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Abstract

We consider the controllability problem for a class of fractional impulsive evolution systems of mixed type in
an in�nite dimensional Banach space. The existence of mild solutions and controllability results are discussed
by a new estimation technique of the measure of noncompactness and a �xed point theorem with respect
to a convex-power condensing operator. However, the main results do not need any restrictive conditions
on estimated parameters of the measure of noncompactness. Since we do not assume that the semigroup is
compact and other conditions are more general, the outcomes we obtain here improve and generalize many
known controllability results. An example is also given to demonstrate the applications of our main results.
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1. Introduction

The concept of controllability was �rstly introduced by Kalman in 1960. There has been a signi�cant
development in controllability results of systems represented by di�erential equations, integrodi�erential
equations, impulsive equations, di�erential inclusions, neutral di�erential equations and delay di�erential
equations in Banach spaces. Most of the previous results require the assumption that the operator semi-
group T (t) is compact.Using a compact analytic semigroup and a nonlinear alterative of Leray-Schauder
type for multivalued maps due to O'Regan, Yan [1] established su�cient conditions for the controllability of
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fractional order partial neutral functional integrodi�erential inclusion with in�nite delay. Balachandran and
Park [2] studied the controllability of fractional integrodi�erential systems in Banach spaces, and an example
with a compact analytic semigroup was also given. Based upon Bohnenblust-Karlin's �xed point theorem
and a compact semigroup, Chang [3] investigated a controllability result of mixed Volterra-Fredholm type
integrodi�erential inclusions in Banach spaces. Chalishajar [4] considered su�cient conditions for semilin-
ear mixed Volterra-Fredholm type integrodi�erential systems in a Banach space via a compact semigroup.
Hernández and O'Regan [5] pointed out that the controllability results will be restricted to the �nite di-
mensional space when the compactness of a semigroup and some other assumptions are satis�ed. So, many
researchers have tried to get su�cient conditions guaranteeing the controllability results of various systems
without involving the compactness of a semigroup.

Wang et al . [6] studied the following fractional neutral di�erential system in an abstract space:{
CDq

t (x(t) + F (t, xt)) +Ax(t) = Cu(t) +G(t, xt), t ∈ (0, a],

x0(θ) = ϕ(θ), θ ∈ (−∞, 0].

By using the fractional power of operators and Sadovskii's �xed point theorem, they obtained the complete
controllability of fractional neutral di�erential systems in an abstract space without involving the compact-
ness of characteristic solution operators, but the main results require that the set Πh,δ(t) is relatively in a
Banach space X for arbitrary h ∈ (0, t) and δ > 0(see (H4) in [6]).

Fečkan et al . [7] discussed the controllability of a class of fractional functional evolution equations of
Sobolev type {

C
0 D

q
t (Ex(t)) +Ax(t) = f(t, xt) +Bu(t), t ∈ J := [0, a],

x(t) = ϕ(t), −r ≤ t ≤ 0,

in a Banach space. With the help of two new characteristic solution operators and their properties, such
as compactness and boundedness, the controllability results for fractional evolution equations were obtained
by the Schauder �xed point theorem. Later, researchers have always tried to avoid the compactness of
a semigroup via the measure of noncompactness. Ji et al . [8] considered the controllability of impulsive
functional di�erential equations with nonlocal conditions by the measure of noncompactness and the Mönch
�xed point theorem. Machado et al . [9] obtained the controllability results for a class of abstract impulsive
mixed-type functional integrodi�erential equations with �nite delay in Banach spaces, su�cient conditions
for controllability were obtained by the Mönch �xed point theorem via the measure of noncompactness
and semigroup theory. Those results in [8,9] do not assume the compactness of the evolution system, but
restrictive conditions on the estimated parameter of the measure of noncompactness are required.

By using the techniques of convex-power condensing operators, Zhu et al . [10] considered the existence
of mild solutions for one order impulsive semilinear di�erential equations with nonlocal conditions. Xue
[11] obtained the existence results of integral solutions for nonlinear one order di�erential equations with
nonlocal initial value conditions under the assumptions of the measure of noncompactness in a separable
and uniformly smooth Banach space. Ahmad et al . [12] showed the existence of mild solutions to one
order impulsive integrodi�erential equations with the nonlinearity of a form f(t, u(t), Gu(t)), where Gu(t)
represents a Volterra-type integral operator. Very recently, Wang and Zhou [13] investigated the complete
controllability of fractional semilinear systems in in�nite dimensional spaces of the type{

CDq
tx(t) = Ax(t) + f(t, xt) +Bu(t), t ∈ J := [0, b],

x(t) = x0 ∈ X.

Chen and Li [14] studied a nonlocal problem for fractional evolution equations of mixed type in a Banach
space, the existence of mild solutions and positive mild solutions was obtained by utilizing the measure of
noncompactness and a new �xed point theorem.
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Inspired by the above results, here we consider the controllability of the following fractional impulsive
evolution system of mixed type in an in�nite dimensional Banach space X:

CDq
tx(t) +Ax(t) = f

(
t, x(t)), (Sx)(t), (Tx)(t)

)
+Bu(t), t ∈ I = [0, b],

∆x|t=tk = Ik(x(t
−
k )), k = 1, 2, . . . ,m,

x(0) + g(x) = x0 ∈ X,
(1.1)

where CDq
t is the Caputo fractional derivative. 0 < q < 1, A : D(A) ⊂ X → X is a closed linear operator

and −A generates a uniformly bounded C0−semigroup (T (t))t≥0 in X. Here ∆ = {(t, s) : 0 ≤ s ≤ t ≤
b}, Ik : X → X, 0 = t0 < t1 < · · · < tm < tm+1 = b, ∆x|t=tk = x(t+k ) − x(t−k ), x(t

+
k ) = limh→0+ x(tk + h)

and x(t−k ) = limh→0− x(tk + h) represent the right and left limits of x(t) at t = tk, respectively. f and g will
be speci�ed later. B : U → X is bounded linear operator, u ∈ L2[I,U ], and integral operator S and T are
de�ned as

(Sx)(t) =

∫ t

0
k(t, s)x(s)ds, (Tx)(t) =

∫ b

0
h(t, s)x(s)ds. (1.2)

Here k ∈ C[∆1,R+], ∆1 = {(t, s) | 0 ≤ s ≤ t ≤ b}, and h ∈ C(∆2,R+), ∆2 = {(t, s) | 0 ≤ t, s ≤ b}.
In the present paper, we introduce a suitable concept of mild solutions for abstract control system

(1.1).Under some necessary conditions on the characteristic solution operators Sq(.) and Tq(.), we obtain the
su�cient conditions of controllability results for system (1.1) when the operator T (t), t > 0, is not compact.
The methods we use are a new estimation technique of the measure of noncompactness and a �xed point
theorem with respect to a convex-power condensing operator. The main results do not require any restrictive
conditions on estimated parameters of the measure of noncompactness, i.e., parameters Li(i = 1, 2, 3) do not
appear in inequality (3.1) and any other inequalities, which is the main di�erence between our study and
the previous results, and also the main contribution of this paper.

The rest of the paper is organized as follows. In Section 2, we present some preliminaries and lemmas
that are to be used later to prove our main results. In Section 3, we discuss the controllability results for
system (1.1). At last, an example is provided to illustrate the theory in Section 4. Section 5 is a conclusion.

2. Preliminaries

For the convenience of the readers, we shall recall here some necessary de�nitions from fractional calculus
theory and some properties of the measure of noncompactness, one can refer to the monographs by Podlubny
[15], Miller and Ross [16] and Deimling [17].

In this paper, we denote by X a Banach space with the norm ∥.∥. Assume that Y is another Banach
space, Lb(X,Y) denotes the space of bounded linear operators from X to Y. We also use ∥f∥Lp(I,R+) to de-
note the norm of f whenever f ∈ Lp(I,R+), 1 ≤ p <∞. Let Lp(I,X) denote the Banach space of functions
f : I → X which are Bochner integrable normed by ∥.∥Lp(I,X). C(I,X) represents a Banach space endowed
with supnorm, i.e., ∥x∥C ≡ supt∈I ∥x(t)∥ for x ∈ C(I,X).

De�nition 2.1 The fractional integral of order q > 0 with the lower limit zero for a function x ∈ L1(I,X)
is de�ned as

Iqt x(t) =
1

Γ(q)

∫ t

0
(t− s)q−1x(s)ds, (2.1)

where Γ(.) is the Euler gamma function.

De�nition 2.2 The Caputo fractional derivative of order q > 0 with the lower limit zero for a functional x
is de�ned as

CDq
tx(t) =

1

Γ(n− q)

∫ t

0
(t− s)n−q−1x(n)(s)ds, 0 ≤ n− 1 < q < n, (2.2)
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where the function x(t) has absolutely continuous derivatives up to order n− 1.

De�nition 2.3 (see [13]) A functional x ∈ C(I,X) is said to be a mild solution of system (1.1) if it satis�es

x(t) =Tq(t)(x0 − g(x))

+

∫ t

0
(t− s)q−1Sq(t− s)[f(s, x(s), (Sx)(s), (Tx)(s)) +Bu(s)]ds

+
m∑
k=1

Tq(t− tk)Ik(x(t
−
k )), t ∈ (tm, b],

where operators Tq(t) and Sq(t) are de�ned by

Tq(t)x =

∫ ∞

0
hq(s)T (t

qs)xds, Sq(t)x = q

∫ ∞

0
shq(s)T (t

qs)xds,

where

hq(s) =
1

πq

∞∑
n=1

(−s)n−1Γ(nq + 1)

n!
sin(nπq), s ∈ (0,∞),

is the functional of Wright type de�ned on (0,∞) which satis�es

hq(s) ≥ 0, s ∈ (0,∞),

∫ ∞

0
hq(s)ds = 1,∫ ∞

0
sνhq(s)ds =

Γ(1 + ν)

Γ(1 + qν)
, ν ∈ [0, 1].

Lemma 2.1 (see [14]) The operators Tq(t),Sq(t)(t ≥ 0) have the following properties:
(1) For any �xed t ≥ 0, Tq(t) and Sq(t) are linear bounded operators, i.e., for any x ∈ X,

∥Tq(t)x∥ ≤M1∥x∥, ∥Sq(t)x∥ ≤ qM1

Γ(1 + q)
∥x∥ =

M1

Γ(q)
∥x∥, (2.3)

where M1 is a positive constant to be speci�ed later.
(2) The operators Tq(t)(t ≥ 0) and Sq(t)(t ≥ 0) are strongly continuous. Therefore, for all x ∈ X and

0 ≤ t′ ≤ t′′ ≤ b, one has

∥Tq(t′′)x− Tq(t′)x∥ → 0, ∥Sq(t
′′)x− Sq(t

′)x∥ → 0 as t′′ → t′. (2.4)

Lemma 2.2 Let X be a Banach space and ΩX the bounded set of X. The Kuratowski measure of noncom-
pactness is the map ∂ : ΩX → [0,+∞) de�ned by

∂(D) = inf
{
d > 0 : D ⊆

n⋃
i=1

Di and diam(Di) ≤ d
}
, here D ∈ ΩX. (2.5)

Lemma 2.3 Let D1, D2 be two bounded sets of a Banach space X. Then:
(1) ∂(D1) = 0 if and only if D1 is relatively compact.
(2) ∂(D1) ≤ ∂(D2) if D1 ⊆ D2.
(3) ∂(D1 +D2) ≤ ∂(D1) + ∂(D2).

Lemma 2.4 (see [18]) Let X be a Banach space and D ⊂ C(I,X) be bounded and equicontinuous. Then
∂(D(t)) is continuous on I, and

∂(D) = max
t∈I

∂(D(t)) = ∂(D(I)). (2.6)
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Lemma 2.5 (see [19]) Let X be a Banach space, let D = {xn} ⊂ C(I,X) be a bounded and countable set.
Then ∂(D(t)) is Lebesgue integral on I, and

∂

({∫
I
xn(t)dt

∣∣∣n ∈ N

})
≤ 2

∫
I
∂(D(t))dt. (2.7)

Lemma 2.6 (see [14]) Let X be a Banach space, D ⊂ X be bounded. Then there exists a countable D0 ⊂ D
such that ∂(D) ≤ 2∂(D0).

Lemma 2.7 (Fixed point theorem with respect to a convex-power condensing operator, see [20]) Let X be a
Banach space, let D ⊂ E be bounded, closed and convex. Suppose that Q : D → D is a continuous operator
and Q(D) is bounded. For any S ⊂ D and x0 ∈ D, set

Q(1,x0)(S) ≡ Q(S), (2.8)

Q(n,x0)(S) ≡ Q(c̄o{Q(n−1,x0)(S), x0}), n = 2, 3, . . . (2.9)

If there exist x0 ∈ D and a positive integer n0 such that for any bounded and noncompact subset S ⊂ D,

∂(Q(n,x0)(S)) < ∂(S), (2.10)

then Q has at least one �xed point in D.

De�nition 2.4 The fractional system (1.1) is said to be controllable on the interval I if, for every x0, x1 ∈ X,
there exists a control u ∈ L2(I,U) such that a mild solution x of system (1.1) satis�es x(b) + g(x) = x1.

3. Main Results

For the convenience of presentation,we list here the following hypotheses to be used later.

(H1) The operator A : D(A) ⊂ X → X is a closed linear operator, and −A generates an equicountin-
uous C0-semigroup (T (t))t>0 of uniformly bounded operators in X, there exists a constant M1 such that
supt∈I ∥T (t)∥ ≤M1.

(H2) The nonlinearity f : I × X × X × X → X satis�es the Carathéodory type conditions, that is,
f(., x, Sx, Tx) is strong measure for all x ∈ X, and f(t,. ,. ,. ) is continuous for a.e. t ∈ I.

(H3) For r > 0, there exist constants q1 ∈ [0, q) and functions φr ∈ L1/q1(I,R+) such that for a.e. t ∈ I
and all x ∈ X satisfying ∥x∥ ≤ r,

∥f(t, x, Sx, Tx)∥ ≤ φr(t).

Moreover, there exists a constant ρ1 > 0 such that

lim
r→+∞

inf
∥φr(s)∥L1/q1 [0,b]

r
= ρ1 < +∞.

(H4) There exist constants Li > 0(i = 1, 2, 3) such that for any bounded and countable sets Di ⊂ E(i =
1, 2, 3) and a.e. t ∈ I,

∂(f(t,D1, D2, D3)) ≤ L1∂(D1) + L2∂(D2) + L3∂(D3).
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(H5) The nonlocal term g : C(I, E) → X is compact and continuous, there exist a constant ρ2 > 0 and a
nondecreasing continuous function ψ : R+ → R+ such that, for some r > 0 and all x ∈ Ωr = {x ∈ C(I,X) :
∥x∥C ≤ r},

∥g(x)∥ ≤ ψ(r), lim
r→+∞

inf
ψ(r)

r
= ρ2 < +∞.

(H6) The linear operator B : L2(I,U) → L1(I,X) is bounded, W : L2(I,U) → X de�ned by

Wu =

∫ b

0
(b− s)q−1Sq(b− s)Bu(s)ds

has an inverse operator W− which takes values in L2(I,U)/ kerW , and there exist two positive constants
M2,M3 > 0 such that

∥B∥Lb(U ,X) ≤M2, ∥W−∥Lb(X,L2(I,U/ kerW ) ≤M3.

(H7) Ik : X → X are continuous and M4 is a positive constant,

∥∥∥ i∑
k=1

Tq(t− ti)Ik(x(t
−
k ))
∥∥∥ ≤M4

(H8) Ik : X → X are continuous and there exist M ∈ C[I,R+] such that

∥Ik(x1)− Ik(x2)∥ ≤M(t)∥x1 − x2∥, x1, x2 ∈ X, k = 1, 2, . . . ,m.

Theorem 3.1 Assume that hypotheses (H1)−(H8) are satis�ed. Further assume that the following inequality
holds:

M1∥x0∥+M1ρ2 +
M1b

q−q1

Γ(q)

(
1− q1
q − q1

)
ρ1 +

M1M2

Γ(q)

∫ t

0
(t− s)q−1

×M3

[
∥x1∥+M1∥x0∥+M1ρ2 +

M1b
q−q1

Γ(q)

(
1− q1
q − q1

)
ρ1

]
ds ≤ 1, (3.1)

then the fractional impulsive evolution system (1.1) is controllable on I.
Proof De�ne the operator Q : C(I,X) → C(I,X) as follows:

(Qx)(t) = Tq(t)(x0 − g(x))

+

∫ t

0
(t− s)q−1Sq(t− s)[f(s, x(s), (Sx)(s), (Tx)(s)) +Bux(s)]ds

+

m∑
k=1

Tq(t− tk)Ik(x(t
−
k )), t ∈ (tm, b]. (3.2)

We shall show that, using the control

ux(t) = W−
[
x1 − Tq(b)(x0 − g(x))

−
∫ b

0
(b− s)q−1Sq(b− s)f(s, x(s), (Sx)(s), (Tx)(s))ds

]
(t), (3.3)

the operator Q has a �xed point, which is a mild solution of fractional evolution system (1.1). Note that
(Qx)(b) = x1 and De�nition 2.4, which means that system (1.1) is controllable on I.
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Step 1. Q maps bounded sets into bounded sets.
For any x ∈ Ωr, it follows from Lemma 2.1, hypotheses (H3), (H5) and (H6), and the Hölder inequality

that

∥(Qx)(t)∥ ≤M1∥x0∥+M1∥g(x)∥+
M1

Γ(q)

∫ t

0
(t− s)q−1∥f(t, x(s), (Sx)(s), (Tx)(s))∥ds

+
M1

Γ(q)

∫ t

0
(t− s)q−1∥Bux(s)∥ds+

∥∥∥ i∑
k=1

Tq(t− ti)Ik(x(t
−
k ))
∥∥∥

≤M1∥x0∥+M1ψ(r) +
M1b

q−q1

Γ(q)

(
1− q1
q − q1

)
∥φr∥L1/q1 [0,b] +

M1M2

Γ(q)

∫ t

0
(t− s)q−1

×M3

[
∥x1∥+M1∥x0∥+M1ψ(r)

+
M1b

q−q1

Γ(q)

(
1− q1
q − q1

)
∥φr∥L1/q1 [0,b]

]
ds. (3.4)

By (3.1) and (3.4), we know that ∥(Qx)(t)∥ ≤ r. Therefore, Q maps bounded sets into bounded sets.
Step 2. Q is continuous in Ωr.
Assume that {xn}∞n=1 ⊂ Ωr and limn→∞ xn = x∗. By hypotheses (H2) and (H5), we get

lim
n→+∞

f(s, xn(s), (Sxn)(s), (Txn)(s)) = f(s, x(s), (Sx)(s), (Tx)(s)),

lim
n→+∞

g(xn) = g(x). (3.5)

From hypothesis (H3). we have

(t− s)q−1∥f(s, xn(s), (Sxn)(s), (Txn)(s))− f(s, x(s), (Sx)(s), (Tx)(s))∥
≤ 2(t− s)q−1φr(s). (3.6)

Then by the Lebesgue dominated convergence theorem, we obtain that

∥(Qxn)(t)− (Qx)(t)∥ ≤M1∥g(xn)− g(x)∥

+
M1

Γ(q)

∫ t

0
(t− s)q−1[∥f(s, xn(s), (Sxn)(s), (Txn)(s))

− f(s, x(s), (Sx)(s), (Tx)(s))∥

+
∥∥∥ i∑

k=1

T (t− ti)Ik(xn(t
−
k ))−

i∑
k=1

T (t− ti)Ik(x(t
−
k ))
∥∥∥

+ ∥Buxn(s)−Bux(s)∥]ds→ 0, n→ ∞. (3.7)

Therefore, ∥Qxn −Qx∥C → 0 as n→ ∞, that is, Q is continuous.
Step 3. Q : Ωr → Ωr is equicontinuous.
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For any x ∈ Ωr and 0 ≤ t1 < t2 ≤ b, we know that

(Qx)(t2)− (Qx)(t1) = (Tq(t2)− Tq(t1))(x0 − g(x)) denoted by I1

+

∫ t2

t1

(t2 − s)q−1Sq(t2 − s)f(s, x(s), (Sx)(s), (Tx)(s))ds denoted by I2

+

∫ t2

t1

(t2 − s)q−1Sq(t2 − s) +Bux(s)ds denoted by I5

+

∫ t1

0
[(t2 − s)q−1 − (t1 − s)q−1]f(s, x(s), (Sx)(s), (Tx)(s))ds denoted by I3

+

∫ t1

0
[(t2 − s)q−1 − (t1 − s)q−1]Bux(s)ds denoted by I6

+

∫ t1

0
(t1 − s)q−1[Sq(t2 − s)− Sq(t1 − s)]f(s, x(s), (Sx)(s), (Tx)(s))ds denoted by I4

+

∫ t1

0
(t1 − s)q−1[Sq(t2 − s)− Sq(t1 − s)]Bux(s)ds denoted by I7

+

i∑
k=1

T (t2 − ti)Ik(x(t
−
k ))−

i∑
k=1

T (t1 − ti)Ik(x(t
−
k )) denoted by I8

= I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8. (3.8)

Next, we shall show that ∥(Qx)(t2)− (Qx)(t1)∥ → 0 as t2 → t1. For I1, by Lemma 2.1, ∥I1∥ → 0 as t2 → t1.
For I2, by hypothesis (H3) and the Hölder inequality, we know that

∥I2∥ ≤ M1

Γ(q)

∫ t2

t1

(t2 − s)q−1φr(s)ds

≤ M1

Γ(q)

(∫ t2

t1

(t2 − s)(q−1)/(1−q1)ds

)1−q1

× ∥φr∥L1/q1 [t1,t2]

≤
M1∥φr∥L1/q1 [t1,t2]

Γ(q)

(
1− q1
q − q1

)1−q1

(t2 − t1)
q−q1 . (3.9)

Obviously, ∥I2∥ → 0 as t2 → t1. we have

∥I3∥ ≤ M1

Γ(q)

∫ t1

0

(
(t1 − s)q−1 − (t2 − s)q−1

)
φr(s)ds

≤ M1

Γ(q)

(∫ t1

0

(
(t1 − s)q−1 − (t2 − s)q−1

)1/(1−q1)ds

)1−q1

× ∥φr∥L1/q1 [0,t1]

≤ M1

Γ(q)

(∫ t1

0

(
(t1 − s)

q−1
1−q1 − (t2 − s)

q−1
1−q1

)
ds

)1−q1

× ∥φr∥L1/q1 [0,b]

≤
M1∥φr∥L1/q1 [0,b]

Γ(q)

(
1− q1
q − q1

)1−q1

×
(
t
q−q1
1−q1
1 − t

q−q1
1−q1
2 + (t2 − t1)

q−q1
1−q1

)1−q1

≤
21−q1M1∥φR∥L1/q1 [0,b]

Γ(q)

(
1− q1
q − q1

)1−q1

(t2 − t1)
q−q1 . (3.10)

So we get that ∥I3∥ → 0 as t2 → t1. For t1 = 0, 0 < t2 ≤ b, we have ∥I4∥ = 0. For t1 > 0 and ε > 0 small
enough, by hypothesis (H3), the Lebesgue dominated convergence theorem, and the equicontinuity of T (t),
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we get that

∥I4∥ ≤
∫ t1−ε

0
(t1 − s)q−1

[
Sq(t2 − s)− Sq(t1 − s)

]
f
(
s, x(s), (Sx)(s), (Tx)(s)

)
ds

+

∫ t1

t1−ε
(t1 − s)q−1

[
Sq(t2 − s)− Sq(t1 − s)

]
f
(
s, x(s), (Sx)(s), (Tx)(s)

)
ds

≤
∫ t1−ε

0
(t1 − s)q−1

[
Sq(t2 − s)− Sq(t1 − s)

]
f
(
s, x(s), (Sx)(s), (Tx)(s)

)
ds

+
2M1

Γ(q)

∫ t1

t1−ε
(t1 − s)q−1φr(s)ds

≤
∫ t1−ε

0
(t1 − s)q−1

[
Sq(t2 − s)− Sq(t1 − s)

]
f
(
s, x(s), (Sx)(s), (Tx)(s)

)
ds

+
2M1∥φR∥L1/q [0,b]

Γ(q)

(
1− q1
q − q1

)1−q1

εq−q1 . (3.11)

Then ∥I4∥ → 0 as t2 → t1,ε→ 0. In similar way, for I5, I6, I7, I8, we obtain

∥I5∥ ≤ M1M2

Γ(q)

(
1− q1
q − q1

)1−q1

(t2 − t1)
q−q1

(∫ t2

t1

∥ux∥1/q1ds

)q1

,

∥I6∥ ≤ 21−q1M1M2

Γ(q)

(
1− q1
q − q1

)1−q1

(t2 − t1)
q−q1

(∫ t1

0
∥ux∥1/q1ds

)q1

,

∥I7∥ ≤M2

(∫ t1−ε

0
(t1 − s)q−1

[
Sq(t2 − s)− Sq(t1 − s)

]
f
(
s, x(s), (Sx)(s), (Tx)(s)

)
ds

+
2M1

Γ(q)

(
1− q1
q − q1

)1−q1

εq−q1

)1−q1(∫ t1

0
∥ux∥1/q1ds

)q1

. (3.12)

It can be easily seen that I5, I6 and I7 tend to 0. Therefore, for any x ∈ Ωr, ∥(Qx)(t2)− (Qx)(t1)∥ → 0 as
t2 → t1, which means that Q : Ωr → Ωr is equicontinuous.

Step 4. Q : F → F is a convex-power condensing operator.
F = c̄oQ(Ωr), where c̄o means the closure of convex hull. It is easy to see that Q maps F into itself and

F ⊂ C(J,E) is equicontinuous. Next, we shall show that there exists s positive integer n0 such that for any
bounded and nonprecompact subset D ⊂ F, x0 ∈ F ,

∂
(
Q(n0,x0)(D)

)
< ∂(D). (3.13)

Obviously, Q(n,x0)(D) ⊂ Ωr is also equicontinuous for D ⊂ F and x0 ⊂ F . Therefore, from Lemma 2.4, we
attain

∂
(
Q(n,x0)(D)

)
= max

t∈I
∂
(
Q(n,x0)(D)(t)

)
, n = 1, 2, . . . (3.14)

Note that by Lemma 2.6, there exists a countable set D1 = {x1n} ⊂ D such that

∂
(
Q(D)(t)

)
≤ 2∂

(
Q(D1)(t)

)
. (3.15)
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By (H4) and (H6), we have

∂
(
ux1

n
(t)
)
= ∂

{
W−

[
x1 − Tq(b)

(
x0 − g(x1n)

)
−
∫ b

0
(b− s)q−1Sq(b− s)f

(
s, x1n(s), (Sx

1
n)(s), (Tx

1
n)(s)

)]
(t)

}
≤M3

4M1

Γ(q)

∫ b

0
(b− s)q−1

[
L1∂

(
D1(s)

)
+ L2∂

(
(SD1)(s)

)
+ L3∂

(
(TD1)(s)

)]
ds

≤M3
4M1(L1 + bK0L2 + bH0L3)b

q

Γ(1 + q)
∂(D1). (3.16)

Suppose instead

L =M3
4M1(L1 + bK0L2 + bH0L3)b

q

Γ(1 + q)
, K0 = max

(t,s)∈∆1

|k(t, s)|, H0 = max
(t,s)∈∆2

|h(t, s)|,

then

∂
(
(Q(1,x0)D)(t)

)
= ∂

(
(QD)(t)

)
≤ 2∂

(
(QD1)(t)

)
≤ 2∂

(
Tq(t)g(x1n) +

∫ t

0
(t− s)q−1Sq(t− s)

[
f
(
s, x1n(s), (Sx

1
n)(s), (Tx

1
n)(s)

)
+Bux1

n
(s)
]
ds

)
≤ 4M1

Γ(q)

∫ t

0
(t− s)q−1∂

(
f
(
s, x1n(s), (Sx

1
n)(s), (Tx

1
n)(s)

)
+Bux1

n
(s)
)
ds

≤ 4M1

Γ(q)

∫ t

0
(t− s)q−1(L1 + bK0L2 + bH0L3 + L)∂

(
D1(s)

)
ds

≤ 4M1(L1 + bK0L2 + bH0L3 + L)tq

Γ(1 + q)
∂(D). (3.17)

There exists a countable set D2 = {x2n} ⊂ c̄o{(Q(1−x0)D), x0} such that

∂
(
Q
(
c̄o
{
(Q(1,x0)D), x0

})
(t)
)
≤ 2∂

(
(QD2)(t)

)
, (3.18)

∂
((
Q(2,x0)D

)
(t)
)
= ∂

(
Q
(
c̄o
{
(Q(1,x0)D), x0

})
(t)
)
≤ 2∂

(
(QD2)(t)

)
≤ 2∂

(
Tq(t)g(x2n) +

∫ t

0
(t− s)q−1Sq(t− s)

[
f
(
s, x2n(s), (Sx

2
n)(s), (Tx

2
n)(s)

)
+Bux2

n
(s)
]
ds

)
≤ 4M1

Γ(q)

∫ t

0
(t− s)q−1∂

(
f(s, x2n(s), (Sx

2
n)(s), (Tx

2
n)(s)) +Bux2

n
(s)
)
ds

≤ 4M1

Γ(q)

∫ t

0
(t− s)q−1(L1 + bK0L2 + bH0L3 + L)∂

(
D2(s)

)
ds
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≤ 4M1

Γ(q)

∫ t

0
(t− s)q−1(L1 + bK0L2 + bH0L3 + L)∂

(
c̄o{(Q(1,x0)D), x0}(s)

)
ds

≤ [4M1(L1 + bK0L2 + bH0L3 + L)tq]2

Γ(q)Γ(1 + q)

∫ t

0
(t− s)q−1sq∂(D)ds

=
[4M1(L1 + bK0L2 + bH0L3 + L)tq]2

Γ(1 + 2q)B(1 + q, q)

∫ 1

0
(1− s)q−1sqds∂(D)

=
[4M1(L1 + bK0L2 + bH0L3 + L)tq]2

Γ(1 + 2q)
∂(D), (3.19)

where B(p, q) =
∫ t
0 s

p−1(1− s)q−1ds is the beta function. Suppose instead

∂
(
(Q(k,x0)D)(t)

)
≤ [4M1(L1 + bK0L2 + bH0L3 + L)tq]k

Γ(1 + kq)
∂(D), ∀t ∈ I. (3.20)

Similarly, we get that

∂
(
(Q(k+1,x0)D)(t)

)
= ∂

(
Q(c̄o{(Q(k,x0)D), x0})(t)

)
≤ 2∂

(
(QDk+1)(t)

)
≤ 4M1

Γ(q)

∫ t

0
(t− s)q−1∂

(
f(s, xk+1

n (s), (Sxk+1
n )(s), (Txk+1

n )(s)) +Buxk+1
n

(s)
)
ds

≤ 4M1

Γ(q)

∫ t

0
(t− s)q−1

[
L1∂

(
Dk+1(s)

)
+ L2∂

(
(SDk+1)(s)

)
+ L3∂

(
(TDk+1)(s)

)
+ L∂

(
Dk+1(s)

)]
ds

≤ 4M1

Γ(q)

∫ t

0
(t− s)q−1(L1 + bK0L2 + bH0L3 + L)∂

(
Dk+1(s)

)
ds

≤ 4M1

Γ(q)

∫ t

0
(t− s)q−1(L1 + bK0L2 + bH0L3 + L)∂

(
c̄o{(Q(k,x0)D), x0}(s)

)
ds

≤ [4M1(L1 + bK0L2 + bH0L3 + L)tq]k+1

Γ(q)Γ(1 + kq)

∫ t

0
(t− s)q−1skq∂(D)ds

=
[4M1(L1 + bK0L2 + bH0L3 + L)tq]k+1

Γ(1 + (k + 1)q)B(1 + q, q)

∫ 1

0
(1− s)q−1skqds∂(D)

=
[4M1(L1 + bK0L2 + bH0L3 + L)tq]k+1

Γ(1 + (k + 1)q)
∂(D). (3.21)

Then by the principle of mathematical induction, for any n > 0, we attain

∂
(
(Q(n,x0)D)(t)

)
=

[4M1(L1 + bK0L2 + bH0L3 + L)tq]n

Γ(1 + nq)
∂(D). (3.22)

So we have

∂
(
(Q(n,x0)D)

)
= max

t∈I
∂
(
(Q(n,x0)D)(t)

)
≤ [4M1(L1 + bK0L2 + bH0L3 + L)bq]n

Γ(1 + nq)
∂(D). (3.23)

From [14], there exists a large enough positive integer n0 such that

[4M1(L1 + bK0L2 + bH0L3 + L)bq]n0

Γ(1 + nq)
< 1. (3.24)
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Hence

∂
(
(Q(n,x0)D)

)
< ∂(D). (3.25)

Therefore Q : F → F is a convex-power condensing operator, Q has at least one �xed point, which is a mild
solution of system (1.1). By De�nition 2.4, system (1.1) is controllable on I.

In order to obtain more controllability results, we replace conditions (H3) and (H5) by the following
hypotheses:

(H′
3) There exist a function φ ∈ L1/q1(I,R+), q1 ∈ [0, q) and a nondecreasing continuous function

Ψ : R+ → R+ such that

∥f(t, x, Sx, Tx)∥ ≤ φ(t)Ψ(∥x∥)

for all x ∈ X and a.e. t ∈ I.

(H′
5) The nonlocal term g : C(I, E) → X is compact and continuous, and there exist constants d, c > 0

such that

∥g(u)∥ ≤ d∥x∥C + c.

Theorem 3.2 Assume that hypotheses (H1)− (H2), (H
′
3), (H4) and (H′

5) are satis�ed. Further assume that
there exists a constant R and the following inequality holds:[

M1∥x0∥+M1dR+M1c+
M1Ψ(R)b1−q1

Γ(q)

(
1− q1
q − q1

)1−q1

∥φ∥L1/q1 [0,b]

]
+
M1M2M3

Γ(q)

×

[
∥x1∥+M1∥x0∥+M1dR+M1c+

M1Ψ(R)b1−q1

Γ(q)

(
1− q1
q − q1

)1−q1

∥φ∥L1/q1 [0,b]

]

× b1−q1

(
1− q1
q − q1

)1−q1

≤ R, (3.26)

then the fractional evolution system (1.1) is controllable on I.

Proof By the de�nition of ux and the hypotheses we imposed, we have

M1

Γ(q)

∫ t

0
(t− s)q−1∥Bux(s)∥ds

≤ M1M2M3

Γ(q)

∫ t

0
(t− s)q−1

[
∥x1∥+M1∥x0∥+M1d∥x∥C +M1c

+
M1Ψ(R)

Γ(q)

∫ b

0
(b− s)q−1φ(τ)dτ

]
(s)ds

≤ M1M2M3

Γ(q)

[
∥x1∥+M1∥x0∥+M1dR+M1c+

M1Ψ(R)b1−q1

Γ(q)

(
1− q1
q − q1

)1−q1

∥φ∥L1/q1 [0,b]

]

× b1−q1

(
1− q1
q − q1

)1−q1

(3.27)
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From (3.26) we have

∥(Qx)(t)∥ ≤M1∥x0∥+M1∥g(x)∥+
M1

Γ(q)

∫ t

0
(t− s)q−1∥f

(
s, x(s), (Sx)(s), (Tx)(s)

)
∥ds

+
M1

Γ(q)

∫ t

0
(t− s)q−1∥Bux(s)∥ds

≤

[
M1∥x0∥+M1dR+M1c

+
M1Ψ(R)b1−q1

Γ(q)

(
1− q1
q − q1

)1−q1

∥φ∥L1/q1 [0,b]

]
+
M1M2M3

Γ(q)

×

[
∥x1∥+M1∥x0∥+M1dR+M1c+

M1Ψ(R)b1−q1

Γ(q)

(
1− q1
q − q1

)1−q1

∥φ∥L1/q1 [0,b]

]

× b1−q1

(
1− q1
q − q1

)1−q1

≤ R. (3.28)

Using a similar method as in the previous proof, we can get that the fractional evolution system (1.1) is
controllable on I.

4. Example

Consider the following fractional control system governed by a fractional partial di�erential equation:
∂qz(t,y)

∂tq = ∂2z(t,y)
∂y2

+ F (t, z(t, y), Sz(s, y), T z(s, y)) + µ(t, y), t ∈ [0, 1], y ∈ (−∞,+∞),

z(0, y) = z0(y) +
1

t1/2
sin z(t, y),

z(t,−∞) = z(t,+∞) = 0,

∆z|t=1/2 = I1
(
x
(
1
2

−))
,

(4.1)

where ∂q

∂tq is a Caputo fractional partial derivative of order 0 < q < 1, F is a given function.

Sz(t, y) =

∫ t

0
k(t, s)z(s, y)ds, Tz(t, y) =

∫ t

0
h(t, s)z(s, y)ds (4.2)

µ : [0, 1]× (−∞,+∞) → (−∞,+∞) is continuous. Let X = U = L2(−∞,+∞), assume that the operator A
is de�ned by Aw = w′′, with the domain D(A) = {w(.) ∈ L2(−∞,+∞), w′, w′′ ∈ L2(−∞,+∞)}. It is well
known that A is the in�nitesimal generator of a di�erentiable(equicontinuity) semigroup T (t)(t > 0) but not
compact in X, which is given by

(
T (t)x

)
(y) =


∫ +∞
−∞ G(t, y − s)x(s)ds, t > 0,

x(y), t = 0,

I1(x) = ω(t)x,

(4.3)

where G(t, y) = 1√
4πt
e−

y2

4t (t > 0,−∞ < y < +∞). Moreover, it is easy to get that

sup
t∈[0,+∞)

∥T (t)∥Lb(X) ≤ 1. (4.4)
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Put x(t)(y) = z(t, y), u(t)(y) = µ(t, y), de�ned the operator B : U → X by Bu(t)(y) = µ(t, y),−∞ < y <
+∞. Then, with the appropriate choice of A,B, f and g, the fractional evolution system (4.1) can be written
in the form of (1.1). The following conditions hold:

Wu :=

∫ b

0
(b− s)q−1Sq(b− s)Bu(s)ds (4.5)

∥I1(x)− I1(y)∥ ≤ ω(t)∥x− y∥

has bounded invertible operator W− de�ned by L2([0, b];U)/ kerW . If we can verify that all the conditions
of Theorem 3.1 and inequality (3.1) are satis�ed, the fractional control system (1.1) is controllable on [0,1],
then the fractional control system (4.1) is controllable.

5. Conclusions

In this paper, using the uniform boundedness, equicontinuity of an operator semigroup and a �xed
theorem with respect to a convex-power condensing operator, we have obtained the controllability of abstract
fractional evolution control systems in a Banach space. It is well known that the compactness conditions
of the operator semigroup can be weakened to equicontinuity. However, we have not only implemented a
concrete assumption on the compactness condition via a parameter estimator but also removed the estimated
parameter constraints; the su�cient conditions of controllability for various semilinear evolution systems are
hence weakened. The conclusion of this paper is one of the most important developments in the aspect of
imposing the necessary condition of controllability.
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