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Abstract

Multi-layer boundary value problems have received a great deal of attention in the past few years. This is
due to the fact that they model many engineering applications. Examples of applications include �uid �ow
though multi-layer porous media such as ground water and oil reservoirs. In this work, we present a new
method for solving multi-layer boundary value problems. The method is based on an e�cient adaption of the
classical shooting method, where a boundary value problem is solved by means of solving a sequence of initial
value problems. We propose, an alternating forward-backward shooting strategy that reduces computational
cost. Illustration of the method is presented on application to �uid �ow through multi-layer porous media.
The examples presented suggested that the method is reliable and accurate.
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1. Introduction

Multi-layer boundary value problems (MLBVPs) have received a great deal of attention in the past
few years. Many engineering problems are modelled by multi-layer boundary problems, where the system
is described by a di�erent di�erential equation on di�erent subsets of the physical domain. For example,
MLBVPs are used as mathematical models for underground �uid �ow through porous channels with di�erent
characteristics. It is well known that the classical shooting method [1] is one of the most powerful methods
used to solve single boundary value problems.
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The classical shooting method is based on successively solving a sequence of initial value problems (IVPs)
whose initial conditions are iteratively updated. The iterations continuously change (update) the assumed
initial conditions until the solution of the initial-value problem satis�es the boundary conditions. Many
modi�cations to the classical shooting method either to improve the rate of convergence or to �t a certain
class of boundary value problems have been made. Examples of these modi�cations include the modi�ed
simple shooting method [2], the multiple shooting method [3, 4], and the parallel shooting method [5]. All
of these modi�cations deal with using the shooting method to solve a single boundary value problem over a
�nite domain. In this work, we consider an adaptation of the shooting method to solve multi-layer boundary
value problems, which we refer to as multi-layer parallel shooting method (MLPSM). The advantage of this
method is that it is suitable for parallel computing implementation. This kind of problem has been considered
in [16], for a two layer problem, and in [17] for a multi-layer setting, both using a �nite-di�erence approach.

As an application of the suggested multilayer parallel shooting method, we will investigate the �uid
mechanics of multi-layer �ows through porous media. The problem of the two layers �ows was investigated
by several authors [10]-[13]. In [10], the authors considered the interface region between two di�erent porous
media. They employed a special formulation of the shooting method to study the characteristics of the �uid
�ow. In [11], a �nite di�erence approach was employed for the two channel problem. The multi-channel
case was treated in [16, 17] using �nite di�erences. In the present work, we extend the earlier works and
formulate a multi-layer parallel shooting method for the solution of the multi-layer case using an alternating
forward-backward shooting strategy that reduces the computational cost.

The paper is organised as follows. In section 2, the mathematical formulation of the problem is presented.
The proposed method is presented in section 3. In section 4, application of the �uid �ow through multi-layer
porous media is presented. Concluded remarks are given in section 5.

2. Mathematical Formulation of the Problem

We consider a second order multi-layer boundary value problem consisting of the following set of second
order boundary value problems

y′′ = fi(x, y, y
′), xi−1 ≤ x ≤ xi, i = 1, ..., n, (1)

with outer boundary conditions
y(x0) = α, y(xn) = β, (2)

and interior boundary conditions at the interface nodes

y(x−i ) = y(x+i ) and y′(x−i ) = y′(x+i ). (3)

The functions fi, i = 1, ..., n, are assumed to be C2. The interior nodes xi, i = 1, . . . , n − 1, divide the
overall domain [x0, xn], not necessarily uniformly, into subdomains [xi−1, xi], as shown in Fig. 1. The set
of interior boundary conditions, equation (3), are imposed such that the overall solution y(x) de�ned over
the whole domain [x0, xn], is smooth across the nodes xi. This requirement is important in many physical
problems such as in �uid �ow in multi-layer porous channels [11, 12].

Figure 1: Domain subdivision

It is important to mention that the interior boundary conditions (3) make the problem more restrictive
in the sense that the di�erent solutions in neighbouring subdomains must agree smoothly at the nodes xi.
Therefore, it is important that any numerical scheme should produce a numerical solution satisfying (3) as
accurate as possible. As mentioned earlier, �nite di�erence methods can be, and in fact has been used [17],
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to solve equation (1) subject to (2) and (3). However, the accuracy in satisfying (3) dependents on the mesh
size, whether it is a uniform mesh size across [x0, xn] or di�erent mesh sizes hi for each subdomain [xi−1, xi],
as was done in [17].

This limitation of �nite di�erences method and the good performance of the classical shooting method
prompt us to consider an adaptation of the classical shooting method to solve equations (1) subject to (2)
and (3). The next section describes the proposed method. It is well-known that the shooting method is
an accurate method for solving boundary value problems via solving a sequence of initial value problems.
The classical shooting mechanism is performed in a forward way as shown in Fig. 2. Using, this classical
mechanism for problem (1) subject to (2) and (3) requires the introduction of 2n − 1 parameters (1 at x0
and 2 at each xi, i = 1, 2, . . . , n− 1). However, as we will see in the section the proposed strategy requires
the introduction of n parameters, which reduces the computational complexity by half.

Figure 2: Forward shooting strategy.

3. The Proposed Method

The proposed method to solve problem (1)�(3) consists of a multi-layer shooting method which can be
performed in parallel. The shooting strategy we propose is in a forward-backward alternating fashion as
illustrated in Fig. 3. The derivations are the same for both n even and odd with a slight modi�cation in the
Jacobian matrix. We, therefore, consider in detail the case n even.

Figure 3: Proposed shooting strategy; top for n even and bottom for n odd.

According to the shooting strategy suggested in Fig. 3, we introduce n parameters λi, i = 1, . . . , n, such
that

y′(x0) = λ1, (4)

y(x2i) = λ2i, y
′(x2i) = λ2i+1, i = 1, . . . , n/2− 1, (5)

y′(xn) = λn. (6)

Then we solve, in parallel, the following set of initial-value problems:

1. In [x0, x1] solve the I.V.P.

y′′(x) = f1(x, y, y
′), y(x0) = α, y′(x0) = λ1. (7)
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2. In the interior subintervals [x2i−1, x2i], i = 1, .., n/2− 1, solve the I.V.P.

y′′(x) = f2i(x, y, y
′), y(x2i) = λ2i, y

′(x2i) = λ2i+1. (8)

3. In the interior subintervals [x2i, x2i+1], i = 1, .., n/2− 1, solve the I.V.P.

y′′(x) = f2i+1(x, y, y
′), y(x2i) = λ2i, y

′(x2i) = λ2i+1. (9)

4. In [xn−1, xn], solve the I.V.P.

y′′(x) = fn(x, y, y′), y(xn) = β, y′(xn) = λn. (10)

The parameters λi, i = 1, . . . , n, are to be determined such that the interior boundary conditions (3) are
satis�ed to within a prescribed tolerance. Let y1(x;λ1), y2i(x;λ2i, λ2i+1), y2i+1(x;λ2i, λ2i+1), i = 1, ..., n/2−1,
and yn(x;λn), be the solutions to (7)�(10), respectively. Imposing conditions (3) at the oddly-indexed nodes
x2i−1, i = 1, 2, . . . , n/2− 1, (eq. (3)) is already satis�ed at x2i), we obtain the set of equations

y1(x1;λ1)− y2(x1;λ2, λ3) = 0, (11)

y′1(x1;λ1)− y′2(x1;λ2, λ3) = 0, (12)

y2i+1(x2i+1;λ2i, λ2i+1)− y2i+2(x2i+1;λ2i+2, λ2i+3) = 0, 1 ≤ i ≤ n

2
− 2, (13)

y′2i+1(x2i+1;λ2i, λ2i+1)− y′2i+2(x2i+1;λ2i+2, λ2i+3) = 0, 1 ≤ i ≤ n

2
− 2, (14)

yn−1(xn−1, λn−2, λn−1)− yn(xn−1, λn) = 0, (15)

y′n−1(xn−1, λn−2, λn−1)− y′n(xn−1, λn) = 0. (16)

The above set of equations can be regarded as a nonlinear homogeneous system for the unknown parameters
λi. Introducing the notation Λ = (λ1, λ2, . . . , λn), it can be written in vector form as

F(Λ) = 0,

where F(Λ) = [F1(Λ), ..., Fn(Λ)]T : Rn −→ Rn, is a vector valued function of the parameter vector Λ and
Fi(·), i = 1, . . . , n, are scalar functions given by equations (11)�(16).

A fast and e�cient method for solving the above system is the well-known multidimensional Newton's
method. Let

Λ(k) = (λ
(k)
1 , λ

(k)
2 , . . . , λ(k)n )T

be the values of the parameters at the kth iteration. The classical multidimensional Newton's method
calculates new values Λ(k+1) according to

Λ(k+1) = Λ(k) − J−1(Λ(k))F(Λ(k)) (17)

where F(Λ(k)) = [F1(Λ
(k)), . . . , Fn(Λ(k))]T and J−1(Λ(k)) is the inverse of the n × n Jacobian matrix J

evaluated at Λ(k). The entries of the Jacobian matrix are given by

Jij =
∂Fi
∂Λj

(18)

It is worth mentioning that there are modi�ed versions of Newton's method which converge cubically.
In the one-dimensional case, cubically convergent modi�ed Newton's schemes were derived in [6, 8, 9] and
references therein. A generalization to multivariate case was later given in [7]. The scheme given in [7] is as
follows

Γ(k) = Λ(k) − 1

2
J−1(Λ(k))F(Λ(k)), (19)

Λ(k+1) = Λ(k) − J−1(Γ(k))F(Λ(k)). (20)
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The Jacobian matrix J turn out to be pentadiagonal and has the form:

J1,: =

[
∂y1(x1)
∂λ1

−∂y2(x1)
∂λ2

−∂y2(x1)
∂λ3

0n−3

]
,

J2,: =

[
∂y′1(x1)
∂λ1

−∂y′2(x1)
∂λ2

−∂y′2(x1)
∂λ3

0n−3

]
,

for i = 3, 5, 7, . . . , n− 3,

J i,: =

[
0i−2

∂yi(xi)
∂λi−1

∂yi(xi)
∂λi

−∂yi+1(xi)
∂λi+1

−∂yi+1(xi)
∂λi+2

0n−i−2

]
,

J i+1,: =

[
0i−2

∂y′i(xi)
∂λi−1

∂y′i(xi)
∂λi

−∂y′i+1(xi)

∂λi+1

−∂y′i+1(xi)

∂λi+2
0n−i−2

]
,

and

Jn−1,: =

[
0n−3

∂yn−1(xn−1)
∂λn−2

∂yn−1(xn−1)
∂λn−1

−∂yn(xn−1)
∂λn

]
,

Jn,: =

[
0n−3

∂y′n−1(xn−1)

∂λn−2

∂y′n−1(xn−1)

∂λn−1

−∂y′n(xn−1)
∂λn

]
,

where the notation Jk,: stands for the kth row of J and 0k stands for a row of k zeros.
The calculation of the entries of the Jacobian matrix requires the calculation of

∂yi(xj)

∂λk
and

∂y′i(xj)

∂λk

with the appropriate xj and λk for a given yi. Speci�cally, we require

∂y2i(x2i−1)

∂λk
,
∂y′2i(x2i−1)

∂λk
,
∂y2i+1(x2i+1)

∂λk
,
∂y′2i+1(x2i+1)

∂λk
, (21)

for i = 1, 2, . . . , n/2− 1 and k = 2i, 2i+ 1, and

∂y1(x1)

∂λ1
,
∂y′1(x1)

∂λ1
,
∂yn(xn−1)

∂λn
,
∂y′n(xn−1)

∂λn
. (22)

The quantities in (21) and (22) are obtained from the solutions of an other set of initial value problems as
explained below.

From equation (1), di�erentiating with respect to λ, we get

∂y′′

∂λ
=
∂f

∂y

∂y

∂λ
+
∂f

∂y′
∂y′

∂λ
.

Let zj,k =
∂yj
∂λk

. Assuming we can interchange the order of di�erentiation, we �nd that zj,k satis�es

z′′j,k =
∂fj(x, yj , y

′
j)

∂y
zj,k +

∂fj(x, yj , y
′
j)

∂y′
z′j,k. (23)

Therefore, we have the following I.V.Ps.

1. z1,1 = ∂y1
∂λ1

satis�es (23) for x0 ≤ x ≤ x1 with the I.Cs.

z1,1(x0) = 0, z′1,1(x0) = 1. (24)
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2. For i = 1, . . . , n/2− 1, z2i,2i = ∂y2i
∂λ2i

satis�es (23) for x2i−1 ≤ x ≤ x2i with the I.Cs.

z2i,2i(x2i) = 1, z′2i,2i(x2i) = 0. (25)

3. For i = 1, . . . , n/2− 1, z2i,2i+1 = ∂y2i
∂λ2i+1

satis�es (23) for x2i−1 ≤ x ≤ x2i with the I.Cs.

z2i,2i+1(x2i) = 0, z′2i,2i+1(x2i) = 1. (26)

4. For i = 1, . . . , n/2− 1, z2i+1,2i = ∂y2i+1

∂λ2i
satis�es (23) for x2i ≤ x ≤ x2i+1 with the I.Cs.

z2i+1,2i(x2i) = 1, z′2i+1,2i(x2i) = 0. (27)

5. For i = 1, . . . , n/2− 1, z2i+1,2i+1 = ∂y2i+1

∂λ2i+1
satis�es (23) for x2i ≤ x ≤ x2i+1 with the I.Cs.

z2i+1,2i(x2i) = 0, z′2i+1,2i(x2i) = 1. (28)

6. zn,n = ∂yn
∂λn

satis�es (23) for xn−1 ≤ x ≤ xn with the I.Cs.

zn,n(xn) = 0, z′n,n(xn) = 1. (29)

Once the solutions zj,k of the above I.V.Ps (23) with (24)�(29) are obtained, the di�erent Jacobian entries
(21) and (22) are given by

∂yj(xi)

∂λk
= zj,k(xi),

∂y′j(xi)

∂λk
= z′j,k(xi).

The proposed algorithm is summarized as follows.

1. At the kth iteration, solve the IVPs (7)�(10) with parameters Λ(k).

2. Solve the IVPs (23) with (24)�(29) and construct the Jacobian matrix.

3. Use Newton's formula (17) to update the parameters Λ.

4. Repeat the process until (11)�(16) are satis�ed within a desired accuracy.

It is important to mention here that at each step solving the IVPs (7)�(10) can be done in parallel. Similarly,
solving the IVPs (23) with (24)�(29) can also be done in parallel. This is an important advantage of the
proposed method over �nite di�erences methods.

4. Numerical Examples

In this section we consider two cooked examples with exact solutions in order to test the accuracy of the
proposed method. For the numerical simulations, we adopted the stopping criteria ‖F‖ ≤ ε = 10−6.

Example 4.1. As a �rst example, we consider the following second-order BVP

y′′ =
1

2
(1− (y′)2 − y sin(x)), 0 < x < π, (30)

with the boundary conditions y(0) = 2 and y(π) = 2.

The exact solution is y(x) = 2 + sin(x). We simulated this example as a multi-layer problem by decom-
posing the domain [0, π] into �ve subintervals [xi−1, xi], i = 1, . . . , 5, using the nodes x0 = 0, x1 = π/5, x2 =
π/3, x3 = 2π/3, x4 = 3π/4, and x5 = π. Convergence was achieved after 6 iterations. Fig. 4, displays
the numerical solution for the �rst 4 iterations and Table 1 displays the values of y(x±i ) and y′(x±i ) versus
iterations. It can be seen from Fig. 4 that the solutions in the subdomains are converging smoothly at the
interface nodes xi. As well, from Table 1, we can see that the numerical solutions and their derivatives at xi
are converging to the those of the exact solution.
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Figure 4: The �rst 4 iterations for Example 1.

Iter. 1 3 5 6 Exact solution

y′(0) 0. 0.848286 0.999972 1. 1

y(π/5−) 2.05709 2.51584 2.58777 2.58779 2.58779

y(π/5+) 0.0433234 2.52838 2.58778 2.58779 2.58779

y′(π/5−) 0.117075 0.725929 0.809002 0.809017 0.809017

y′(π/5+) -0.204439 0.769363 0.809012 0.809017 0.809017

y(π/3) 0. 2.79403 2.86602 2.86603 2.86603

y′(π/3) 0. 0.479029 0.499998 0.5 0.5

y(2π/3−) 0.251475 2.79379 2.86602 2.86603 2.86603

y(2π/3+) 0.0170467 2.79511 2.86602 2.86603 2.86603

y′(2π/3−) 0.441647 -0.479507 -0.499996 -0.5 -0.5

y′(2π/3+) -0.129542 -0.472927 -0.499996 -0.5 -0.5

y(3π/4) 0. 2.64484 2.7071 2.70711 2.70711

y′(3π/4) 0. -0.667939 -0.707101 -0.707107 -0.707107

y(π) 0.149262 1.98639 2. 2. 2

Table 1: Values of y(x±i ) and y′(x±i ) vs iterations for Example 1.

Example 4.2. In this second made up example, we consider the following 4-layer problem

y′′ =



−(y′)2 − 20
9 y
′ − 100

81 , 0 ≤ x < 1/2,

(y′)2 − 196
81 −

1
x4

+ 4
x3

+ 10
9x2
− 28

9x , 1/2 ≤ x ≤ 1,

−
(
y′ − 5

9

)2 − (y − 5
9x+ 1

)
+ ln(3x), 1 ≤ x ≤ 2,

38
9 y + (y′)2 − 19

36(7 + 8 ln(6)), 2 ≤ x ≤ 3

(31)
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with the outer boundary conditions y(0) = 1/3, y(3) = ln(6) + 1
9 , and the smoothness conditions y(x−i ) =

y(x+i ) and y′(x−i ) = y′(x+i ) for xi = 1/2, 1, and 2.

The exact solution is

y(x) =



ln(x+ 1)− 10
9 x+ 1

3 , 0 ≤ x < 1/2,

ln(3x) + 1
x + 14

9 x− 3, 1/2 ≤ x ≤ 1,

ln(3x) + 5
9x− 1, 1 ≤ x ≤ 2,

ln(6)− 56
9 + 95

18x−
19
18x

2, 2 ≤ x ≤ 3.

(32)

We applied the proposed algorithm to this example and convergence to within the prescribed accuracy was
achieved after 6 iterations. Fig. 5, displays the results for the 6 iterations. Table 2 displays the values of
y(x±i ) and y′(x±i ) versus iterations which can be seen to converge to those of the exact solution.
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Figure 5: The �rst 6 iterations for Example 2.
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Iter. 1 3 4 6 Exact solution

y′(0) -0.5 -0.118699 -0.111101 -0.111111 -0.111111

y(1/2−) 0.0444064 0.180711 0.183246 0.183243 0.183243

y(1/2+) -0.10358 0.22613 0.183307 0.183243 0.183243

y′(1/2−) -0.643026 -0.447825 -0.44444 -0.444444 -0.444444

y′(1/2+) -2.35242 -0.619855 -0.444591 -0.444444 -0.444444

y(1) -0.5 0.577562 0.654126 0.654168 0.654168

y′(1) -0.5 1.15635 1.55518 1.55556 1.55556

y(2−) -0.506763 1.66597 1.90268 1.90287 1.90287

y(2+) 0.960851 1.82262 1.90282 1.90287 1.90287

y′(2−) 0.933563 1.06121 1.05555 1.05556 1.05556

y′(2+) 2.22717 1.181 1.05563 1.05556 1.05556

y′(3) -0.5 -1.02264 -1.05554 -1.05556 -1.05556

Table 2: Values of y(x±i ) and y′(x±i ) vs iterations for Example 2.

The previous two example demonstrate that the proposed method is a reliable, fast and accurate for
the numerical simulation of multi-layer problems in (1)-(3). As an application of the proposed method to a
physical problem, we shall, in the next section, use it to numerically resolve the velocity pro�le of �uid �ow
through multi-layer porous media.

5. Application to Fluid Flow Through Multi-layer Porous Media

In this section, we present an application of the algorithm presented in Section 3 to the problem of
determining the velocity pro�le of �uid �ow through multi-layer porous media. The media is composed of
a number of porous layers. The top and the bottom layers are bounded above and below, respectively, by
solid walls, see Fig. 6 which depicts a multi-layer porous media con�guration. In each porous layer, the �ow

Figure 6: Con�guration of a multi-layer porous media.

is assumed to be governed by the Darcy-Forchheimer-Brinkman (DFB) model [12]

d2u

dy2
= ReC +

u

k
+
ReCd√

k
u2, (33)

where u(y), a ≤ y ≤ b, is the velocity of the �uid, and the various physical parameters in Eq. (33) are
de�ned as follows.
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1. Re = ρU∞L/µ is the Reynolds number, ρ is the �uid density, U∞ is the free stream characteristic
velocity, µ is the �uid viscosity, and L is the channel characteristic length.

2. k is the permeability of the porous channel.

3. Cd is the form drag coe�cient.

4. C < 0 is a dimensionless pressure gradient.

When Cd = 0, we have what is known as the Darcy-Lapwook-Brinkman (DLB) [12] model

d2u

dy2
= ReC +

u

k
. (34)

It is worth mentioning that there have been a lot of work on �uid �ow through porous media [10]-[17].
The book by Chen et al. [15] presents an excellent account on computational methods for multiphase �ows
in porous media. The method used in [17] is based on �nite di�erence approximation of the derivatives.

In this work, we aim to show that the proposed method is suitable for solving for the velocity pro�le of
�uid �ow through any number of porous-layer con�guration. We will use the two examples considered in
[17] of the three- and �ve-layer con�gurations. In our simulations, we �x the following parameter values.
The Reynolds number Re = 10, C = −10 and Cd = 0.55, and without loss of generality, we assume that
overall domain is −1 ≤ y ≤ 1. Since the top (at y = 1) and bottom (at y = −1) layers are bounded by solid
impermeable walls, we assume a non-slip condition at y = ±1, that is u(±1) = 0. At the interface nodes
xi, we assume that the �ow and shear stress are continuous, that is, u(x−i ) = u(x+i ) and u′(x−i ) = u′(x+i ).
Therefore, here, what distinguish between the di�erent porous layers is the permeability parameter k.

We consider the cases of a three-porous media con�guration and �ve-layer porous media con�guration,
as considered in [17], where the �ow in all three layers is governed by the DFB model (Eq. (33)). For the
three-layer con�gurations, we use the following permeability values: kb = 0.001, km = 0.01, kt = 100, where
kb, km, and kt are the permeabilities of the bottom, middle, and top layers, respectively. The interface nodes
are x1 = −1/2 and x2 = 1/2. For the �ve-layer con�guration, we use the following permeability values:
k1 = 0.1, k2 = 1, k3 = 0.001, k4 = 10, k5 = 0.001, where k1 is for the bottom layer (−1 ≤ y ≤ x1) and k5 for
the top layer (x4 ≤ y ≤ 1). The interface nodes for this case are x1 = −0.6, x2 = 0, x3 = 0.4, x4 = 0.6. The
�uid velocity pro�les for both cases are displayed in Fig. 7 which show an agreement with the results found
in [17].

Figure 7: Velocity pro�les of the 3 and 5 layer con�gurations.



M. Ali Hajji, Adv. Theory Nonlinear Anal. Appl. 4 (2020), 432�442. 442

6. Conclusion

In this paper we have presented a parallel shooting method to solve multi-layer boundary values problems.
The method relies on the adaption of the classical shooting method for single boundary value problems to
multi-layer boundary value problems. We have adopted an alternating forward-backward shooting strategy
which decreases the size of the problem, compared to a classical forward shooting strategy. A good advantage
of this method is that it can be implemented in parallel, unlike the �nite-di�erence method, hence reducing
the computation time, especially when the number of layers exceeds 3. A real application of the method
is in the resolution of the velocity pro�le of �uid �ow through multi-layer porous media. The numerical
simulations suggest that the proposed method is reliable and accurate.
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