

OSMANİYE KORKUT ATA ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ DERGİSİ

Central Automorphisms of Semidirect Product of p-Groups

Özge ÖZTEKİN

Received/30.04.2020

Published/15.06.2020

Özet

Bu çalışmada, p asal sayı olmak üzere \mathbb{Z}_{p^2} ile \mathbb{Z}_p , nin yarı-direkt çarpımının merkezi otomorfizmlerinin formu belirlenmiştir.

Anahtar Kelimeler: Merkezi otomorfizm, yarı- direkt çarpım, p-grup.

Abstract

In this paper, we determine the form of central automorphisms of semi-direct product of \mathbb{Z}_{p^2} and \mathbb{Z}_p , where p is odd prime number.

Keywords: Central automorphism, semi-direct product, p-group.

Introduction

A finite cyclic group of order n will be denoted Z_n . If the elements of group are integers we denote Z_n by \mathbb{Z}_n and use additive notation. We know that any group of order p, where p is a prime is isomorphic to the cyclic group \mathbb{Z}_p . Generally, the term p-group is used for finite p-groups.

Let $\mathbb{Z}_{p^2} \rtimes_{\varphi} \mathbb{Z}_p$ be the semi-direct product of \mathbb{Z}_{p^2} and \mathbb{Z}_p with respect to φ , where φ is homomorphism from \mathbb{Z}_p to automorphism group of \mathbb{Z}_{p^2} and p is odd prime number. The center of

Gaziantep University, Faculty of Science, Department of Mathematics. Gaziantep, Türkiye, ozgeoztekin@gantep.edu.tr

a group $\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p$, denoted by $C(\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p)$ is the subgroup of $\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p$ of largest order that commutes with every element in $\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p$. By $Aut(\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p)$ we denote the group of all automorphisms of $\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p$. An automorphism θ of $\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p$ is called central if $g^{-1}\theta(g) \in C(\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p)$, for all $g \in \mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p$. The set of all central automorphisms of $\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p$, denoted by $Aut_C(\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p)$ and it is normal subgroup of $Aut(\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p)$.

In literature, there are some well-known results about central automorphisms of finite groups [1,2,3]. First, Adney and Yen [1] studied the central automorphisms of p-groups and they proved that if G is a purely non-abelian finite group, then there exists a bijection between $Aut_C(G)$ and Hom(G/G', Z(G)).

The form of automorphisms of $\mathbb{Z}_{p^2} \rtimes_{\varphi} \mathbb{Z}_p$ was given by Stahl in [4]. But the form of central automorphisms of $\mathbb{Z}_{p^2} \rtimes_{\varphi} \mathbb{Z}_p$ hasn't given yet. In this paper we give the form of such automorphisms of $\mathbb{Z}_{p^2} \rtimes_{\varphi} \mathbb{Z}_p$.

1. Preliminaries

Definition 1.1. Let H and K be non-trivial finite groups and a group homomorphism $\theta: K \rightarrow Aut(H)$, we can construct a new group $H \rtimes_{\theta} K$, called the semidirect product of H and K with respect to θ , defined as follows:

i) As a set, $H \rtimes_{\theta} K$ is the cartesian product H and K.

ii) Multiplication of elements $H \rtimes_{\theta} K$ is determined by the homomorphism θ . The operation is

*: $(H \times K) \times (H \times K) \rightarrow H \rtimes_{\theta} K$

defined by

$$(h_1, k_1) * (h_2, k_2) = (h_1 \theta_{k1}(h_2), k_1 k_2)$$

for $h_1, h_2 \in H$ and $k_1, k_2 \in K$.

Theorem 1.2. If H, K and θ are as in the above definition then $H \rtimes_{\theta} K$ is a group of order |G|=|H||K|.

Theorem 1.3. [4] Let $\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p$, where ϕ is the unique homomorphism from \mathbb{Z}_p to $Aut(\mathbb{Z}_{p^2})$ and it is determined by $\phi: \mathbb{Z}_p \longrightarrow Aut(\mathbb{Z}_{p^2})$ such that $\phi(a)=1+pa$. Therefore, the operation * of $\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p$ is determined as:

For all $(a,b), (c,d) \in \mathbb{Z}_{p^2} \rtimes_{\varphi} \mathbb{Z}_p$

$$(a,b)*(c,d) = (a+\phi(b)c,b+d)$$

= $(a+(1+pb)c,b+d)$

Theorem 1.4. [4] Let $\mathbb{Z}_{p^2} \rtimes_{\varphi} \mathbb{Z}_p$, where p is prime number. Any automorphisms of $\mathbb{Z}_{p^2} \rtimes_{\varphi} \mathbb{Z}_p$ has the form

 $\{a \rightarrow a^i b^j \ i \in \mathbb{Z}_{p^2} \ i \neq 0 (modp), b \rightarrow a^{pm} b^l \ m, j, l \in \mathbb{Z}_p \ l \neq 0 (modp)\}$

Theorem 1.5. $|\operatorname{Aut}(\mathbb{Z}_{p^2} \rtimes_{\varphi} \mathbb{Z}_p)|=p^3(p-1).$

2. Main Results

Let $\mathbb{Z}_{p^2} \rtimes_{\varphi} \mathbb{Z}_p$, where p is odd prime number. Two generators of the group $\mathbb{Z}_{p^2} \rtimes_{\varphi} \mathbb{Z}_p$ are a=(1,0) and b=(0,1). First we find the center of $\mathbb{Z}_{p^2} \rtimes_{\varphi} \mathbb{Z}_p$ to determine the central automorphisms of $\mathbb{Z}_{p^2} \rtimes_{\varphi} \mathbb{Z}_p$ by using this generators.

Theorem 2.1. The center $C(\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p)$ of $\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p$ is $C(\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p) = \{(1 \cdot p, 0), (2 \cdot p, 0), ..., (p \cdot p, 0)\}$. **Proof.** If $(a,b) \in C(\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p)$ then for every $(c,d) \in (\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p)$,

$$(a,b)*(c,d)=(c,d)*(a,b).$$

by using operation of $\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p$ we get

 $(a+\varphi(b)c,b+d) = (c+\varphi(d)a,b+d)$

$$(a+(1+pb)c,b+d) = (c+(1+pd)a,b+d).$$

If we apply this equation on generators, we get; If (c,d)=(1,0) then,

(a+(1+pb)1,b+0) = (1+(1+p.0)a,b+0)

We get $b \equiv 0 \pmod{p}$ and we know that $b \in \mathbb{Z}_p$ therefore b = 0.

If (c,d)=(0,1) then,

(a+(1+pb)0,b+1) = (0+(1+p1)a,b+1)

We get $pa\equiv 0 \pmod{p}$ and we know that $a \in \mathbb{Z}_{p^2}$ therefore $a \in \{p, 2p, ..., pp\}$.

So we have

 $C(\mathbb{Z}_{p^2}\rtimes_{\phi}\mathbb{Z}_p){=}\{(a{,}0)|a{\in}\mathbb{Z}_{p^2}\text{ and }p|a\}$

Corollary. $|C(\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p)|=p.$

Now we can give the main theorem of this paper.

Theorem 2.2. Any central automorphisms of $\mathbb{Z}_{p^2} \rtimes_{\varphi} \mathbb{Z}_p$ has the form

 $\{a{\rightarrow}a^{kp+1}\ ,\,b{\rightarrow}b\;\}$

where $k \in \mathbb{N}$ and p is odd prime number.

Proof. Let θ be an automorphism of $\mathbb{Z}_{p^2} \rtimes_{\varphi} \mathbb{Z}_p$. So from Theorem 1.4;

$$\theta(a,b) = (a^i b^j, a^{pm} b^l) \qquad (1)$$

for all $(a,b) \in \mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p$, where $i \in \mathbb{Z}_{p^2}$, $j,m,l \in \mathbb{Z}_p$ and $i,l \not\cong 0 \pmod{p}$. If $\theta \in Aut_C(\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p)$ then for all $g=(a,b) \in \mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p$, θ satisfy $g^{-1}*\theta(g) \in C(\mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p)$, where g^{-1} is the inverse of g. If $g=(a,b) \in \mathbb{Z}_{p^2} \rtimes_{\phi} \mathbb{Z}_p$ then $g^{-1}=(bpa,p-b)$. By using the operation * rule we get

 $g^{-1}*\theta(g) = (bpa-a,p-b)*(ai+bj,bl)$

=(bpa-a+
$$\varphi$$
(p-b)(a1+bj),(p-b)+b1)

$$=(bpa-a+(1+p(p-b))(ai+bj),(p-b)+bl)$$

For (bpa-a+ (1+p(p-b))(ai+bj),(p-b)+bl) $\in C(\mathbb{Z}_{p^2} \rtimes_{\varphi} \mathbb{Z}_p)$

$$(bpa-a+(1+p(p-b))(ai+bj),p-b+bl) = (k \cdot p,0)$$

where $k \in \{1,2,...,p\}$. If we apply this equation on generators, we get; If (a,b)=(1,0) then,

$$(-1+(1+p(p))(i),p) = (k \cdot p,0)$$

 $(-1+(i),p) = (k \cdot p,0)$

Therefore i=kp+1.

If (a,b)=(0,1) then,

$$((1+p(p-1))(j),p-1+l) = (k \cdot p,0)$$

j=kp and we know that $j\in\mathbb{Z}_p$ therefore j=0. So the conditions i=1 and j=0 satisfy this equation for all g.

For the other values of 1, i and j the θ automorphism is not central. (In [5], the other conditions are investigated for case p=3). We put this conditions at (1) we get the general form of central automorphisms as:

$$\theta(a,b)=(a^{kp+1},b).$$

Corollary. $|Aut_C(\mathbb{Z}_{p^2} \rtimes_{\varphi} \mathbb{Z}_p)|=p.$

REFERENCES

- A. R. Jamali and H. Mousavi, On the central automorphism group of finite p-groups, Algebra Coolog. 9(1) (2002), 7-14.
- G. Saeden Stahl, J. Laine, G. Behm, On p-groups of low power order, Master Thesis, KTH, (2010).
- J. E. Adney, T.Yen, Automorphisms of p-groups, Illinois J. Math. 9(1965), 137-143.
- M. J. Curran and D. J. McCaughan, Central automorphisms of finite groups, Bull. Austral. Math. Soc. 34(2), (1986), 191-198.
- Ö. Öztekin and Z. Gürbüz, Central Automorphism Groups For Semidirect Product of p-Groups The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM), 2, (2018), 288-289.