet koşulları dikkate alınarak

Geliş: 15 Kasım 2019 Düzeltme: 10 Şubat 2020 Kabul: 10 Mart 2020

Anahtar kelimeler:

Akışkan taşıyan boru, dinamik analiz, doğal frekans tahmini, genelleştirilmiş regresyon yapay sinir ağı (GRYSA). incelenmiştir. Boru Euler-Bernoulli Teorisi kullanılarak modellenmiştir. Dinamik denge altındaki titreşim, ağırlıktan kaynaklanan deplasmanlar ihmal edilerek araştırılmıştır. Boru içerisinden geçen akışkan ideal, kararlı, üniform kabul edilmiştir. Hareket denklemi Hamilton prensibi ile belirlenmiştir. Değişkenler, malzeme ve geometriden bağımsız sonuçlar elde edebilmek için boyutsuzlaştırmıştır. İlk üç mod için çözümler analitik olarak yapılmıştır. Dönme ve ötelemeye karşı farklı direngenlik katsayıları ile temsil edilen mesnet koşulları altında doğal titreşim frekansı değerleri belirlenmiştir. Elde edilen veriler girdi olarak kullanılarak Yapay Sinir Ağları (YSA) ile doğal titreşim frekansı değerleri tahmin edilmiştir. Genelleştirilmiştir Regresyon Yapay Sinir Ağ (GRYSA) ileri beslemeli geriye yayınım metodu (İBGY) uygulanmıştır. Sonuçlar seçilen performans kriterleri kullanılarak karşılaştırılmıştır. Model performansının yüksek olması direngenlik katsayılarına bağılı, akışkan taşıyan boruya ait doğal titreşim frekansının belirlenmesinde GRYSA'nın etkili ve hızlı bir araç olduğunu göstermektedir.

Doi: 10.24012/dumf.647302

ARTICLE INFO	ABSTRACT
Article history:	In this study, the dynamic behaviour of cylindrical pipe conveying fluid is investigated by considering different boundary conditions. Pipe is modeled by using Euler-Bernoulli beam theory. Vibration under dynamic equilibrium
Received: 15 December 2019 Revised: 10 February 2020 Accepted: 10 March 2020	is examined under by neglecting the deflections caused by gravity. The fluid in the pipe is assumed as ideal, steady and uniform. The equation of motion is obtained with Hamilton's variation principle. Variables are non- dimensionalized to obtain the results which are independent from material and geometry. The solutions of first
Keywords:	three modes are achived with analitical method. The values of natural vibration frequencies are determined under the boundary conditions which are represented by various stiffnesses of translational and rotational springs. The
Pipe conveying fluid, dynamic analysis, natural frequency estimation, Generalized Regression Neural Network (GRNN).	values of natural vibration frequencies are estimated with Artificial Neural Networks (ANN) using the obtained data as input. Generalized Regression Neural Networks (GRNN) is performed with feed forward back-propagation neural networks (FFBP) approaches. The results are compared according to selected performance criteria. The high performance of the model shows that GRNN is an effective and fast method for determining the natural vibration frequency of the pipe conveying fluid due to the stifness coefficients.

* Sorumlu yazar / Correspondence Begum Yurdanur Dagli

🖂 begum.dagli@cbu.edu.tr

Please cite this article in press as B. Y. Dagli, A. Ergut, M. E. Turan, "İçinden Akışkan Geçen Boru Doğal Frekansının Genelleştirilmiş Regresyon Yapay Sinir Ağları Yöntemi İle Tahmini", DUJE, vol. 11, no. 2, pp. 863-874, June 2020.

Giriş

Akışkanların iletiminde kullanılan borular, artan enerji talebi ile birlikte günümüzde daha da yaygın hale gelmiştir. Akışkan hareketinden kaynaklı titreşimin stabilite üzerinde etkili olduğu bu sistemlerde dinamik analiz, tasarım ve projelendirme açısından büyük önem tasımaktadır. Bu nedenle farklı sınır şartlarına ve yükleme koşullarına maruz kalan boru sistemlerinin dinamik davranışına ilişkin birçok kapsamlı çalışma yapılmıştır (Paidoussis ve Issid, 1974; Wiggert ve Tijsseling, 2001; Aldraihem, 2007; Al-Hilli, 2013). Yi-Min vd. (2010) akışkan taşıyan borunun doğal frekansını farklı sınır şartlarını dikkate alarak Galerkin Yöntemi ile belirlemişlerdir. Akışkan hızı ve frekans arasındaki ilişkinin değerlendirdiği çalışmada sonuçlar Coriolis kuvvetinin doğal frekans üzerindeki etkisinin zayıf olduğunu göstermiştir. Zhang vd. (2016) akışkan taşıyan lineer ve nonlineer titreșimini borunun geliştirdikleri hareket denklemlerini kullanarak incelemislerdir. Lineer model icin viskoz sönümün olmadığı durumda boru deplasmanının sürekli arttığı, nonlineer modelde ise kaotik salınımların, akışkan hızındaki küçük bir artışla bile yeniden ortaya çıktığını vurgulamışlardır. Dağlı ve Sınır (2015) klasik olmayan mesnet koşulları altında araştırma yaparak boru titreşim frekansı üzerinde etkili olan parametreleri ortaya koymuşlardır.

Bu çalışmada içinden akışkan geçen iki ucu mesnetli borunun enine serbest titreşim hareketi incelenmistir. Dinamik analizde kullanılan boru Euler-Bernoulli Teorisi ile modellenirken. içinden geçen akışkan Euler denklemleri ile Akıskan-yapı temsil edilmistir. etkilesimi yaklaşımıyla Hamilton prensibi kullanılarak hareket denklemi elde edilmiştir. Sınır şartları, mesnetler için kullanılan k_1 , k_3 öteleme direngenlik katsayıları ile k_2 , k_4 dönel direngenlik değerler katsayılarına farklı verilerek belirlenmiştir. Boyutsuzlaştırılan diferansiyel denklem çözümleri ilk üç mod yapısı dikkate alınarak gerçekleştirilmiştir. Doluluk oranı β , ve akışkan hızı u, ile değişen doğal frekans ω değerleri grafikler halinde sunulmuştur.

Ancak bu hesaplamalar uzun zaman almakta ve zahmetli bir süreç gerektirmektedir. Süreyi hesaplamayı kolaylastırmak kısaltmak ve amacıyla direngenlik katsayıları ve doğal titreşim ilişkin sonuçlar girdi frekansına olarak kullanılarak Genelleştirilmiş Regresyon Yapay Sinir Ağ (GRYSA) yöntemiyle bir tahmin oluşturulmuştur. modeli Eğitim ve test modellerinin performansı, belirlilik katsayısı (R^2) , karesel ortalama hata (Root Mean Square Error -RMSE), ortalama mutlak yüzde hata (Mean Absolute Percentage Error-MAPE) ile ölçülmüştür (Cigizoglu ve Kişi, 2005). Tahmin modelinin direngenlik katsayılarına bağlı, akışkan taşıyan boruya ait titreşim frekansının belirlenmesinde etkili olduğu gösterilmiştir.

Materyal ve yöntem Hareketin matematiksel modeli

Çalışmada kullanılan borunun uzunluğu *L*, kesit alanı A_p , birim boy kütlesi *m*, olarak kabul edilmiştir. Üniform ve homojen malzemeden üretilen borunun elastisite modülü *E*, yoğunluğu ρ_p ve atalet momenti *I* olarak alınmıştır. Sıkıştırılamaz ideal akışkan için ise kütle, hız ve yoğunluk sırası ile *M*, *u* ve ρ_f , ile temsil edilmiştir. Enine titreşimin en önemli etkisinin eğilme olduğunu ileri sürerek gerilme ile uzama arasında lineer (Han vd., 1999; Liu vd., 2013) bir ilişki kuran Euler-Bernoulli teorisine göre borunun potansiyel enerjisi

$$U = \frac{1}{2} \int_{0}^{L} E^{*} I^{*} \left(\frac{\partial^{2} v^{*} (x^{*}, t^{*})}{\partial x^{*}} \right)^{2} dx^{*}$$
(1)

şeklindedir. Burada $v^*(x^*,t^*)$, x^* konumunda ve t^* anındaki enine deplasmanı göstermektedir. Boyutlu değişkenler * sembolü ile belirtilmiştir. Yanal yer değiştirmeye bağlı kinetik enerji

$$T = \frac{1}{2} \int_{0}^{L} \rho_{p}^{*} A_{p}^{*} \left(\frac{\partial v^{*} (x^{*}, t^{*})}{\partial x^{*}} \right)^{2} dx^{*}$$
(2)

bağıntısı ile verilmiştir. Düzlemsel hareketin modellenmesi için kullanılan Hamilton Prensibi

$$\delta \int_{t_1}^{t_2} \mathcal{L} dt \tag{3}$$

olarak gösterilmiştir. Lagrange terimi, $\mathcal{L} = T \cdot U$ ile ifade edilmektedir. Bu durumda bir bağımlı, iki bağımsız değişken için Euler Bernoulli modeli ile elde edilen hareket denklemi

$$\rho_{p}^{*}A_{p}^{*}\ddot{v}^{*} + E^{*}I^{*}v^{*IV} = 0$$
(4)

şeklinde yazılır. Diferansiyel denklemde, zamana bağlı türev ([·]) ile konuma bağlı türev ise (⁾ ifadesi ile gösterilmiştir. Borunun içinden geçen akışkan ideal kabul edildiğinden Euler denklemi olarak bilinen sürtünmesiz akışa ait genel bağıntı (Munson vd., 2013).

$$\frac{\partial P}{\partial y^*} = \rho_f Y - \rho_f a_y \tag{5}$$

olarak elde edilir. Burada y düşey doğrultu olmak üzere, a_y , akışkan ivmesinin düşey bileşenini temsil etmektedir. P ve Y ise sırası ile basınç ve dış kuvveti göstermektedir. Boru ve içinden geçen akışkana ilişkin verilen denklemler akışkan-yapı etkileşimi yaklaşımı ile birleştirilerek sistemin hareketi Denklem (6) ile tanımlanır.

$$\rho_{p}A_{p}\ddot{v}^{*} + \rho_{f}A_{f}\left(\ddot{v}^{*} + 2u^{*}\dot{v}^{*'} + u^{*^{2}}v^{*''}\right) + EIv^{*W} = 0$$
(6)

Hareket denklemini malzemeden bağımsız hale getirmek için kullanılan boyutsuz deplasman v, konum x, zaman t ve akışkan hızı u aşağıda verilmiştir.

$$v = \frac{v^*}{L} , x = \frac{x^*}{L}$$

$$t = t^* \sqrt{\frac{EI}{L^4(m+M)}} , u = u^* \frac{\sqrt{M}}{\sqrt{EI}} L$$
(7)

Boyutsuz ifadelerin Denklem (6)'da yazılması ile elde edilen akışkan tanıyan boruya ilişkin hareket denklemi

$$v'' + u^2 v'' + 2\sqrt{\beta} u \dot{v}' + \ddot{v} = 0$$
(8)

şeklindedir. Boyutsuzlaştırma ile elde edilen β , doluluk oranı olarak adlandırılır ve akışkan kütlesinin toplam kütleye oranı M/(m+M) olarak ifade edilir (Paidoussis, 1974).

Analitik çözüm yöntemi

Matematiksel modeli oluşturulan (Euler-Bernoulli) akışkan taşıyan boruya ait lineer diferansiyel hareket denklemi için genel çözüm

$$v(x,t) = X_n(x)e^{i\omega_n t} + \overline{X}_n(x)e^{-i\omega_n t}$$
(9)

şeklindedir. Burada X_n , Coriolis terimine bağlı kompleks fonksiyonu temsil etmektedir. Doğal tireşim frekansı ise \mathcal{O}_n , ile gösterilmiştir. Denklem (9), Denklem (6) da yerine yazıldığında Denklem (10) elde edilir.

$$X'' + u^{2}X'' + 2\sqrt{\beta}ui\omega X' - \omega^{2}X = 0$$
 (10)

Denklemin çözümü için Şekil 1'de akış diyagramı verilen yazılımdan yararlanılmıştır (Dagli ve Ergut, 2019).

Şekil 1. Akış diyagramı Figure 1. Flow chart

Akış diyagramında hesaplanması istenen A, B, C, D parametreleri

$$A = -\omega_n^2, \quad B = 2\sqrt{\beta}ui\omega_n, \quad C = u^2, \quad D = 1$$
(11)

olarak verilmiştir. Sınır şartları, mesnetler için kullanılan k_1 , k_3 öteleme direngenlik katsayıları ve k_2 , k_4 dönel direngenlik katsayıları dikkate alınarak Şekil 2'de gösterilmektedir.

Şekil 2. Akışkan taşıyan boru sınır şartları

Figure 2. Boundary conditions of pipe conveying fluid

Borunun başında ve sonunda sınır şartlarının farklı olması x=L noktasında akışkanın serbest kalmasından kaynaklanmaktadır (Aldraihem, 2007).

Boyutsuz direngenlik katsayıları

$$k_1 = k_1^* \frac{L^3}{EI}, \quad k_2 = k_2^* \frac{L}{EI}, \quad k_3 = k_3^* \frac{L^3}{EI}, \quad k_4 = k_4^* \frac{L}{EI}$$
(12)

şeklinde verilmiştir. Çalışma kapsamında direngenlik katsayıları borunun iki ucunun da dönme serbestliğinin olduğu basit mesnet, çökme ve dönmeye karşı rijit olan ankastre mesnet koşulları dikkate alınarak, klasik sınır şartları altında değerlendirilmiştir. Ayrıca katsayılara 5,00 ile 1000,00 arasında 16 farklı değer verilerek klasik olmayan elastik mesnet koşulları da incelenmiştir. Elde edilen sonuçlardan veri seti oluşturulmuştur.

Genelleştirilmiş Regresyon Yapay Sinir Ağı

Specht tarafından 1991 yılında geliştirilen Genelleştirilmiş Regresyon Yapay Sinir Ağları (GRYSA) yönteminde girdi ve çıktı verileri yardımı ile oluşturulan tahmin fonksiyonundan yararlanılmaktadır (Samarasinghe, 2016; Tayfur, 2017). GRYSA, girdi, örüntü, toplama ve çıktı katmanı olmak üzere dört katmandan meydana gelen bir yapıya sahiptir

Yöntem iteratif eğitim prosedürü gerektirmemektedir. Girdi ve çıktılar arasındaki ilişkiyi tanımlayan fonksiyon doğrudan eğitim verisi yardımı ile belirlenmektedir (Alp & Cigizoglu, 2010). Bağımlı değişken olan y'nin bağımsız değişken x'e göre regresyonu, y için en olası değeri vermektedir. En küçük kareler yöntemi ile regresyon tekniği kullanılarak y'nin tahmini değerleri elde edilmektedir. Olasılık yoğunluk fonksiyonu olan f(x,y), bilinmiyor ise gözlenen X^i ve Y^i arasındaki ilişki kullanılarak tahmin yapılır ve regresyon

$$\hat{Y}(X) = \frac{\sum_{i=1}^{n} Y^{i} \exp\left(-\frac{(X - X^{i})^{T} (X - X^{i})}{2s^{2}}\right)}{\sum_{i=1}^{n} \exp\left(-\frac{(X - X^{i})^{T} (X - X^{i})}{2s^{2}}\right)}$$
(13)

şeklinde hesaplanır. Bağıntıda geçen ve belirlenmesi gereken *s*, düzeltme parametresini temsil etmektedir.

Tüm veri setindeki çıktılar her bir mod için borunun %10 dolu olmasın durumu göz önüne alınarak hesaplanan doğal frekanslardan oluşmakta olup 129 adet ω_1 , 129 adet ω_2 ve 129 adet ω_3 değerinden meydana gelmektedir. Toplamda 387 adet çıktı değerini elde etmekte kullanılan girdiler ise akışkan hızı *u*, öteleme direngenlik katsayıları k_1 , k_3 ve dönel direngenlik katsayıları k_2 , k_4 olmak üzere 5 adettir. Tüm verilerin %75'i eğitim veri seti, %25'i test veri setlerindeki değerler rastgele olarak seçilmiştir.

Çalışmada doğal frekansları tahmin etmek amacıyla farklı çıktı yapısına sahip toplam 4 adet model oluşturulmuştur. Bu modellerin girdi ve çıktı yapıları Tablo 1'de verilmiştir.

Tablo 1. GRYSA modeli girdi ve çıktı yapılarıTable 1. GRNN Model input and output structures

Model No	Girdi Değişkenleri	Çıktı Yapısı
Model 1	u, k ₁ ,k ₂ ,k ₃ ,k ₄	ω_1
Model 2	u , k ₁ , k ₂ , k ₃ , k ₄	ω_2
Model 3	u , k ₁ , k ₂ , k ₃ , k ₄	ω_3
Model 4	u, k ₁ ,k ₂ ,k ₃ ,k ₄	$\omega_1, \omega_2, \omega_3$

Yapısı gereği GRYSA'da sadece düzeltme parametresi *s*'nin belirlenmesi gerekmektedir. Çalışmada *s* parametresi deneme yanılma yöntemi ile değeri tüm modeller için 0,1 olarak belirlenmiştir.

Modellerin performansları belirlilik katsayısı (R^2) , hata karelerinin karekökü (RMSE) ve ortalama mutlak yüzde hata (MAPE) değerleri kullanılarak belirlenmiştir. Modelin performans ölçütü olarak kullanılan belirlilik katsayısı R^2

$$R^{2} = \left[\frac{\sum_{i=1}^{N} \left(\omega_{(g)}(t) - \overline{\omega}_{(g)}\right) \left(\omega_{(h)}(t) - \overline{\omega}_{(h)}\right)}{\sqrt{\sum_{i=1}^{N} \left(\omega_{(g)}(t) - \overline{\omega}_{(g)}\right)^{2} \left(\omega_{(h)}(t) - \overline{\omega}_{(h)}\right)^{2}}}\right]^{2}$$
(14)

şeklinde ifade edilmektedir. Ortalama hata karelerinin karekökü *RMSE*

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\omega_{(g)} - \omega_{(h)})^2}$$
(15)

bağıntısı ile hesaplanmaktadır. Ortalama mutlak yüzde hata *MAPE*

$$MAPE = \frac{100}{N} \sum_{i=1}^{N} \left| \frac{\omega_{(g)} - \omega_{(h)}}{\omega_{(g)}} \right|$$
(16)

şeklindedir. Burada ω (g), hesaplanan doğal frekans değerlerini, ω (h), tahmin edilen doğal frekans değerlerini, N, veri sayısını göstermektedir.

Bulgular ve değerlendirme Doğal frekans analizi sonuçları

Tablo 2'de görülen doğal frekans değerleri klasik mesnet koşulları altında elde edilmiştir. Sabit mesnet, ankastre mesnet sınır şartları ile oluşturulan boru modeline ilişkin direngenlik katsayıları tabloda görülmektedir.

Borunun içinden geçen boyutsuz akışkan hızı 0,20, 0,50 ve 0,80 alınarak yapılan araştırmada direngenlik katsayısı arttıkça doğal titreşim frekansı da artmaktadır. En büyük doğal frekans değerleri ankastre-ankastre mesnet koşulları altında elde edilmiştir.

Akışkan hızındaki artış ise doğal frekans değerlerinin düşmesine sebep olmaktadır. Bu nedenle aynı sınır koşulları dikkate alındığında akışkan hızının 0,80 olduğu durumda elde edilen sonuçlar en düşük değerlerden oluşmaktadır.

Yaygın olarak kullanılan klasik mesnet koşullarının yanı sıra klasik olmayan; elastik çöken, elastik dönen mesnet koşulları da, farklı direngenlik katsayıları tanımlanarak incelenmiştir. 10 farklı direngenlik katsayısı için işlemler tekrarlanmış ve doğal frekansta meydana gelen değişim değerlendirilmiştir. Öncelikli olarak k_1 ve k_2 'nin farklı değerler aldığı, diğer direngenlik katsayılarının 1,00 kabul edildiği koşul ele alınmıştır. Sonuçlar Tablo 3'de verilmiştir.

•			•				-	
Koşul	и	k_1	k_2	k_3	<i>k</i> 4	ω_1	ω2	W3
Sabit -sabit		∞	0	8	0	9,8499	39,4580	88,8059
Ankastre-ankastre	0,20	∞	∞	∞	∞	22,3629	61,6576	120,8866
Ankastre-sabit		∞	∞	∞	0	15,4038	49,9474	104,2291
Sabit -sabit		∞	0	8	0	9,7462	39,3509	88,6977
Ankastre-ankastre	0,50	∞	∞	∞	∞	22,3082	61,5778	120,7982
Ankastre-sabit		∞	∞	œ	0	15,3276	49,8555	104,1317
Sabit -sabit		∞	0	œ	0	9,3657	38,9656	88,3104
Ankastre-ankastre	0,80	∞	∞	œ	∞	22,1117	61,2914	120,4821
Ankastre-sabit		∞	x	œ	0	15,0522	49,5258	103,7827

Tablo 2. Klasik mesnet koşulları altında doğal titreşim frekansı değerleri (β =0,10) Table 2. The values of natural vibration frequencies under classical boundary conditions (β =0,10)

Tablo 3. Klasik olmayan mesnet koşulları altında doğal titreşim frekansı değerleri (β =0,10) Table 3. The values of natural vibration frequencies under non-classical boundary conditions (β =0,10)

и	k_1	W 1	ω2	ωз	k 2	ω1	ω2	ωз
	5,00	2,4014	25,0225	64,9667	5,00	5,3363	28,1961	69,1384
	10,00	1,8779	24,6743	64,8210	10,00	5,8249	29,4914	71,4258
	20,00	1,6272	24,0189	64,5347	20,00	6,1307	30,0375	73,3550
	30,00	1,5498	23,4231	64,2554	30,00	6,2446	30,8450	74,2022
0.20	40,00	1,5124	22,8892	63,9830	40,00	6,3040	31,0576	74,6770
•,_ •	50,00	1,4904	22,4159	63,7177	50,00	6,3406	31,1909	74,9803
	250,00	1,4219	19,0917	59,7736	250,00	6,4620	31,6495	76,0568
	500,00	1,4135	18,3968	57,2915	500,00	6,4777	31,7106	76,2039
	750,00	1,4107	18,1556	56,0193	750,00	6,4830	31,7311	76,2536
	1000,00	1,4056	18,0337	55,2711	1000,00	6,4856	31,7414	76,2785
	5,00	2,2736	24,8365	64,8071	5,00	5,1302	28,0381	68,9938
	10,00	1,5676	24,4856	64,6611	10,00	5,6349	29,3418	71,2881
	20,00	1,3557	23,8259	64,3742	20,00	5,9486	30,3083	73,2219
	30,00	1,2899	23,2273	64,0942	30,00	6,0650	30,7019	74,0709
0.50	40,00	1,2579	22,6920	63,8214	40,00	6,1257	30,9152	74,5465
0,30	50,00	1,2390	22,2185	63,5556	50,00	6,1630	31,0490	74,8504
	250,00	1,1799	18,9223	59,2732	250,00	6,2867	31,5092	75,9285
	500,00	1,1727	18,2384	57,1355	500,00	6,3027	31,5704	76,0757
	750,00	1,1703	18,0011	55,8687	750,00	6,3081	31,5910	76,1255
	1000,00	1,1691	17,8812	55,1241	1000,00	6,3108	31,6013	76,1505

u	k_1	ω1	ω2	W3	k 2	ω1	ω2	W3
	5,00	1,1771	24,4870	64,5097	5,00	4,7235	27,7422	68,7246
	10,00	0,8182	24,1310	64,3630	10,00	5,2638	29,0617	71,0317
	20,00	0,6433	23,4633	64,0749	20,00	5,5945	30,4531	72,9743
	30,00	0,5838	22,8594	63,7939	30,00	5,7163	30,4342	73,8265
0.80	40,00	0,5535	22,3215	63,5201	40,00	5,7796	30,6491	74,3037
0,80	50,00	0,5351	21,8477	63,2534	50,00	5,8185	30,7838	74,6085
	250,00	0,4745	18,6044	59,3080	250,00	5,9472	31,2468	75,6896
	500,00	0,4667	17,9409	56,8450	500,00	5,9638	31,3083	75,8372
	750,00	0,4641	17,7110	55,5881	750,00	5,9693	31,3291	75,8870
	1000,00	0,4627	17,5948	54,8502	1000,00	5,9721	31,3394	75,9121

Tablo 3. Devam Table 3. Continuation

Tablo 3'de verilen koşulların k_2 ve k_4 direngenlik katsayıları açısından değerlendirilmemesi sistemin simetrik olmasından kaynaklanmaktadır. Elde edilen sonuçlardan görüldüğü gibi rijitlik arttıkça, doğal frekans değerleri azalmaktadır. İkinci aşamada direngenlik katsayıları ikişerli gruplar halinde değiştirilerek sonuçlar değerlendirilmiştir. k_1 , k_3 direngenlik katsayısı 50,00, 1000,00 arasında değerler alırken diğer direngenlik katsayıları 1,00 olarak kabul edilmiştir.

Daha sonra k_2 , $k_4' e 50,00$ ile 1000,00 arasında değer verilerek elde edilen doğal frekans değerleri Tablo 4'de sunulmuştur.

Tablo 4. Klasik olmayan mesnet koşulları altında doğal titreşim frekansı değerleri (β =0.10) Table 4. The values of natural vibration frequencies under non-classical boundary conditions (β =0.10)

и	k 1, k 3	ω1	ω2	<i>W</i> 3	k2, k4	ω1	ω2	W 3
	50,00	18,7625	62,2812	122,9653	50,00	9,2557	37,9565	85,6223
	60,00	17,7867	61,7364	122,6630	60,00	9,3177	38,1811	86,0993
	70,00	16,9715	61,2022	122,3632	70,00	9,3627	38,3456	86,4513
	80,00	16,3005	60,6791	122,0658	80,00	9,3968	38,4712	86,7218
	90,00	15,7508	60,1674	121,7708	90,00	9,4235	38,5702	86,9361
0,20	100,00	15,2990	59,6677	121,4783	100,00	9,4451	38,6503	87,1101
	250,00	12,8958	53,6892	117,4013	250,00	9,5638	39,0971	88,0905
	500,00	12,1826	48,6169	111,9232	500,00	9,6043	39,2515	88,4334
	750,00	11,9591	46,3403	107,9023	750,00	9,6179	39,3036	88,5496
	1000,00	11,8501	45,1152	104,9751	1000,00	9,6247	39,3298	88,6081

Tablo 4.	Devam
Table 4.	Continuation

и	k_{1}, k_{3}	ω_1	W 2	W3	k_2, k_4	ω_1	ω2	W3
	50,00	18,5451	62,1159	122,8188	50,00	9,1487	37,8525	85,5184
	60,00	17,5746	61,5702	122,5162	60,00	9,2115	38,0778	85,9961
	70,00	16,7675	61,0351	122,2161	70,00	9,2569	38,2427	86,3487
	80,00	16,1057	60,5113	121,9185	80,00	9,2914	38,3687	86,6195
0.50	90,00	15,5650	59,9990	121,6232	90,00	9,3185	38,4680	86,8341
0,50	100,00	15,1217	59,4988	121,3305	100,00	9,3403	38,5483	87,0083
	250,00	12,7723	53,5241	117,2516	250,00	9,4603	38,9963	87,9899
	500,00	12,0756	48,4719	111,7749	500,00	9,5012	39,1511	88,3332
	750,00	11,8572	46,2086	107,7583	750,00	9,5150	39,2033	88,4495
	1000,00	11,7506	44,9913	104,8361	1000,00	9,5219	39,2295	88,5081
	50,00	18,1375	61,8078	122,5461	50,00	8,9470	37,6587	85,3253
	60,00	17,1780	61,2603	122,2431	60,00	9,0112	37,8852	85,8043
	70,00	16,3869	60,7237	121,9426	70,00	9,0576	38,0510	86,1577
	80,00	15,7427	60,1985	121,6444	80,00	9,0929	38,1777	86,4292
0.80	90,00	15,2194	59,6851	121,3488	90,00	9,1205	38,2775	86,6443
0,80	100,00	14,7920	59,1840	121,0557	100,00	9,1428	38,3583	86,8189
	250,00	12,5419	53,2168	116,9733	250,00	9,2653	38,8084	87,8028
	500,00	11,8754	48,2022	111,4991	500,00	9,3070	38,9639	88,1468
	750,00	11,6662	45,9637	107,4906	750,00	9,3211	39,0164	88,2634
	1000,00	11,5641	44,7609	104,5777	1000,00	9,3281	39,1764	88,3220

doğal frekans Hesaplanan değerleri incelendiğinde her üç mod için de akışkan hızı arttıkça frekans azalmaktadır. Direngenlik katsayıları artıkça ise rijitlik artmakta ve buna bağlı olarak frekans yine düşmektedir. Ancak direngenliğin 50,00 ve 1000,00 arasındaki değişimi dikkate alındığında 250,00'den sonra direngenlik katsayılarının frekans üzerindeki etkisinin azaldığı görülmektedir. Frekanslar arasındaki rölatif fark % 0,5 ile % 0,009 arasında değerler almakta özellikle 1. mod için yakınsama artmaktadır. Tablo 3'de doğal frekans değerleri arasında elde edilen en büyük fark $\approx \%30$ olarak,

akışkan hızının 0,80, direngenlik katsayısının 5 ile 10 olduğu koşullar altında hesaplanmıştır.

Direngenlik katsayılarının ikişerli olarak değiştirildiği şartlar değerlendirildiğinde ise en büyük fark direngenlik katsayısının 50,00 ve 60,00 değerlerini aldığı aralıkta, $\approx \%5$ olarak hesaplanmıştır. Bu koşullarda akışkan hızının değişiminin, doğal frekans değerleri arasında oluşan fark üzerindeki etkisi ihmal edilebilecek kadar azdır.

Bu da akışkan hızının, direngenlik katsayısının k < 50,00 olması durumunda, doğal titreşim

frekansı üzerinde etkisi olan önemli bir parametre olduğunu göstermektedir.

GRYSA Sonuçları

290 adet eğitim verisi kullanılarak GRYSA yöntemi ile oluşturulan tahmin fonksiyonunun belirlenen 4 model için performans değerleri Tablo 5'de verilmiştir.

Tablo 5. GRYSA eğitim aşaması sonuçları Table 5. GRNN training results

NC 11	YSA Eğitim Modeli				
Model	\mathbb{R}^2	RMSE	MAPE		
Model 1	1	0,000605428	0,02542662		
Model 2	1	0,00037066	0,00094226		
Model3	1	0,000325079	0,00035397		
Model 4 ω_1	1	0,000622539	0,02573317		
Model 4 ω_2	1	0,000366469	0,000968389		
Model 4 ω_3	1	0,000334978	0,000354454		

Tablo 5' de bulunan eğitim aşaması sonuçları incelendiğinde tüm modeller için eğitim veri sayısının yeterli büyüklükte olması nedeniyle yüksek R^2 ile düşük *RMSE* ve *MAPE* değerleri elde edilmiştir. Modellerin tahmin kabiliyetini gösteren değer ise test aşamasında elde edilen değerlerdir.

97 adet test verisi ile tahmin fonksiyonunun performansı değerlendirilmiş ve sonuçlar Tablo 6 ile verilmiştir.

Tablo 6'da verilen test aşaması sonuçlarında Model 1 ile tahmin edilen ω_I değerleri için R^2 'nin bire oldukça yakın, *RMSE* değerinin ise küçük olduğu görülmektedir. *MAPE* değeri diğer modellere göre büyük olsa da bu *MAPE* değeri %10,62 ortalama hata yapıldığını ifade etmektedir. Aynı durum 3 doğal frekans değerinin tek bir model ile tahmin edildiği Model 4 için de geçerlidir. Model 4' te ω_I için MAPE değeri %13,99 olarak elde edilmiştir. ω_2 ve ω_3 değerlerinin tahminleri Model 2, Model 3 ve Model 4 ile yapılmıştır. Tüm modellerde bire yakın R^2 ile düşük *RMSE* ve *MAPE* değerleri elde edilmiştir.

Tablo 6. GRYSA test aşaması sonuçları

Table 6. GRNN testing results

	YSA Eğitim Modeli					
Model	\mathbb{R}^2	RMSE	MAPE			
Model 1	0,997336	0,2942068	10,62085			
Model 2	0,999814	0,2253451	0,602711			
Model3	0,999911	0,2349525	0,241307			
Model 4 ω_1	0,997158	0,2774114	13,99024			
Model 4 ω_2	0,999737	0,2068457	0,581803			
Model 4 ω_3	0,999908	0,1989003	0,224142			

Şekil 3' te sırası ile tüm modellerin test aşamaları için saçılma diyagramları bulunmaktadır. Diyagramların performans değerleri ile uyumlu olduğu ve hesaplanan-tahmin edilen değer çiftlerinin 45° eğime sahip bir doğru üzerinde bulundukları görülmektedir.

Modelin güvenilirliğini kontrol etmek amacıyla Zhang vd. (2016) ile Blevins (1979) tarafından gerçekleştirilen çalışmalar kullanılmıştır. Karşılaştırmalı sonuçlar Tablo 7'de verilmiştir. Hata değerleri, iki kaynaktan alınan kontrol verileri ile yapılan karşılaştırmada çıkan en büyük fark dikkate alınarak hesaplanmıştır.

$$\% Hata = \left| \frac{\omega_{hesap} - \omega_{tah\min}}{\omega_{hesap}} \right| \times 100$$
(17)

Tablo 7. GRYSA modeli ile elde edilen doğal frekans değerleri ile kontrol verilerinin karşılaştırması Table 7. The comparison of the test data and the values of natural frequencies obtained by GRNN model

	$\beta = 0.10$ $k_1 = k_3 = \infty, k_2 = k_4 = 0$	$\boldsymbol{\omega}_{1}$	ω_2	W3
	Blevins (1976)	9,7438	39,3532	88,7014
0.50	Zhang ve diğ, (2016)	9,7347	39,3620	88,7146
0.30	GRYSA Modeli	9,7464	39,3512	88,6979
	Hata %	0,12	0,03	0,02
	Blevins (1976)	9,3563	38,9752	88,3250
1.00	Zhang ve diğ,(2016)	9,3207	39,0108	88,3806
1,00	GRYSA Modeli	9,3657	38,9656	88,3104
	Hata %	0,48	0,12	0,08

Tablo 7'de görüldüğü gibi karşılaştırılan doğal titreşim frekansları arasındaki fark, akışkan hızının artması ile artmaktadır. Bu çalışma kapsamında geliştirilen GRYSA modelleri Blevins (1979) tarafından yapılan çalışmaya daha yakın sonuç vermektedir. Hata değerleri için en büyük farklar dikkate alındığından u=1,00 için Zhang vd, (2016) çalışması ile GRYSA modelleri karşılaştırmasına ilişkin sonuçlar; 1. mod için % 0,48, 2. mod için % 0,12 ve 3. mod için % 0,08 olarak hesaplanmıştır.

Sonuç ve tartışma

Bu çalışmada akışkan taşıyan borunun doğal titreşim frekansının, direngenlik katsayısına bağlı GRYSA modelleri oluşturulmuştur. Akışkan-yapı etkileşimi ile Hamilton prensibi kullanılarak akışkan taşıyan borunun hareket denklemi elde edilmiştir. Boyutsuzlaştırılan diferansiyel denklemler analitik yöntemle çözümlenerek doğal titreşim frekansı değerleri hesaplanmıştır. Klasik ve klasik olmayan mesnet şartlarını temsil edecek şekilde 43 farklı kombinasyon, 3 farklı akışkan hızı dikkate alınarak analiz edilmis ve 387 veri elde edilmiştir. Rijitlik ve akışkan hızı arttıkça doğal titreşim frekansı değerlerinin azaldığı gözlenmiştir. Akışkan hızının 0,20 olması durumunda ankastre-ankastre mesnet şartları altında elde edilen frekans değerleri ilk üç mod için sırası ile 22,3629, 61,6576, 120,8866 olarak hesaplanmıştır. Bu değerler çalışma kapsamında elde edilen en büyük doğal frekans değerleridir. Mesnet koşulları ve doğal

titresim frekansı arasındaki iliski Genelleştirilmiş Regresyon Yapay Sinir Ağı (GRYSA) yöntemi ile MATLAB yazılımı kullanılarak olusturulan ileri beslemeli geriye yayınım metodu (İBGY) yardımıyla tanımlanmıştır. eğitim modeli ile 4 gerçekleştirilen çalışma sonuçlarında, hesaplanan ve tahmin edilen değerler arasındaki farkı ifade eden hata değeri % 0,02' ye kadar düşmektedir. Akışkan hızının 1,00 olması durumunda elde edilen en büyük hata % 0,48'dir. En büyük hatanın % 0,48 olarak belirlenmesi, GRYSA yönteminin farklı mesnet şartları altında doğal titreşim frekansı hesabında hız kazandıran alternatif bir vöntem olarak kullanılabileceğini göstermektedir.

Kaynaklar

- [1]Aldraihem, O. J. (2007). Analysis of the dynamic stability of collar-stiffened pipes conveying fluid, Journal of sound and vibration, 300(3-5), 453-465.
- [2] Al-Hilli, A. H. (2013). Free vibration characteristics of elastically supported pipe conveying fluid, Alnahrain Journal For Engineering Sciences, 16(1), 9-19.
- [3] Alp, M., & Cigizoglu, H. K. (2010). Farklı yapay sinir ağı metodları ile yağış-akış ilişkisinin modellenmesi, İTÜ Dergisi/d, 3(1).
- [4] Blevins, R. D, (1979). Formulas for natural frequency and mode shape.
- [5] Cigizoglu, H. K. & Kişi, Ö. (2005). Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data, Hydrology Research, 36(1), 49-64.
- [6] Dağlı, B. Y. & Sınır, B. G. (2015). Dynamics of transversely vibrating pipes under non-classical

boundary conditions, Universal Journal of Mechanical Engineering, 3(2), 27-33.

- [7] Dagli, B. Y. & Ergut, A. (2019). Dynamics of fluid conveying pipes using Rayleigh theory under nonclassical boundary conditions, European Journal of Mechanics-B/Fluids, 77, 125-134.
- [8] Han, S. M., Benaroya, H., & Wei, T. (1999). Dynamics of transversely vibrating beams using four engineering theories, Journal of Sound and vibration, 225(5), 935-988.
- [9] Liu, Z., Yin, Y., Wang, F., Zhao, Y., & Cai, L. (2013). Study on modified differential transform method for free vibration analysis of uniform Euler-Bernoulli beam, Structural Engineering and Mechanics, 48(5), 697-709.
- [10] Munson, B. R., Okiishi, T. H., Huebsch, W. W. & Rothmayer, A. P. (2013). Fluid mechanics, Singapore: Wiley.
- [11] Laursen, E. M. (1960). Scour at bridge crossings. Journal of the Hydraulics Division, 86(2), 39-54.
- [12] Paidoussis, M. P., & Issid, N. T. (1974). Dynamic stability of pipes conveying fluid, Journal of sound and vibration, 33(3), 267-294.

- [13] Samarasinghe, S. (2016). Neural networks for applied sciences and engineering: from fundamentals to complex pattern recognition, Auerbach publications
- [14] Tayfur, G. (2014). Soft computing in water resources engineering: Artificial neural networks, fuzzy logic and genetic algorithms, WIT Press,
- [15] Tayfur, G. (2017). Modern optimization methods in water resources planning, engineering and management, *Water Resources Management*, 31(10), 3205-3233,
- [16] Yi-Min, H., Yong-Shou, L., Bao-Hui, L., Yan-Jiang, L., & Zhu-Feng, Y. (2010). Natural frequency analysis of fluid conveying pipeline with different boundary conditions, Nuclear Engineering and Design, 240(3), 461-467.
- [17] Wiggert, D. C. & Tijsseling, A. S. (2001). Fluid transients and fluid-structure interaction in flexible liquid-filled piping, Applied Mechanics Reviews, 54(5), 455-481.
- [18] Zhang, T., Ouyang, H., Zhang, Y. O., & Lv, B. L. (2016). Nonlinear dynamics of straight fluidconveying pipes with general boundary conditions and additional springs and masses, Applied Mathematical Modelling, 40(17-18), 7880-7900.