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ABSTRACT 

Let 𝑋 and 𝐸 be Riesz algebras and 𝑝: 𝑋 → 𝐸+ be a monotone vector norm. Then the triple (𝑋, 𝑝, 𝐸) is called lattice 

normed Riesz algebra. In this paper, we prove a generalization of the extension of the Hahn-Banach theorem for 

operators on the lattice normed Riesz algebras, in which the extension of one-step of that is not similar to the other 

Hahn-Banach theorems. In addition, we give some applications and results.  

Keywords:  Hahn-Banach theorem, Lattice normed space Riesz algebra, Riesz apaces 

 

Kafes Normlu Riesz Cebirleri Üzerindeki Operatörler İçin Hahn-Banach Teoremi 

 
ÖZ 

𝑋 ve 𝐸 Riesz cebirleri ve 𝑝: 𝑋 → 𝐸+ monoton bir vektör normu olsun. Böylece (𝑋, 𝑝, 𝐸) üçlüsü kafes normlu Riesz 

cebiri olarak adlandırılır. Bu çalışmada, Hahn-Banach teoreminin kafes normlu Riesz cebirlerindeki operatörler için 

genişletilmesini vereceğiz. Fakat bu çalışmadaki genişleme diğer Hahn-Banach teoremlerinden farlı olmaktadır. 

Ayrıca bu genişlemenin bazı sonuçlarının olduğunu göstermeketeyiz. 

Anahtar Kelimeler: Hahn-Banach theoremi, Kafes normlu uzayı, Riesz cebiri, Riesz uzayı 

 

 

INTRODUCTION and PRELIMINARITIES  

 

The Hahn-Banach theorem has a lot of applications in 

different fields of analysis, which attracted the attention 

of several authors such as Vincent-Smith [11] and Turan 

[10]. In this present paper, we give an extension of the 

Hahn-Banach theorem on lattice normed Riesz algebras 

and some applications. The extension of one step in our 

theorem is not similar to the other Hahn-Banach 

theorems. 

Vector lattices (i.e., Riesz spaces) are ordered vector 

spaces that have many applications in measure theory, 

operator theory, and applications in economics. We 

suppose that the reader to be familiar with the 

elementary theory of vector lattices, and we refer the 

reader for information on vector lattices [1,8,12] as 

sources of unexplained terminology. Besides, all vector 

lattices are assumed to be real and Archimedean. A 

vector lattice 𝐸 is a lattice-ordered algebra (briefly, 𝑙-
algebra) if 𝐸 is an associative algebra whose positive 

cone 𝐸+ is closed under the algebra multiplication. A 

Riesz algebra 𝐸 is called 𝑓-algebra if 𝐸 has additional 

property that 𝑥 ∧ 𝑦 =  0 implies (𝑥 ∙ 𝑧) ∧ 𝑦 =  (𝑧 ∙
𝑥) ∧ 𝑦 =  0 for all 𝑧 ∈ 𝐸+. For an order complete 

vector lattice (i.e., Dedekind complete), the set 𝐿𝑏(𝐸) of 

all order bounded operators on 𝐸 and the set 𝐶(𝑋) of all 

real valued continuous function on a topological space 

𝑋 are examples of lattice-ordered algebra. However, 

𝐿𝑏(𝐸) is not 𝑓-algebra because it is Archimedean vector 

lattice, but not commutative because every 

Archimedean 𝑓-algebra is commutative; see for 

example Theorem 140.10 in [12]. Consider 𝑂𝑟𝑡ℎ(𝐸): =
{𝑇 ∈ 𝐿𝑏(𝐸) ∶  𝑥 ⊥ 𝑦 ⟹  𝑇𝑥 ⊥ 𝑦} the set of 

orthomorphisms on a vector lattice 𝐸. Then, space 

𝑂𝑟𝑡ℎ(𝐸) is not only vector lattice but also an 𝑓-algebra. 

On the other hand, a sublattice 𝐴 of an 𝑙-algebra 𝐸 is 

called 𝑙-subalgebra of 𝐸 whenever it is also an 𝑙-algebra 

under the multiplication operation in 𝐸. In this paper, 

we assume that if a positive element has an inverse then 

the inverse also positive. We refer the reader for much 

more information on Riesz algebras [1-3, 6, 9, 12]. In 

addition, for more details information on the following 

example, we refer the reader to [4]. 

Example 1. Let 𝐸 be a vector lattice. An order bounded 

band preserving operator 𝑇: 𝐷 → 𝐸 on an order dense 

ideal 𝐷 ⊆ 𝐸 is an extended orthomorphism. 𝑂𝑟𝑡ℎ∞(𝐸) 

denote the set of all extended orthomorphisms: denote 

by ℳ the collection of all pairs (𝐷, 𝜋 ), where 𝐷 is 

order dense ideal in 𝐸 and 𝜋 ∈ 𝑂𝑟𝑡ℎ(𝐷, 𝐸). Then space 

𝑂𝑟𝑡ℎ∞(𝐸) is an 𝑓-algebra. Moreover, 𝑂𝑟𝑡ℎ(𝐸) is an 𝑓-

subalgebra of 𝑂𝑟𝑡ℎ∞(𝐸). On the other hand, 𝐿(𝐸) 

stands for the order ideal generated by the identity 

operator 𝐼𝐸  in 𝑂𝑟𝑡ℎ(𝐸). Then 𝐿(𝐸) is an 𝑓-subalgebra 

of 𝑂𝑟𝑡ℎ(𝐸). 

Recall that a net (𝑥𝛼)𝛼∈𝐴 in a vector lattice 𝑋 is called 

order convergent (or shortly, 𝑜-convergent) to 𝑥 ∈ 𝑋, if 

there exists another net (𝑦𝛽)𝛽∈𝐵 satisfying 𝑦𝛽 ↓ 0  (i.e. 

𝑦𝛽 ↓ and inf(𝑦𝛽) = 0), and for any 𝛽 ∈ 𝐵 there exists 
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𝛼β ∈ 𝐴 such that |𝑥𝛼 − 𝑥| ≤ 𝑦𝛽  for every 𝛼 ≥ 𝛼β. In 

this case, we write 𝑥𝛼

𝑜
→ 𝑥. On the other hand, for a 

given positive element 𝑢 in a vector lattice 𝐸, a net 

(𝑥𝛼)𝛼∈𝐴 in 𝐸 is said to converge 𝑢-uniformly to the 

element 𝑥 ∈ 𝐸 whenever, for every 𝜀 > 0, there exists 

an index 𝛼0, such that |𝑥𝛼 − 𝑥| < 𝜀𝑢 for every 𝛼 ≥ 𝛼0. 

Moreover, 𝐸 is said to be 𝑢-uniformly complete if every 

𝑢-uniform Cauchy net has an 𝑢-uniform limit [8]. 

Let 𝑋 be a vector space, 𝐸 be a vector lattice, and 

𝑝: 𝑋 → 𝐸+ be a vector norm (i.e., 𝑝(𝑥)  =  0 ⟺  𝑥 =
 0; 𝑝(𝜔𝑥)  =  |𝜔|𝑝(𝑥) for all 𝜔 ∈ ℝ and every 𝑥 ∈ 𝑋; 

𝑝(𝑥 +  𝑦) ≤ 𝑝(𝑥) +  𝑝(𝑦) for all 𝑥, 𝑦 ∈ 𝑋) then the 

triple (𝑋, 𝑝, 𝐸) is called a lattice normed space, 

abbreviated as 𝐿𝑁𝑆. A subset 𝑌 of 𝑋 is called 𝑝-closed 

whenever every net (𝑦𝛼)𝛼∈𝐴 in 𝑌 with 𝑝(𝑦𝛼 − 𝑦)
𝑜
→ 0 

implies 𝑦 ∈ 𝑌.  Let (𝑋, 𝑝, 𝐸) and (𝑌, 𝑞, 𝐹) be two 𝐿𝑁𝑆s. 

Then an operator 𝑇 ∶ 𝑋 → 𝑌 is called dominated 

operator if there is a positive operator 𝑆 ∶ 𝐸 → 𝐹 such 

that 𝑞(𝑇 (𝑥)) ≤ 𝑆(𝑝(𝑥)) for all 𝑥 ∈ 𝑋. In this case, 𝑇 is 

called a dominated operator and 𝑆 is called dominant of 

𝑇. Take 𝑚𝑎𝑗(𝑇) as the set of all dominants of the 

operator 𝑇. If there is at least element in 𝑚𝑎𝑗(𝑇) then it 

is called the exact dominant of 𝑇 and denoted by [𝑇]; 
see for much more details information [4,7]. If 𝑋 is 

decomposable space and 𝐹 is order complete then exact 

dominant exists; see Theorem 4.1.2 in [7]. 

Definition 2. Consider an 𝐿𝑁𝑆 (𝑋, 𝑝, 𝐸). Assume 𝑋 and 

𝐸 are Riesz algebras, and the vector norm 𝑝 is 

monotone (i.e. 𝑥 ≤ 𝑦 implies 𝑝(𝑥) ≤ 𝑝(𝑦)) then the 

triple (𝑋, 𝑝, 𝐸) is said to be lattice normed Riesz algebra 

(or lattice normed 𝑙-algebra, for short) and abbreviated 

as 𝐿𝑁𝐹𝐴. 

 

Definition 3. Let (𝑋, 𝑝, 𝐸) be an 𝐿𝑁𝐹𝐴 and 𝑌 be an 𝑙-
subalgebra of 𝑋. If 𝑝(𝑥 ∙ 𝑦)  =  𝑦 ∙ 𝑝(𝑥) holds for all 

𝑦 ∈ 𝑌 and 𝑥 ∈ 𝑋 then 𝑝 is said to be 𝑙-subalgebra linear. 

In addition, we said that (𝑋, 𝑝, 𝐸) has the 𝑙-subalgebra 

linear property. 

Recall that an element 𝑥 in Riesz algebra is called 

nilpotent if 𝑥𝑛 =  0 for some 𝑛 ∈ ℕ. Moreover, an 

algebra 𝐸 is called semiprime if the only nilpotent 

element in 𝐸 is zero. 

 

Lemma 4. Let 𝐸 be a semiprime 𝑓-algebra. Then 𝑥 ≤ 𝑦 

and 𝑥 ≤ 𝑧 imply 𝑥2 ≤ 𝑦 ∙ 𝑧 for all 𝑥, 𝑦, 𝑧 ∈ 𝐸+. 

 

Proof: Suppose 𝑥, 𝑦, 𝑧 are positive elements in 𝐸 such 

that 𝑥 ≤ 𝑦 and 𝑥 ≤ 𝑧. It follows from Theorem 3.2.(ii) 

in [8] that 𝑥2 ≤ 𝑦 ∙ 𝑧. 

 

Example 5. Let 𝐸 be a vector lattice such that 𝑥2 = 𝑥  

for all 𝑥 ∈ 𝐸+ and 𝑝: 𝐿(𝐸) → 𝑂𝑟𝑡ℎ(𝐸) be a map 

denoted by 𝑇 → 𝑝(𝑇) such that 𝑃(𝑇)(𝑥): = |𝑇(𝑥)| for 

each 𝑥 ∈ 𝐸. Then one can see that 𝑝 is vector norm and 

(𝐿(𝐸), 𝑝, 𝑂𝑟𝑡ℎ(𝐸)) is an 𝐿𝑁𝑆. Moreover, since 𝐿(𝐸) 

and 𝑂𝑟𝑡ℎ(𝐸) are 𝑓-algebras and |∙| is monotone, and so, 

(𝐿(𝐸), 𝑝, 𝑂𝑟𝑡ℎ(𝐸)) is an 𝐿𝑁𝐹𝐴. Take arbitrary 𝑇, 𝑆 ∈

 𝐿(𝐸). Then there exist some positive scalars 𝜆𝑇 and  𝜆𝑆 

such that |𝑇| ≤ 𝜆𝑇𝐼 and |𝑆| ≤ 𝜆𝑆𝐼 because 𝐿(𝐸) is an 

order ideal generated by the identity operator 𝐼𝐸 . So, by 

using the fact [1, p.12], we have  

 

𝑝(𝑆(𝑇 ))(𝑥) = |𝑆(𝑇𝑥)| ≤ |𝑆|(|𝑇𝑥|) ≤  𝜆𝑆𝐼(|𝑇𝑥|)
≤ 𝜆𝑆|𝑇𝑥| 

 

for each 𝑥 ∈ 𝐸, and similarly, we have 

 

𝑝(𝑆(𝑇 ))(𝑥) = |𝑆(𝑇𝑥)| ≤ |𝑆|(|𝑇𝑥|) ≤ |𝑆|(|𝑇|(|𝑥|))
= |𝑆|(𝜆𝑇𝐼)(|𝑥|) ≤ 𝜆𝑇|𝑆|(|𝑥|) 

  

for all 𝑥 ∈ 𝐸. Hence, it follows from Lemma 4. and 

assumption that 𝑝(𝑆(𝑇))(𝑥) = [𝑝(𝑆(𝑇))(𝑥)]2 ≤

𝜆𝑆𝜆𝑇|𝑆|(|𝑥|) ∙ |𝑇𝑥| = 𝜆𝑆𝜆𝑇|𝑆|(𝑥) ∙ 𝑝(𝑇)(𝑥) holds 

because 𝑂𝑟𝑡ℎ(𝐸) is a semiprime; see Theorem 142.5 in 

[12]. Next, consider a new 𝐿𝑁𝐹𝐴 (𝐿(𝐸)+, 𝑞, 𝑂𝑟𝑡ℎ(𝐸)), 

where 𝑞(𝑇 ) =
1

𝜆𝑇
𝑝(𝑇) for all 𝑇 ∈ 𝐿(𝐸)+. Then it 

follows from the above observation that the 𝐿𝑁𝐹𝐴 

space (𝐿(𝐸)+, 𝑞, 𝑂𝑟𝑡ℎ(𝐸)) has the 𝑓-subalgebra linear 

property.      

For the following example, we consider Theorem 2.62 

in [1]. 

 

Example 6. Let 𝐸 be an 𝑙-algebra. Then we define a 

map 𝑝 from 𝐸 to 𝑂𝑟𝑡ℎ(𝐸) by 𝑢 → 𝑝(𝑢) = 𝑝𝑢 such that 

𝑝𝑢(𝑥) = |𝑥 ∙ 𝑢|  for each 𝑥 ∈ 𝐸. So, by using the 

inequality in [6, p.1], it is easy to see that 𝑝 is a vector 

norm and (𝐸, 𝑝, 𝑂𝑟𝑡ℎ(𝐸)) is an 𝐿𝑁𝐹𝐴 with the 𝑙-
subalgebra linear property. 

In this paper, unless otherwise, all lattice normed Riesz 

algebras are assumed to be with the 𝑙-subalgebra linear 

property. 

 

BASIC RESULTS 

 

We begin the section with the following de notion. 

 

Definition 7. Let (𝑋, 𝑝, 𝐸) be an 𝐿𝑁𝑆. Then an operator 

𝑇: 𝑋 → 𝐸 is said to be 𝐸-dominated if it is dominated by 

𝑝 on 𝐸. It means that 

 

|𝑇𝑥| ≤ 𝑝(𝑥) 

 

for all 𝑥 ∈ 𝑋. 

 

It can be seen that every dominated operator on 𝐿𝑁𝑆s is 

𝐸-dominated because the identity operator is dominant 

of it. 

 

Lemma 8. Let 𝑋 be an 𝑓-algebra and 𝑌 be an 𝑙-
subalgebra of 𝑋. Then, for any 𝑤 ∈ 𝑋+, the set 𝐴 =
{𝑢 + 𝑣 ∙ 𝑤𝑛: 𝑢, 𝑣 ∈ 𝑌 𝑎𝑛𝑑 𝑢 ⊥ 𝑣 𝑎𝑛𝑑 𝑛 ∈ ℕ}  is an 𝑓-

subalgebra of 𝑋. 

 

Proof: Firstly, we show that 𝐴 is a sublattice of 𝑋. Take 

an arbitrary 𝑢 + 𝑣 ∙ 𝑤𝑛 ∈ 𝐴. Then we have 𝑢 ⊥ 𝑣, and 
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so, 𝑢 ⊥ 𝑣 ∙ 𝑤𝑛 for all 𝑛 ∈ ℕ because of 𝑤𝑛 ≥ 0 for each 

𝑛 ∈ ℕ and 𝑋 is 𝑓-algebra. Then, by applying Exercise 

2.(𝑏) p.21 in [1], we have |𝑢 + 𝑣 ∙ 𝑤𝑛| =  |𝑢| + |𝑣| ∙
𝑤𝑛 ∈ 𝐴 because of |𝑢|, |𝑣| ∈ 𝑌 and |𝑢| ⊥ |𝑣|. Then we 

get the desired result. 

Next, we show that A is an 𝑓-subalgebra of 𝑋. For any 

positive elements 𝑢1 + 𝑣1 ∙ 𝑤𝑛, 𝑢2 + 𝑣2 ∙ 𝑤𝑚 ∈ 𝐴+, we 

have 

 

(𝑢1 + 𝑣1 ∙ 𝑤𝑛) ∙ (𝑢2 + 𝑣2 ∙ 𝑤𝑚)  =  𝑢1 ∙ 𝑢2 + 𝑢1 ∙  𝑣2 ∙
𝑤𝑚 +  𝑣1 ∙  𝑢2 ∙ 𝑤𝑛 + 𝑣1 ∙ 𝑣2 ∙ 𝑤𝑚+𝑛  ∈ 𝐴+. 

 

Thus, 𝐴 is an 𝑙-algebra. On the other hand, assume 
(𝑢1 + 𝑣1 ∙ 𝑤𝑛) ∧ (𝑢2 + 𝑣2 ∙ 𝑤𝑚) = 0 for arbitrary 

𝑢1 + 𝑣1 ∙ 𝑤𝑛 , 𝑢2 + 𝑣2 ∙ 𝑤𝑚 ∈ 𝐴. Then we have [(𝑢 +
𝑣 ∙ 𝑤𝑘) (𝑢1 + 𝑣1 ∙ 𝑤𝑛)] ∧ (𝑢2 + 𝑣2 ∙ 𝑤𝑚)  =  0 for all 

𝑢 + 𝑣 ∙ 𝑤𝑘 ∈ 𝐴+ because of 𝐴+ ⊆ 𝑋+ and 𝑋 is 𝑓-

algebra. Therefore, we obtain that A is a 𝑓-subalgebra 

of 𝑋. 

  

Proposition 9. Let 𝑋 be an 𝑓-algebra and 𝑌 be an 𝑢-

uniformly complete 𝑙-subalgebra of 𝑋. Then, for any 

𝑤 ∈ 𝑋+, the set 𝐴 = {𝑢 + 𝑣 ∙ 𝑤𝑛: 𝑢, 𝑣 ∈ 𝑌 𝑎𝑛𝑑 𝑢 ⊥
𝑣 and 𝑛 ∈ ℕ}  is also an 𝑢-uniformly complete 𝑓-

subalgebra of 𝑋. 

 

Proof: Suppose 𝑌 is 𝑢-uniformly complete 𝑙-subalgebra 

of 𝑋. Then, by applying Lemma 8., we see that 𝐴 is 𝑓-

subalgebra of 𝑋. On the other hand, WLOG, take an 𝑢-

uniform Cauchy net (𝑥𝛼)𝛼∈𝐴 in 𝐴+ with disjoint each 

other nets (𝑦𝛼)𝛼∈𝐴 and (𝑧𝛼)𝛼∈𝐴 such that 𝑥𝛼 = 𝑦𝛼 +
𝑧𝛼 ∙ 𝑤𝑛 with 𝑦𝛼 ⊥ 𝑧𝛽 for all 𝛼, 𝛽 ∈ 𝐴.  Thus, there exists 

𝑢 ∈ 𝐸+ such that, for every 𝜀 > 0,  there exists an index 

𝛼0, such that |𝑥𝛼 − 𝑥𝛼0
| < 𝜀𝑢 for all 𝛼 ≥ 𝛼0. Then, by 

using the following the equality 

 
|𝑥𝛼 − 𝑥𝛼′| = |(𝑦𝛼 + 𝑧𝛼 ∙ 𝑤𝑛) − (𝑦𝛼′ + 𝑧𝛼′ ∙ 𝑤𝑛)| =

|𝑦𝛼 − 𝑦𝛼′| + |𝑧𝛼 − 𝑧𝛼′| ∙ 𝑤𝑛, 
 

one can obtain that (𝑦𝛼)𝛼∈𝐴 and (𝑧𝛼)𝛼∈𝐴 are 𝑢-uniform 

Cauchy nets in 𝑌. So, there exist 𝑦, 𝑧 ∈ 𝑌 such that 

𝑦𝛼

𝑢
→ 𝑦 and 𝑧𝛼

𝑢
→ 𝑧 because Y is 𝑢-uniformly complete. 

Therefore, we get 𝑥𝛼 = 𝑦𝛼 + 𝑧𝛼 ∙ 𝑤𝑛
𝑢
→ 𝑦 + 𝑧 ∙ 𝑤𝑛. As a 

result, 𝐴 is also 𝑢-uniformly complete. 

Now, by considering some results in [10], we give the 

main result of this paper. 

 

Theorem 10. Let (𝑋, 𝑝, 𝐸) be an 𝐿𝑁𝐹𝐴 with 𝑋 being 𝑓-

subalgebra of order complete 𝑓-algebra 𝐸, and 𝐺 be an 

unital 𝑓-subalgebra of 𝑋. If 𝑇: 𝐺 → 𝐸 is an 𝐸-dominated 

operator and 𝐺 is 𝑒-uniform complete then there exists 

another 𝐸-dominated operator �̂�: 𝑋 → 𝐸 such that 

�̂�(𝑔) = 𝑇(𝑔) for all 𝑔 ∈ 𝐺. 

 

Proof: First of all, if we take 𝑇 =  0 or X = G then the 

poof is obvious.  

Suppose, 𝐺 is a proper subspace of 𝑋 and 𝑇 ≠ 0. So, 

there is a vector 𝑤 in 𝑋 so that it is not in 𝐺. WLOG, we 

assume 𝑤 ∈ 𝑋+ . Then we consider the set 𝐺1: = {𝑢 +
𝑣 ∙ 𝑤𝑛: 𝑢, 𝑣 ∈ 𝐺 𝑎𝑛𝑑 𝑢 ⊥ 𝑣 𝑎𝑛𝑑 𝑛 ∈ ℕ} which is like 

Proposition 9. Thus, by Lemma 4., we get that 𝐺1 is also 

an 𝑓-subalgebra of 𝑋. Also, by using this extension, we 

can arrive at 𝑋 because 𝐺 is 𝑓-subalgebra with the 

multiplicative unit. 

The extension of one step is not similar to the other 

Hahn-Banach theorems. It can be observed that 𝑣 ∙ 𝑤𝑛 

can be in 𝐺 for some 𝑣 ∈ 𝐺. Thus, we have that the 

representation 𝐺1 may not be unique. So, it causes 

difficulties getting an extension of one step. Whenever 

it is done, by using Zorn’s lemma and applying 

Proposition 9., we can get the extension of 𝑇 to 𝑋. 

Now, consider elements 𝑢, 𝑣 ∈ 𝐺. Since 𝑇 is an 𝐸-

dominated operator. Then, for every 𝑛, we have 

 

𝑇(𝑢) + 𝑇(𝑣) = 𝑇(𝑢 + 𝑣) ≤ 𝑝(𝑢 − 𝑤𝑛 + 𝑤𝑛 + 𝑣)
≤ 𝑝(𝑢 − 𝑤𝑛) + 𝑝(𝑤𝑛 + 𝑣) 

 

Hence, we get 𝑇(𝑢) − 𝑝(𝑢 − 𝑤𝑛) ≤ 𝑝(𝑤𝑛 + 𝑣) −
𝑇(𝑣). From there, by applying order completeness of 𝐸, 

both 

 

𝑠 = 𝑠𝑢𝑝{𝑇(𝑢) − 𝑝(𝑢 − 𝑤𝑛): 𝑢 ∈ 𝐺} 

and 

𝑟 = 𝑖𝑛𝑓{𝑝(𝑤𝑛 + 𝑣) − 𝑇(𝑣): 𝑣 ∈ 𝐺} 

 

exist in 𝐸 for each 𝑛. So, it is also clear 𝑠 ≤ 𝑟. Now, we 

define a map 

 

                 �̂�: 𝐺1 → 𝐸 

(𝑢 + 𝑣 ∙ 𝑤𝑛) → �̂�(𝑢 + 𝑣 ∙ 𝑤𝑛) = 𝑇 (𝑢)  +  𝑣 ∙ 𝑧𝑛, 

       

where we take the element 𝑧 ∈ 𝐸 such that 𝑠 ≤ 𝑧𝑛 ≤ 𝑟  

for each 𝑛. We need to show that 𝑇 is a well-defined 

operator. To prove that, we first prove the 𝐸-

dominatedness of �̂�. Let’s apply the 𝑒-uniformly 

completeness of 𝐺. Then we have that (𝑣 + 𝑒)−1 exits 

for any positive element 𝑣 ∈ 𝐺+; see Theorem 146.3 in 

[12] and Theorem 11.1 in [9], and also, the inverse 

element (𝑣 +
1

𝑘
𝑒)−1 exists in 𝐺+ for all 𝑘 ∈ ℕ+. Then, 

for each 𝑢 ∈ 𝐺+  and 𝑘, 𝑛 ∈ ℕ+, we have  

 

𝑧𝑛 ≤ 𝑟 ≤ 𝑝 (𝑢 ∙ (𝑣 +
1

𝑘
𝑒)−1 + 𝑤𝑛)

− 𝑇 (𝑢 ∙ (𝑣 +
1

𝑘
𝑒)−1) 

 

and so, by using the 𝑓-subalgebra linear property of 𝑝, 

we get     

 

𝑇(𝑢) + (𝑣 +
1

𝑘
𝑒) ∙ 𝑧𝑛 ≤ 𝑝 (𝑢 + 𝑤𝑛 ∙ (𝑣 +

1

𝑘
𝑒)) ≤

𝑝(𝑢 + 𝑤𝑛 ∙ 𝑣) +
1

𝑘
𝑝(𝑤𝑛). 

 

Thus, we have �̂�(𝑢 + 𝑣 ∙ 𝑤𝑛) = 𝑇(𝑢) + 𝑣 ∙ 𝑧𝑛 ≤
𝑝(𝑢 + 𝑤𝑛 ∙ 𝑣) for any 𝑢, 𝑣 ∈ 𝐺+ because 𝐹 is an 

Archimedean vector lattice. Thus, we get the 𝐸-
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dominatedness of �̂� for arbitrary 𝑢, 𝑣 ∈ 𝐺+. Now, we 

show that for arbitrary 𝑣 ∈ 𝐺. We can write = 𝑣+ − 𝑣−. 

By using the first observation, we can write 

 

�̂�(𝑢 + 𝑣+ ∙ 𝑤𝑛) = 𝑇(𝑢) + 𝑣+ ∙ 𝑧𝑛 ≤ 𝑝(𝑢 + 𝑤𝑛 ∙ 𝑣+)(1) 

 

For the band 𝐵𝑣+  generated by 𝑣+, we consider the band 

projection 𝑞: 𝐺 → 𝐵𝑣+. Then 𝑞 holds 𝑞(𝑣) = 𝑣+ and 

𝑞 = 𝑞2, and it is a positive orthomorphism on 𝐺 because 

every order projection is a positive orthomorphism on 

vector lattices. By using Theorem 141.1 in [12], we can 

choose a positive element 𝑡 ∈ 𝐺+ such that 𝑞(𝑥) = 𝑥 ∙ 𝑡 

for all 𝑥 ∈ 𝐺. Thus, we have a positive vector 𝑡 ∈ 𝐺+ so 

that 𝑣+ = 𝑞(𝑣) = 𝑣 ∙ 𝑡, and 𝑡 = 𝑒 ∙ 𝑡 = 𝑞(𝑒) =
𝑞(𝑞(𝑒)) = 𝑡2, and 𝑣+ = 𝑞(𝑣+) = 𝑣+ ∙ 𝑡, and 0 =
𝑞(𝑣−) = 𝑣− ∙ 𝑡. Also, the equality 𝑣+ = 𝑞(𝑣) = 𝑣 ∙
𝑡 implies 𝑣− + 𝑣 = 𝑣+ = 𝑣 ∙ 𝑡, and so, we vet 𝑣− = 𝑣 ∙
(𝑡 − 𝑒). Thus, we obtain the following both equalities 

  

𝑡 ∙ (𝑣+ ∙ 𝑧𝑛) = (𝑡 ∙ 𝑣+) ∙ 𝑧𝑛 = 𝑣+ ∙ 𝑧𝑛 (2) 

and       

𝑡 ∙ (𝑣+ ∙ 𝑤𝑛) = 𝑡 ∙ 𝑣+ ∙ 𝑤𝑛 = 𝑡 ∙ (𝑣 ∙ 𝑡) ∙ 𝑤𝑛 

= 𝑡2 ∙ 𝑣 ∙ 𝑤𝑛 =  𝑡 ∙ 𝑣 ∙ 𝑣+ ∙ 𝑤𝑛  (3) 
 

It follows from (1), (2) and (3) and the 𝑓-subalgebra 

linear property of 𝑝 that we get  

 

𝑡 ∙ (𝑇(𝑢) + 𝑣+ ∙ 𝑧𝑛) ≤ 𝑡 ∙ 𝑝(𝑢 + 𝑣+ ∙ 𝑤𝑛) = 𝑝(𝑡 ∙ 𝑢 +
𝑡 ∙ 𝑣+ ∙ 𝑤𝑛) = 𝑡 ∙ 𝑝(𝑢 + 𝑣 ∙ 𝑤𝑛)  (4) 

 

As one repeat the same way and use 𝑟 ≤ 𝑧𝑛, it can be 

seen the following inequality  

       

(𝑒 − 𝑡) ∙ (𝑇(𝑢) − 𝑣− ∙ 𝑧𝑛) ≤ (𝑒 − 𝑡) ∙ 𝑝(𝑢 + 𝑣 ∙ 𝑤𝑛)(5) 

 

Therefore, by summing up the inequalities (4) and (5), 

we can get the following result  

   

 𝑇(𝑢) + 𝑣 ∙ 𝑧𝑛 ≤ 𝑝(𝑢 + 𝑣 ∙ 𝑤𝑛)      (6) 

 

for arbitrary 𝑣 ∈ 𝐺 and 𝑢 ∈ 𝐺+. Lastly, one can also 

show that for arbitrary element 𝑢 ∈ 𝐺. Therefore, we get 

that 𝑇 is 𝐸-dominated. Now, we show well defined of 𝑇. 

Let’s take arbitrary elements 𝑢1, 𝑢2, 𝑣1, 𝑣2 ∈ 𝐺 such that 

𝑢1 + 𝑣1 ∙ 𝑤𝑛 = 𝑢2 + 𝑣2 ∙ 𝑤𝑛. It follows from (6) that  

 

𝑇(𝑢1 − 𝑢2) + (𝑣1 − 𝑣2) ∙ 𝑧𝑛 ≤ 𝑝((𝑢1 − 𝑢2) +
(𝑣1 − 𝑣2) ∙ 𝑤𝑛) = 𝑝(0) = 0 and 𝑇(𝑢2 − 𝑢1) +
(𝑣2 − 𝑣1) ∙ 𝑧𝑛 ≤ 𝑝((𝑢2 − 𝑢1) + (𝑣2 − 𝑣1) ∙ 𝑤𝑛) =
𝑝(0) = 0. As a result, we get �̂�(𝑢1 + 𝑣1 ∙ 𝑤𝑛) =
�̂�(𝑢2 + 𝑣2 ∙ 𝑤𝑛).  

Therefore, we have obtained that the map �̂� is well 

defined. On the other hand, by using the linearity of �̂�, 

one can show that �̂� is a linear map (or, operator) from 

𝐺1 to 𝐹 . Expressly, �̂� is 𝐸-dominated operator by 𝑓-

subalgebra linear map 𝑝. By applying Zorn’s lemma 

under the desired conditions, we provide the extension 

of �̂� to all of 𝑋. 

Under the condition of Theorem 1, we have the 

following results. 

Corollary 11. If (𝑋, 𝑝, 𝐸) is a decomposable 𝐿𝑁𝐹𝐴 then 

we have [𝑇] = [�̂�]. 
 

Proof: Since 𝑇 is 𝐸-dominated operator, it is dominated. 

Indeed, Since |𝑇 (𝑔)| ≤  𝑝(𝑔), we have 𝑝(𝑇(𝑔)) ≤
𝑝(𝑝(𝑔)) (for example we can take a dominant S = p). It 

follows from Theorem 4.1.2. in [7] that 𝑇 has the exact 

dominant [T]. Now, consider the 𝑓-subalgebra 𝐺1 of 𝑋 

in the proof of Theorem 1. For 𝑣 = 0 the addition unit 

and 𝑢 ∈ 𝐺, we have 

 

�̂�(𝑢) = 𝑇(𝑢) ≤ |𝑇(𝑢)| ≤ 𝑆(𝑝(𝑢)) 

and also 

−�̂�(𝑢) = −𝑇(𝑢) ≤ |𝑇(𝑢)| ≤ 𝑆(𝑝(𝑢)): 

 

Therefore, we get |�̂�(𝑢)| ≤ 𝑆(𝑝(𝑢)) for each 𝑢 ∈ 𝐺. 

Hence, �̂� is also dominated by 𝑆, and so, we get 

[�̂�] ≤ [𝑇]. On the other hand, by considering the 

𝑚𝑎𝑗(𝑇) and 𝑚𝑎𝑗(�̂�), we have [𝑇] ≤ [�̂�]. As a result, 

we get the desired result. 

  

For the next result, we consider the 𝑓-algebraic spaces 

𝐿(𝐸) ⊆ 𝑂𝑟𝑡ℎ(𝐸) ⊆ 𝑂𝑟𝑡ℎ∞(𝐸) in Example 1. 

 

Corollary 2.7. Let 𝐸 be an order complete vector 

lattice. (𝑂𝑟𝑡ℎ(𝐸), | ∙ |, 𝑂𝑟𝑡ℎ∞(𝐸)) is an 𝐿𝑁𝐹𝐴. 

Moreover, If 𝑇: 𝐿(𝐸) → 𝑂𝑟𝑡ℎ∞(𝐸) an 𝐸-dominated 

operator then it has an extension to 𝑂𝑟𝑡ℎ(𝐸). 
 

Proof: Since 𝐸 is order complete vector lattice, 

𝑂𝑟𝑡ℎ∞(𝐸) is order complete 𝑓-algebra; see [4, p.14]. 

Moreover, one can say that  (𝑂𝑟𝑡ℎ(𝐸), | ∙ |, 𝑂𝑟𝑡ℎ∞(𝐸)) 

is an 𝐿𝑁𝐹𝐴 because 𝑂𝑟𝑡ℎ(𝐸) is 𝑓-subalgebra of 

𝑂𝑟𝑡ℎ∞(𝐸) and | ∙ | has the 𝑙-subalgebra linear property. 

By applying Theorem 3.1 in [5], we can see that 𝐿(𝐸) is 

order complete because 𝐸 is order complete. Moreover, 

by using Theorem 42.6 in [8], we also get that 𝐿(𝐸) is 

𝑒-uniform complete because 𝐿(𝐸) has unit 𝐼𝐸 . Then, we 

have an 𝐸-dominated extension of 𝑇 to 𝑂𝑟𝑡ℎ(𝐸). 
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