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Abstract: Regardless of energy type that we need today, it is important to use it efficiently and 
economically in the production, transmission and distribution stages. In line with the 
developing technology and needs, a new energy concept has emerged in which different energy 
types managed together in the past were managed independently. In this concept, energy 
infrastructures of more than one energy carrier such as electricity, gas and heat are met as 
Energy Hub (EH) to supply the demands such as electricity, gas, heating, cooling and 
compressed air by means of energy conversion, distribution and storage devices. EHs are 
expected to meet the demands energy with low operating costs. Energy hub economic dispatch 
problem (EHEDP) is a non-linear, non-convex, uniform and non-differential multidimensional 
optimization problem. In this study, the energy cost of the system is minimized by using the 
Coyote Optimization Algorithm (COA) for the solution of the EHEDP. The results obtained with 
COA have been compared with the results of heuristic algorithms such as Genetic Algorithm 
(GA), Particle Swarm Optimization (PSO), Moth Swarm Algorithm (MSA) and Symbiotic 
Organisms Search Algorithm (SOS) in the literature. The compared results showed that COA 
performed better than other algorithms in solving EHED problem. 
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Özet: Günümüzde ihtiyacımız olan enerjinin türü ne olursa olsun üretim, iletim, dağıtım 
aşamasında verimli ve ekonomik olarak kullanımı önemli hale gelmiştir. Gelişen teknoloji ve 
ihtiyaçlar doğrultusunda, geçmişte birbirinden bağımsız olarak yönetilen farklı enerji 
türlerinin bir arada yönetildiği yeni bir enerji konsepti ortaya çıkmıştır. Bu konseptte elektrik, 
gaz ve ısı gibi birden fazla enerji taşıyıcısının, enerji dönüşüm, dağıtım ve depolama cihazları 
vasıtasıyla, talep edilen elektrik, gaz, ısıtma, soğutma ve basınçlı hava gibi ihtiyaçların 
karşılanabilmesini sağlayan enerji alt yapıları Enerji Merkezi (EM) olarak kabul edilir. EM’ 
lerinin, talep edilen enerjiyi düşük işletme maliyeti ile karşılaması beklenir. Enerji merkezi 
ekonomik dağıtım problemi (EMEDP) doğrusal, konveks, düzgün ve diferansiyel olmayan çok 
boyutlu bir optimizasyon problemidir. Bu çalışmada EMEDP çözümü için Kır Kurdu 
Optimizasyon Algoritması (KKOA) kullanılarak sistem enerji maliyeti minimize edilmiştir. 
KKOA ile elde edilen sonuçlar, literatürde yer alan Genetik Algoritma (GA), Parçacık Sürü 
Optimizasyonu (PSO), Güve Sürüsü Algoritması (GSA) ve Simbiyotik Organizmalar Arama 
Algoritması (SOAA) gibi sezgisel algoritmaların sonuçları ile karşılaştırılmıştır. Karşılaştırılan 
sonuçlar, KKOA’ nın EMED problemi çözümünde diğer algoritmalara göre daha iyi performans 
gösterdiğini ortaya koymuştur. 

  

 
1. Introduction 
 
Nowadays, to providing the energy needs of countries 
is one of the important problems faced by societies. Due 

to the rising of energy demand in parallel with the 
increase in the world population, the need for energy 
has become more and more important for the 
sustainable development of countries. When economic, 
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social, environmental and security factors are 
considered together, it is clear that energy is a strategic 
issue for countries. In addition, due to the limited fossil 
fuels and their negative impact on the environment, the 
importance of reliable and sustainable energy has 
increased. Economic and trouble-free operation of a 
sustainable energy system is possible by using a 
combination of suitable energy carriers [1], [2]. The 
new vision of energy systems is integrated energy 
network systems called multiple energy carrier 
networks or hybrid systems, where different types of 
energy are managed together. In this concept, Energy 
Hubs (EH) play an important role as networks of 
different energy types are intersections where the 
energy flow between each other is controlled [3], [4]. 
The energy demand of loads The energy demand of the 
loads is provided by multiple energy carrier networks 
of different energy types which collected, converted 
and storaged in EH. An energy center model may 
include transformers, micro turbines, central air 
conditioning, compressors and energy storage devices 
[5]. Besides, the storage devices as thermal storage and 
electrical batteries are instruments for energy storage 
in EH. An EH may include one or more different 
infrastructure devices and renewable energy sources. 
Large buildings such as power plants, industrial plants, 
airports, hospitals and cities or towns can be modeled 
as EH by using these infrastructure devices. Energy flow 
is from the input energy sources to the output in an 
energy hub model [1]- [14]. 
 
Similar to electric power systems, EH involve different 
optimization problems. In particular, the most widely 
known economic power dispatch problem in power 
systems applies to EH with multiple energy systems. In 
an energy system, different equality and inequalities 
must be achieved while providing the demanded energy 
with minimum energy cost. System status is 
determined by optimizing fuel cost, emission cost and 
energy losses via adjusting control variables, state 
variables and power flow in EH. Since EH contain 
different energy infrastructures, Energy Hub Economic 
Dispatch Problem (EHEDP) becomes a non-convex, 
non-smooth, nonlinear and high dimensional 
optimization problem [3]. 
 
In the literature, there are different studies for 
modeling EH and operating these models under optimal 
conditions. In [1], the effect of components that make 
up the micro EH on the system efficiency is investigated 
and a method is provided to operate these plants with 
minimum operating cost. [2] presents the different 
models that can be used for the EH and suggestions to 
help create a new model in the literature. On the other 
hand, meta-heuristic algorithms take part in literature 
that are used and given successful results for solving 
large-scale, complex multi-objective EHEDP. In [3], a 

new optimization algorithm is presented in which the 
acceleration coefficient of the Gravitational Search 
Algorithm (GSA) is changed over time to solve the high 
dimensional EHEDP involving different converters and 
showed a better convergence with reasonable 
calculation time compared to other optimization 
algorithms used for this problem in the literature. The 
modified firefly algorithm was used in [6] to minimize 
EH fuel cost and CO2 emissions consequently it was 
shown to yield better results than conventional 
mathematical methods. In [7], multi-agent genetic 
algorithm was applied to online EHEDP of wind energy 
integrated energy hub system. Multi-agent bargaining 
learning algorithm is presented in [8] to reach fast a 
quality optimum solution of the economic dispatch 
problem of distributed EH and the algorithm had better 
results than six heuristic optimization algorithms that 
frequently used in literature. 
 
In this study, energy cost has minimized by using 
Coyote Optimization Algorithm (COA) for the solution 
of EHEDP. The proposed algorithm testing process has 
been implemented by using 7 energy hubs that 
obtained from the 17 energy generation units. The 
inputs of tested energy hub model have been selected 
as electricity, heat and natural gas. Besides, demanded 
electricity, gas, heat, cooling or compressed air needs 
are supplied at the EH outputs. The results of algorithm 
have been compared with GA, PSO, MSA and SOS that 
are previously used for solving the EMED problem in 
the literature and the algorithm performance has been 
shown. 
 
In the following sections of this study, structure and 
mathematical model of the energy hub model, objective 
function of the optimization problem to be solved, 
equality and inequality constraints, structure of COA, 
the results, discussion and conclusion sections are 
presented. 
 
2. Material and Method 
 
2.1. Energy hub, main structure and mathematical model 
 
The various types of energy that end users need are 
provided by infrastructures with different energy 
carriers. Integration of different energy infrastructures 
is beneficial in terms of transformation between energy 
types. Considering parameters such as cost, emission, 
security of multiple energy carriers and structures are 
used for energy conversion and transfer, different 
models and methods are utilized in order to ensure 
efficiency with optimum connection and power change. 
EH are the structures in which the transformation, 
regulation and storage of energies provided from 
energy networks formed by different energy carriers 
are realized. An energy hub consumes energy such as 
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electricity, gas, heat that received from the input energy 
carriers and meets the demands such as electricity, air 
conditioning and compressed air needed through the 
output energy carriers. Different units can be used for 
the conversion, conditioning and storage of energy 
when designing EH that serve as interfaces between 
loads and different energy infrastructures [15]. The 
generals main structure of EH and basic infrastructure 
devices in which the energy hub models that are used in 
this article are given in Figure 1. 
 

Figure 1. The general main structure of EH and basic 
infrastructure devices 

 
An energy hub formed as the general model shown in 
Figure 1. contains three basic elements. These elements 
are converters, direct connections, and storage devices. 
The direct connections are used to transferring any 
energy received from the input energy carriers to 
output without being converted to another form. 
Electrical connections and pipelines are example of the 
direct connections. The converters are devices that can 
be used by converting the energy to another needed 
form. Transformer (T), Gas Furnace (GF), Compressor 
(C), Heat Exchanger (HE), Combined Heat and Power 
element (CHP), Combined Heat, Cooling and Power 
element (CHCP) are the basic converter infrastructure 
devices that can be used in EH. 
 
Energy flow is from the input energy source to the 
output energy carriers in an EH model. The analysis of 
energy flows in converter elements of the multi-input 
and output EH models is carried out with the 
conversion matrix (C) that provides the correlation 
between input and output energy vectors. The energies 
are transferred to the output of energy hub are 
calculated by the following expression. 
 

[
 
 
 
𝐸𝛼
𝑜𝑢𝑡

𝐸𝛽
𝑜𝑢𝑡

⋮
𝐸𝜔
𝑜𝑢𝑡]
 
 
 

= [

𝐶𝛼𝛼
𝐶𝛼𝛽
⋮
𝐶𝛼𝜔

𝐶𝛽𝛼
𝐶𝛽𝛽
⋮
𝐶𝛽𝜔

⋯
⋯
⋱
⋯

𝐶𝜔𝛼
𝐶𝜔𝛽
⋮

𝐶𝜔𝜔

]

[
 
 
 
 
𝐸𝛼
𝑖𝑛

𝐸𝛽
𝑖𝑛

⋮
𝐸𝜔
𝑖𝑛]
 
 
 
 

 (1) 

 

where α, β, …, ω are various energy carriers, 

[𝐸𝛼
𝑜𝑢𝑡 𝐸𝛽

𝑜𝑢𝑡 ⋯ 𝐸𝜔
𝑜𝑢𝑡]

𝑇
is output energy vector, 

[𝐸𝛼
𝑖𝑛 𝐸𝛽

𝑖𝑛 ⋯ 𝐸𝜔
𝑖𝑛]

𝑇
is input energy vector. C is 

formed by the connection factors of the transformation 
and transfer devices as 𝐶𝛼𝛼 , 𝐶𝛽𝛼 , … , 𝐶𝜔𝛼  in energy hub. 

Further, the C is associated with the configuration that 
determines the design of the energy hub. Each C that 
constituting the transformation matrix is obtained by 
multiplying the dispatch factor (ν) and efficiency of the 
conversion and transfer devices (η) (C = ν. η) [3], [15]. 
 
In this study, 7 different energy hub models that used in 
[3] and [4] which have formed with six infrastructure 
devices shown in Figure 1 have used and these hub 
models given in Figure 2. 
 

Figure 2. The energy hubs structures used in this work 
 
In the selected hub models, the electricity (e), heat (h), 
cooling (c) and compressed air (a) demands of the 
output energy carriers have supplied by using 
electricity, natural gas (g) and heat energy received 
from the input energy carriers. The matrix expressions 
of these energy centers are as follows [3], [4]: 
 
Hub #1: A CHP element has been used in this hub which 
converts natural gas from the input energy carrier into 
electrical and heat energy. The correlation between 
input and output energies is as follows: 
 

[
𝐸𝑒
𝑜𝑢𝑡

𝐸ℎ
𝑜𝑢𝑡] = [

𝜂𝐶𝐻𝑃𝑒
𝜂𝐶𝐻𝑃ℎ

]𝐸𝑔
𝑖𝑛  (2) 



International Journal of Technological Sciences, 12(1), 10-19, 2020 

 

13 
International Journal of Technological Sciences                                                                                                                                                                 e-ISSN 1309-1220 

 
Hub #2: The energy conversion expression of the hub 
which included T and CHP, are given as following 
equation: 
 

[
𝐸𝑒
𝑜𝑢𝑡

𝐸ℎ
𝑜𝑢𝑡] = [

𝜂𝑇 𝜂𝐶𝐻𝑃𝑒
0 𝜂𝐶𝐻𝑃ℎ

] [
𝐸𝑒
𝑖𝑛

𝐸𝑔
𝑖𝑛] (3) 

 
where 𝜂𝑇  is efficiency of T and 𝜂𝐶𝐻𝑃𝑒 , 𝜂𝐶𝐻𝑃ℎ  denote 

electrical and heat efficiency of CHP. 
 
Hub #3: In this hub, natural gas is supplied from the 
input energy carrier is consumed and electricity and 
heat energy are produced. The generated energies are 
calculated as follows. 
 

[
𝐸𝑒
𝑜𝑢𝑡

𝐸ℎ
𝑜𝑢𝑡] = [

𝜈𝜂𝐶𝐻𝑃𝑒
𝜈𝜂𝐶𝐻𝑃ℎ + (1 − 𝜈)𝜂𝐺𝐹

] 𝐸𝑔
𝑖𝑛 (4) 

 
where 𝜂𝐺𝐹 , 𝜈  are respectively efficiency and dispatch 
factor of GF. 
 
Hub #4: Electricity, heat, cooling and compressed air 
demands are met by the C and CHCP in this hub. The 
correlation of input and output energies are expressed 
as follows: 
 

[
 
 
 
 
𝐸𝑒
𝑜𝑢𝑡

𝐸ℎ
𝑜𝑢𝑡

𝐸𝑐
𝑜𝑢𝑡

𝐸𝑎
𝑜𝑢𝑡]
 
 
 
 

= [

(1 − 𝜈)𝜂𝐶𝐻𝐶𝑃𝑒
𝜂𝐶𝐻𝐶𝑃ℎ + 𝜈𝜂𝐶𝐻𝐶𝑃𝑒𝜂𝑐ℎ

𝜂𝐶𝐻𝐶𝑃𝑐
𝜂𝐶𝐻𝐶𝑃𝑒𝜂𝑐𝑎

]𝐸𝑔
𝑖𝑛 (5) 

 
where 𝜂𝑐ℎ, 𝜂𝑐𝑎  are respectively heat and air efficiency of 

C also 𝜂𝐶𝐻𝑃𝐶𝑒, 𝜂𝐶𝐻𝐶𝑃ℎ,  𝜂𝐶𝐻𝐶𝑃𝑐 are electricity, heat and air 

efficiency of CHCP unit. 
 
Hub #5: This hub contains HE, CHP and T units and 
supply electricity and heat demands. The generated 
energies can be calculated as follows: 
 

[
𝐸𝑒
𝑜𝑢𝑡

𝐸ℎ
𝑜𝑢𝑡] = [

𝜂𝑇 𝜂𝐶𝐻𝑃𝑒 0

0 𝜂𝐶𝐻𝑃ℎ 𝜂𝐻𝐸
] [

𝐸𝑒
𝑖𝑛

𝐸𝑔
𝑖𝑛

𝐸ℎ
𝑖𝑛

] (6) 

 
where 𝜂𝐻𝐸 is efficiency of HE. 
 
Hub #6: Electricity, heat and compressed air demands 
are met by run out of electricity and natural gas in this 
hub. The output energies are expressed as: 
 

[

𝐸𝑒
𝑜𝑢𝑡

𝐸ℎ
𝑜𝑢𝑡

𝐸𝑎
𝑜𝑢𝑡

] = [

(1 − 𝜈)𝜂𝑇 (1 − 𝜈)𝜂𝐶𝐻𝑃𝑒
𝜈𝜂𝑇𝜂𝑐ℎ 𝜂𝐶𝐻𝑃ℎ + 𝜈𝜂𝐶𝐻𝑃𝑒𝜂𝑐ℎ
𝜈𝜂𝑇𝜂𝑐𝑎 𝜈𝜂𝐶𝐻𝑃𝑒𝜂𝑐𝑎

] [
𝐸𝑒
𝑖𝑛

𝐸𝑔
𝑖𝑛] (7) 

Hub #7: The hub contains HE and infrastructure units 
used in Hub #6 and its output energies are expressed 
as: 
 

[

𝐸𝑒
𝑜𝑢𝑡

𝐸ℎ
𝑜𝑢𝑡

𝐸𝑎
𝑜𝑢𝑡

] = [

(1 − 𝜈)𝜂𝑇 (1 − 𝜈)𝜂𝐶𝐻𝑃𝑒 0
𝜈𝜂𝑇𝜂𝑐ℎ 𝜂𝐶𝐻𝑃ℎ + 𝜈𝜂𝐶𝐻𝑃𝑒𝜂𝑐ℎ 𝜂𝐻𝐸
𝜈𝜂𝑇𝜂𝑐𝑎 𝜈𝜂𝐶𝐻𝑃𝑒𝜂𝑐𝑎 0

] [

𝐸𝑒
𝑖𝑛

𝐸𝑔
𝑖𝑛

𝐸ℎ
𝑖𝑛

] (8) 

 
2.2. Objective function, equality and inequality 
constraints 
 
In this study, the objective function that given in 
equation 9. has been minimized. The objective function 
is energy cost function for EHED problem solution. 
Valve point loading effect due to thermal power units 
that used valves cause a fluctuation of transferred 
active power to the output. This effect leads to increase 
in fuel costs as shown in Figure 3. The energy cost 
function in which valve point loading effect is taken into 
consideration is expressed as follows [3], [4], [9]: 
 

𝑂𝐹 = 𝐸𝐶 = ∑ ∑(𝑎𝑗,𝑖 + 𝑏𝑗,𝑖𝐸𝑗,𝑖
𝑖𝑛 + 𝑐𝑗,𝑖(𝐸𝑗,𝑖

𝑖𝑛)
2
)

𝑛𝑖

𝑗=1𝑖𝜖{𝑔,ℎ}

+∑(𝑎𝑗,𝑒 + 𝑏𝑗,𝑒𝐸𝑗,𝑒
𝑖𝑛 + 𝑐𝑗,𝑒(𝐸𝑗,𝑒

𝑖𝑛)
2

𝑛𝑒

𝑗=1

+ |𝑑𝑗,𝑒 sin(𝑒𝑗,𝑒(𝐸𝑗,𝑒
𝑖𝑛.𝑚𝑖𝑛 − 𝐸𝑗,𝑒

𝑖𝑛))|) 

(9) 

 
where OF represents the objective function and EC 
shows the energy cost. {aj,i, bj,i, cj,i} represents cost 
coefficients of the input energy sources and , ej,i and dj,e 
denote cost coefficients which used for valve point 
loading effect in Equation 9. Finally, 𝐸𝑗,𝑖

𝑖𝑛 represents the 

energy consumed from the input energy carriers. 
 

Figure 3. Valve point loading effect 
 
Equality and inequality constraints to be considered 
when minimizing the optimization problem given 
above are as follows [3]: 
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➢ Energy flow in the energy hubs must be 
supplied by the Equation 10. for the different 
energy hubs that build up the system and the 
equilibrium between the energy output and 
demand of the hubs should be ensured by the 
constraint in Equation 11.: 

 
𝐼𝑛𝑝𝑢𝑡𝑖 = 𝐶𝑖𝑂𝑢𝑡𝑝𝑢𝑡𝑖 ,          𝑖 = 1, … ,𝑁ℎ𝑢𝑏 (10) 
 

 ∑ 𝐸𝑗,𝑖
𝑜𝑢𝑡

𝑁ℎ𝑢𝑏

𝑗=1

= 𝐸𝑖
𝑑𝑒𝑚𝑎𝑛𝑑  ,    𝑖𝜖{𝑒, ℎ, 𝑐, 𝑎}  (11) 

 
➢ Capacity limits at the inputs of all energy units 

that make up the system should be limited to 
the following inequality constraint: 

 

𝐸𝑗,𝑖
𝑖𝑛,𝑚𝑖𝑛 ≤ 𝐸𝑗,𝑖

𝑖𝑛 ≤ 𝐸𝑗,𝑖
𝑖𝑛,𝑚𝑎𝑥 ,   𝑖𝜖{𝑒, 𝑔, ℎ} , 𝑗 = 1,… , 𝑛𝑖  (12) 

 
➢ Dispatch factors of the energy hubs which 

determine the energy transfer between the 
input and output connections of the sub-units 
should be between 0 and 1 considering the 
inequality limit as below: 

 
0 ≤ 𝜈 ≤ 1,       𝑖𝜖{𝑒, 𝑔, ℎ},   𝑗 = 1,… , 𝑛𝑖  (13) 
 
2.3. Coyote optimization algorithm 
 
Optimization is a process to finding the best possible 
solution for a problem. Optimization algorithms are 
used to find the best fit solution of a mathematically 
formulated problem which under certain constraints 
and conditions. The fact that optimization problems 
encountered in the real world have become 
increasingly complex that has led to the need for better 
optimization algorithms and increased the importance 
of the studies in this field [16]. Especially, most 
optimization problems in the engineering disciplines 
involve the optimization of multiple competing 
solutions. Since there is no single optimal solution for 
such problems, the best possible solution is searched 
for in the search field which usually consists of 
alternative solutions [17]. Researchers have been 
searching to alternative algorithms for the problems 
that cannot be solved or difficult to solve with classical 
optimization algorithms. 
 
Nature is the most important source of inspiration for 
models which developed by researchers to calculate 
solutions for complex problems. However, optimization 
plays an important role in the realization of many 
natural processes [18]. Due to the simplicity and 
flexibility of evolutionary, heuristic or meta-heuristic 
optimization algorithms, which have been inspired by 
nature and these algorithms have proved successful in 
solving multi-purpose optimization problems. In 

literature, Swarm intelligence-based optimization 
algorithms base on the behavior of animals in nature 
that enact to achieving a specific purpose. Developed 
swarm intelligence algorithms are stochastic 
optimization algorithms which have base on variable 
and random interactions that in swarm or between 
swarms [19], [20]. 
 
In this paper, Coyote Optimization Algorithm (COA) 
that was found by J. Pierezan and L.D.S Coelho inspired 
by the behavior of Canis Latrans species in 2018 has 
presented for the solution of EHED problem. COA was 
developed from the adaptation of these species living in 
North America to environment and social conditions 
and it is an algorithm based on population-based 
swarm intelligence and evolutionary intuition. In this 
algorithm, unlike Gray Wolf Optimization (GWO), the 
social behavior and mutual experience of the coyotes 
that make up a coyote pack are also taken into 
consideration [21]–[23]. 
 
The total population of COA be determined by Np pack 
number that consists Nc coyotes and the multiplication 
of Np and Nc gives the number of population. The 
solitary or temporary coyotes are not taken into 
account during this process for simplification. Each 
coyote in the population is one of the possible solutions 
to the optimization problem to be solved. In addition, 
each coyote’ s social condition in the pack is the cost of 
objective function. Factors such as social status, gender, 
temperature, snow depth, snow hardness affect the 
activities of a coyote in the pack. These factors are the 
decision variables of a global optimization problem and 
expressed with 𝑥 . Any cth coyote’ s social condition is 
soc(set of decision variables) at any  tth time is expressed 
as follows [21]–[23]: 
 

𝑠𝑜𝑐𝑐
𝑝,𝑡
= 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝐷) (14) 

 
In COA, the global coyote population is generated first. 
Since COA is a stochastic algorithm, the initial social 
conditions of the coyotes that make up the pack are 
determined randomly for each coyote. Creating 
population is done by choosing random values in the jth 
dimension for each coyote in packs: 
 

𝑠𝑜𝑐𝑐,𝑗
𝑝,𝑡
= 𝑙𝑏𝑗 + 𝑟𝑗 ∙ (𝑢𝑏𝑗 − 𝑙𝑏𝑗) (15) 

 
In Equation 14. and Equation 15. respectively, D 
represents the size of the search space, lbj is the lower 
limit of decision variables, ubj is the upper limit of 
decision variables, and rj is a real number that 
generated using the uniform probability distribution in 
the range [0, 1]. 
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The objective function cost 𝑓𝑖𝑡𝑐
𝑝,𝑡
∈ 𝑅  is means to be 

adapted to the environment of coyotes and calculated 
by Equation 16. : 
 

𝑓𝑖𝑡𝑐
𝑝,𝑡
= 𝑓(𝑠𝑜𝑐𝑐

𝑝,𝑡
) (16) 

 
When packs are formed, coyotes are randomly assigned 
to the packs. However, sometimes the coyote assigned 
to a pack may leave the pack and can be alone or join 
the another pack. Pe is possibility of a coyote passing 
from a pack to another pack depends on coyote number 
within pack is defined as: 
 
𝑃𝑒 = 0.005 ∙ 𝑁𝑐

2 (17) 
 
The fact that Pe does not have a value greater than 1 
limits the number of coyotes per pack to 14. This 
situation leads to the diversification of interaction 
between the coyotes, so that the global population of 
packs may also have cultural changes. 
 
The coyote packs usually have two alphas. COA accepts 
the one of these alphas which has better adapt to the 
environment as the pack leader. The leader of the pth 
pack at any tth time for minimization problems is: 
 

𝑎𝑙𝑝ℎ𝑎𝑝,𝑡 = {𝑠𝑜𝑐𝑐
𝑝,𝑡
| 𝑎𝑟𝑔𝑐{1,2,….𝑁𝑐}𝑚𝑖𝑛𝑓(𝑠𝑜𝑐𝑐

𝑝,𝑡
)} (18) 

 
COA assumes that the coyotes are sufficiently organized 
to share social conditions and contribute to the 
protection of the pack. This is a sign of a pack 
intelligence and all the information from the coyotes is 
used to calculate the cultural trend of the pack [21]–
[23]: 
 

𝑐𝑢𝑙𝑡𝑗
𝑝,𝑡
= 

{
 
 

 
 𝑂𝑁𝑐+1

2 ,𝑗

𝑝,𝑡
      , 𝑖𝑓 𝑁𝑐 𝑖𝑠 𝑜𝑑𝑑

𝑂𝑁𝑐
2
,𝑗

𝑝,𝑡
+𝑂𝑁𝑐+1

2
,𝑗

𝑝,𝑡

2
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (19) 

 
In Equation 19. Op,t is social conditions of each coyote in  
the pth pack at any tth time and can be in the range [1, D]. 
In addition, the coyotes’ s average social conditions in 
pack give the cultural tendency of the pack. 
 
Considering the birth and death events which are the 
beginning and end of the life cycle of all living creatures 
in nature, the age of coyotes in years is expressed as 

𝑎𝑔𝑒𝑗
𝑝,𝑡
∈ 𝑁 . Based on the social conditions and 

environmental influences of two randomly selected 
parents from the pack, the birth of a new coyote pup is 
expressed as follows [21]–[23]: 
 

𝑝𝑢𝑝𝑗
𝑝,𝑡
= {

𝑠𝑜𝑐𝑟1 ,𝑗
𝑝,𝑡
  , 𝑟𝑛𝑑𝑗 < 𝑃𝑠  𝑜𝑟 𝑗 = 𝑗1

𝑠𝑜𝑐𝑟2 ,𝑗
𝑝,𝑡
   , 𝑟𝑛𝑑𝑗 ≥ 𝑃𝑠 + 𝑃𝑎  𝑜𝑟 𝑗 = 𝑗2

𝑅𝑗          ,                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (20) 

 
where r1 and r2 are randomly selected coyotes from the 
pth pack, j1 and j2 random two dimensions of the 
problem, Ps is the distribution probability, Pa is the 
association probability, Rj a random number in the 
decision variable and rndj is a random number in the 
range [0, 1] which generated using a uniform 
probability distribution. 
 
Ps and Pa significantly affect the cultural diversity of the 

coyotes that make up a pack. These two probabilities 
are given in Equation 21. and Equation 22. Also Pa has 

the same effect in both parents. 

 
𝑃𝑠 =  1/𝐷 (21) 
 
𝑃𝑎 = (1 − 𝑃𝑠)/2 (22) 
 
The coyote pups born in a pack are likely to die 10%. In 
the COA, correlation between pack population and birth 
and death is provided by Algorithm 1.: 
 

Algorithm 1. Birth and death in a pack [21]–[23] 
1:    Calculate ω and φ  

2:     if φ = 1 then 

3:           The pup survives and the only coyote in ω dies.  

4:     elseif φ > then 

5:           The pup survives and the oldest coyote in ω dies. 

6:     else  

7:           The pup dies. 

8:     end if 

 
where ω and φ represent, respectively the pack is that 
are poorly adapted to the environment than pup and 
the number of coyotes in this pack. In addition, another 
point in this algorithm is to look at the adaptation of the 
coyotes to the environment when deciding which 
coyotes of the same age will die and poorly adapted 
coyote dies [21]–[23]. 
 
The alpha effect (δ1) and the pack effect (δ2) is an 
assumption used by COA to demonstrate the cultural 
interactions of coyotes within the pack. δ1 means a 
cultural difference from a random coyote to alpha in the 
pack and δ2 means a cultural difference from a random 
coyote found in the pack to the cultural tendency of the 
pack. These effects are calculated as follows by using 
selected coyotes with uniform probability distribution: 
 

𝛿1 = 𝑎𝑙𝑝ℎ𝑎
𝑝,𝑡 − 𝑠𝑜𝑐𝑐𝑟1

𝑝,𝑡
 (23) 

 

𝛿2 = 𝑐𝑢𝑙𝑡
𝑝,𝑡 − 𝑠𝑜𝑐𝑐𝑟2

𝑝,𝑡
 (24) 
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Updating the new social situation of a coyote is done 
using δ1 and δ2 as follows: 
 

𝑛𝑒𝑤_𝑠𝑜𝑐𝑐
𝑝,𝑡
= 𝑠𝑜𝑐𝑐

𝑝,𝑡
+ 𝑟1 ∙ 𝛿1 + 𝑟2 ∙ 𝛿2 (25) 

 
In Equation 25., r1 and r2 are weights of alpha and pack 
effect. These values are initially determined by a 
uniform probability distribution in the range [0, 1]. 
Then, the new social situation of coyote is evaluated by 
using Equality 26. and Equality 27. and it is decided 
whether the new social situation is better than the old 
one: 
 

𝑛𝑒𝑤_𝑓𝑖𝑡𝑐
𝑝,𝑡
= 𝑓(𝑛𝑒𝑤_𝑠𝑜𝑐𝑐

𝑝,𝑡
) (26) 

 

𝑠𝑜𝑐𝑐
𝑝,𝑡+1

= {
𝑛𝑒𝑤_𝑠𝑜𝑐𝑐

𝑝,𝑡
, 𝑛𝑒𝑤_𝑓𝑖𝑡𝑐

𝑝,𝑡
< 𝑓𝑖𝑡𝑐

𝑝,𝑡

𝑠𝑜𝑐𝑐
𝑝,𝑡
    , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

 (27) 

 
Thus, the global solution of optimization problem is 
determined as the social condition of the coyote that 
best adapts itself to the environment. The pseudo code 
of COA is given in Algorithm 2. In this paper, Np and Nc 
respectively, have selected as 5 and 14 to solve the 
EHEDP. 
 

Algorithm 2. Pseudo code of the COA [21]–[23] 
1: Initialize global population by using Np and Nc each (Eq. 
15). 
2:     Verify the coyote adaptation (Eq. 16). 
3:     while stopping criterion is not achieved, do 
4:     for each p pack do 
5:               Define the alpha in pack (Eq. 18). 
6:               Calculate pack’ s social tendency (Eq. 19).  
7:               for each wolf in p pack do 
8:                          Update social conditions (Eq. 25). 
9:                          Compute new social conditions (Eq. 26).  
10:       Evaluate new social situations for adaptation (Eq. 
27). 
11: end for 
12: Birth and death events (Eq. 20 and Eq. 1). 
13:   end for 
14:   Coyote crossing between packs (Eq. 17). 
15:   Update the ages 
16:   end while 
17: Choose the coyote that best adapts to the environment 
as a global solution. 

 
3. Results 
 
In this study, the performance of the COA proposed for 
the EHED problem has tested with an energy hub model 
that including 7 hubs and 17 control variables. The 
energy inputs of model are provided from 13 different 
sources which are 4 electricity source, 7 natural gas 
source and 2 heat energy source. The energy demands 
of EH model has chosen as respectively, 1.6 pu 
electricity, 1.2 pu heat, 0.2 pu cooling and 1.5 pu 
compressed air. In addition, 17 control variables 

include energy sources and dispatch factors. The test 
system data is given in Appendix A. and Appendix B. The 
proposed Algorithm has tested for EH model by using 
MATLAB software on a 64-bit operating system PC 
which has AMD Ryzen ™ 7 2700X 3.7 GHz processor, 16 
GB RAM. The results obtained by 30 independent runs 
have compared with the results of GA, PSO, MSA and 
SOS and the ability of COA has shown to solve the 
EHEDP. In the results, per-unit system (pu) and 
monetary unit (mu) have used as units. 
 
In this study, the COA has used only for the solution of 
the EH fuel cost function minimization problem in given 
Equation 9. as a single objective optimization problem 
and total losses of EH has been neglected. Table 1. 
shows the minimum (Min), maximum (Max), mean and 
standard deviation (Std) values of the fuel costs that 
obtained by independent running the compared 
algorithms 30 times. As can be seen from Table 1., 
better results have obtained from solutions that made 
with COA than compared other algorithms in Min, Max 
and Mean values. Also it is seen that the Std value that 
shows the dispersion of the solutions around the 
obtained Mean values found has a better result than the 
SOS which obtained the best results after the COA in the 
fuel cost. 
 
Table 2. shows the solutions made with GA, PSO, MSA, 
SOS and COA for EH test system whose energy cost is to 
be minimized. The electricity, gas and heat energies to 
be consumed so that the EH that make up the test 
system can meet the demands such as electricity, 
heating and cooling are calculated separately with 
compared five algorithms. The total fuel costs (CF) 
obtained with the cost function from Equation 9. that 
based on the consumed energies which calculated by 
the algorithms are also shown in the table. When the 
energy costs calculated by COA in the comparison 
results given in Table 2. are examined, it is seen that 
COA has reached the best result for minimizing the 
energy cost of system with 2334.8313 mu. Other 
algorithms results are respectively SOS = 2330.4058 mu, 
PSO = 2355.2932 mu, GA = 2388.0599 mu and MSA = 
2390.0824 mu. Also total energy losses in hubs have 
calculated respectively as SOS = 0.5653, COA = 0.5720, 
GA = 1.1546, MSA = 1.2107 and PSO = 1.2275. In this 
study, although it is not aimed to minimize the total 
energy losses besides the energy cost, the 0.5720 value 
of total losses obtained by the COA is seen to be close to 
the nearest competitor SOS. 
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Table 1. Min, Max, Mean and Std values of the compared algorithms 
 GA PSO MSA SOS COA 

Min 2388.0599 2355.2932 2390.0824 2336.2166 2334.8313 

Max 2418.1515 2401.5981 2400.8814 2386.4112 2364.1546 

Mean 2394.8630 2363.8034 2393.8090 2347.2564 2339.5667 

Std 6.6516 8.7582 4.6572 10.0690 6.7960 

 
Table 2. Comparative results 

Hub No 
Energy        

Type 
GA PSO MSA SOS COA 

1 Gas 0.7897 0.6388 0.8197 0.5400 0.5000 

2 
Electricity 0.2146 0.2000 0.2107 0.2000 0.2000 

Gas 0.4125 0.1542 0.5568 0.1051 0.1037 
3 Gas 0.8141 0.9484 0.3710 0.1507 0.1842 
4 Gas 0.3448 0.3448 0.3448 0.3448 0.3458 

5 
Electricity 0.2001 0.2000 0.2117 0.2000 0.2000 

Gas 0.2057 0.2000 0.2547 0.2001 0.2000 
Heat 0.1330 0.1000 0.1001 0.6999 0.6967 

6 
Electricity 0.1405 0.1000 0.1034 0.1000 0.1019 

Gas 0.7896 1.2157 1.1357 0.2331 0.3008 

7 
Electricity 0.2068 0.2001 0.2006 0.8411 0.8409 

Gas 0.2033 0.2000 0.2012 0.2007 0.2000 
Heat 0.1000 0.1256 0.1000 0.1496 0.1012 

Total 
Production 

(pu) 

Electricity 0.7620 0.7001 0.7264 1.3411 1.3428 
Gas 3.5597 3.7019 3.6839 1.7745 1.8345 

Heat 0.2330 0.2256 0.2001 0.8495 0.7979 
CF (mu)  2388.0599 2355.2932 2390.0824 2336.2166 2334. 8313 

Total 
losses (pu) 

 1.1546 1.2275 1.2107 0.5653 0.5720 

 
In addition, the dispatch factors required for of Hub #3, 
Hub #4, Hub #6 and Hub #7 which have found with the 
COA for minimization of fuel cost, are given in Table 3. 
The dispatch factors determine how to distribute the 
energies at hub inputs in which it is used in the 
infrastructure devices that make up the energy hubs. 
Therefore, these factors also need to be optimized. 
 

Table 3. Dispatch factors 

 
For the Hub #3, dispatch factor has found to 0 with COA. 
Thus, in order to reduce the total fuel cost of the system, 
the gas input of the CHP device located in the Hub #3 

has interrupted. Therefore, the heat and electrical 
energy obtained at the output of CHP have not 
contributed to meeting the total energy demand of the 
system. Similarly, the dispatch factor used in the Hub #4 
are found to 0 with COA. This means that the 
compressor located in Hub #4 does not contribute to 
the total compressed air demand of the system. The 
dispatch factors calculated with COA for Hub #6 and 
Hub #7 determine the ratio at which the electricity 
generated by CHPs in hubs will be distributed in other 
infrastructure devices. 
 
4. Conclusion 
 
In this study, a new algorithm COA which based on 
swarm intelligence and metaheuristic has been 
proposed for the solution of EHED problem. 
Minimization of the fuel cost been achieved in EHED 
which is a non-linear, non-convex, non-smooth, non-
differential, and high-dimensional optimization 
problem. The results obtained by using COA has 
compared with GA, PSO, MSA and SOS. The results 
showed that the proposed algorithm can be used for 
multi-objective, highly non-linear, non-convex, non-
smooth, non-differential, and high-dimensional 
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optimization problems. Moreover, easy 
implementation and accuracy of the algorithm has been 
demonstrated by fulfilling all the system constraints. 
Thus, the COA showed to provide better results than 
compered other algorithms for EHED problem. 
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Appendix A. Hub data [3], [4] 
Hub 
No 

Efficiency 

1  𝜂𝐶𝐻𝑃𝑒 = 0.3, 𝜂𝐶𝐻𝑃ℎ = 0.4 

2  𝜂𝑇 = 1 , 𝜂𝐶𝐻𝑃𝑒 = 0.27, 𝜂𝐶𝐻𝑃ℎ = 0.41 

3  𝜂𝐶𝐻𝑃𝑒 = 0.31, 𝜂𝐶𝐻𝑃ℎ = 0.38, 𝜂𝐺𝐹 = 0.8 

4 
 𝜂𝐶𝐻𝐶𝑃𝑒 = 0.3, 𝜂𝐶𝐻𝐶𝑃ℎ = 0.31, 𝜂𝐶𝐻𝐶𝑃𝑐 = 0.29, 𝜂𝑐𝑎 = 0.7, 𝜂𝑐ℎ =

0.2  

5  𝜂𝑇 = 0.97, 𝜂𝐶𝐻𝑃𝑒 = 0.32, 𝜂𝐶𝐻𝑃ℎ = 0.44, 𝜂𝐻𝐸 = 1 

6  𝜂𝑇 = 0.99, 𝜂𝐶𝐻𝑃𝑒 = 0.3, 𝜂𝐶𝐻𝑃ℎ = 0.32, 𝜂𝑐𝑎 = 0.59, 𝜂𝑐ℎ = 0.21 

7  𝜂𝑇 = 1, 𝜂𝐶𝐻𝑃𝑒 = 0.32, 𝜂𝐶𝐻𝑃ℎ = 0.41, 𝜂𝑐𝑎 = 0.6, 𝜂𝑐ℎ = 0.2 

 

Appendix B. Energy sources data [3], [4] 

Entire 
Energy 

Cost coefficients of entire energy Energy production limits (pu) 

a 
(mu) 

b 
(mu/pu) 

c 
(mu/pu2) 

d 
(rad/pu) 

e 
(mu) 

Emin Emax 

Gas 20 150 65 - - 0.5 3.4 

Electricity 30 180 60 140 4 0.2 1.25 
Gas 20 170 90 - - 0.1 1 
Gas 25 120 50 - - 0.15 1 
Gas 10 220 60 - - 0.1 3.2 
Electricity 10 220 160 190 3.6 0.2 1.1 
Gas 20 200 100 - - 0.2 1.8 

Heat 12 170 210 - - 0.1 0.7 
Electricity 80 200 25 100 4.2 0.1 0.75 
Gas 25 100 40 - - 0.2 1.9 
Electricity 95 130 300 90 4.9 0.2 1.9 
Gas 29 220 330 - - 0.2 1 
Heat 32 135 110 - - 0.1 0.5 

 

 


