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Abstract
Let V be an n-dimensional vector space over the field F with a basis B = {α1, . . . , αn}.
For a non-zero vector v ∈ V \ {0}, the skeleton of v with respect to the basis B is defined
as SB(v) = {αi : v =

∑n
i=1 aiαi, ai ̸= 0}. The non-zero component union graph Γ(VB) of

V with respect to B is the simple graph with vertex set V = V \ {0} and two distinct
non-zero vectors u, v ∈ V are adjacent if and only if SB(u) ∪ SB(v) = B. First, we obtain
some graph theoretical properties of Γ(VB). Further, we characterize all finite dimensional
vector spaces V for which Γ(VB) has genus either 0 or 1 or 2. In the last part of the paper,
we characterize all finite dimensional vector spaces V for which the cross cap of Γ(VB) is
1.
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1. Introduction
The investigation of mathematical structures utilizing the properties of graphs has be-

come an energizing exploration theme over the most recent couple of decades, prompting
numerous intriguing outcomes and questions. The study of algebraic properties by using
the discrete structure of graphs was instituted by Beck[2] to introduce and study about the
zero-divisor graph of a commutative ring with unity. Also different type of graphs from
algebraic structures are defined and studied in[1, 6]. Das[4, 5] defined and studied about
various graphs from vector spaces. Further studies of graphs from vector spaces were also
appeared in [5,12,13]. More specifically, Das has introduced and studied two graphs viz.,
non-zero component graph [5] and non-zero component union graph[4] of vector spaces.
Das[4] studied about the domination number, the clique number and the chromatic num-
ber of non-zero component union graph of finite-dimensional vector spaces. Recent years,
graph embeddings in a surface is an interesting area of research and for some of the stud-
ies one can refer[10, 14]. Also the crosscap of are studied in[8, 11]. Tamizh Chelvam and
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Prabha Ananthi[12] studied about genus properties of non-zero component graph of finite
dimensional vector spaces. In this paper, we are interested about the genus of the non-zero
component union graph of finite-dimensional vector spaces.

2. Preliminaries
Let V be a finite dimensional vector space over the field F with B = {α1, α2, . . . , αn}

as a basis. Throughout this paper, V is a finite dimensional vector space with dimension
n over the finite field F with q elements. Any vector v ∈ V can be expressed uniquely
as a linear combination v = a1α1 + a2α2 + . . . + anαn where ai ∈ F and the same is
denoted by v = (a1, a2, . . . , an). The skeleton of v ∈ V∗ with respect to B is defined as
SB(v) = {αi : ai ̸= 0, i = 1, 2, . . . , n}. The non-zero component union graph Γ(VB) of
V with respect to B is the simple graph with vertex set V = V \ {0} and two distinct
non-zero vectors u, v ∈ V are adjacent if and only if SB(u) ∪ SB(v) = B.

Now, let us recall basic definitions and notations about graphs. By a graph G = (V, E),
we mean a simple graph with non-empty vertex set V and edge set E. The number of
elements in V is called order of G and the number of elements in E is called the size of
G. A graph G is said to be complete if every pair of distinct vertices is adjacent in G. We
denote the complete graph of order n by Kn. A graph G is bipartite if the vertex V can
be partitioned into two disjoint subsets with no pair of vertices in one subset is adjacent.
A star graph is a bipartite graph with any one of the partition containing a single vertex
and the same is called as the center of the star. A graph G is connected if there exists a
path between every pair of distinct vertices in G. The degree of the vertex v ∈ V, denoted
by d(v), is the number of edges in G which are incident with v. A graph G is said to be
r-regular if the degree of all the vertices in G is r. The diameter of a connected graph is
supremum of shortest distances between pairs of distinct vertices in G and is denoted by
diam(G). The girth of G is defined as length of the shortest cycle in G and is denoted by
gr(G). We take gr(G) = ∞ if G contains no cycles. For undefined terms in graph theory,
we refer[3]

A graph G is said to be embedded in a surface S if G can be drawn in S such that
edges intersect only at vertices of G. Intuitively, G is embedded in a surface if it can be
drawn in the surface so that its edges intersect only at their common vertices. The genus
of a graph G is denoted by g(G), is the minimum integer n such that the graph can be
embedded in Sn, where Sn denotes the sphere with n handles. A planar graph is a graph
that can be embedded in the plane and the genus of planar graphs is zero. A graph G
is called toroidal if genus of G is one. Let S̄k denote the sphere with k crosscaps, where
k is a non-negative integer, that is, S̄k is a non-oriented surface with k crosscaps. The
crosscap of a graph G, denoted ḡ(G), is the minimal integer n such that the graph G can
be embedded in S̄n. We say a graph G is planar if ḡ(G) = 0, and projective if ḡ(G) = 1.
It is easy to see that ḡ(H) ≤ ḡ(G) for a subgraph H of G.

We list out certain existing results which will be referred in this paper.

Theorem 2.1. ([4, Theorem 4.2]) Let V be an n-dimensional vector space over a finite
field F with q elements. Then Γ(VB) is complete if and only if V is one-dimensional or V
is two-dimensional and |F| = 2.

Theorem 2.2. ([4, Theorem 6.3]) Let V be an n-dimensional vector space over a finite
field F with q elements. Then the clique number and chromatic number of Γ(VB) are both
equal to n + (q − 1)n. i.e., Γ(VB) is weakly perfect.

Theorem 2.3. ([4, Theorem 6.1]) Let V be an n-dimensional vector space over a finite
field F with q elements. Let Γ(VB) be the non-zero component union graph of V with
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respect to the basis B = {α1, α2, . . . , αn}. Let v = c1αi1 + c2αi2 + . . . + ckαik
be a vertex

in Γ(VB) with c1, c2, . . . , ck ̸= 0. Then deg(v) =
{

(q − 1)n−kqk if 1 ≤ k ≤ n;
qn − 2 if k = n.

Theorem 2.4. ([4, Theorem 6.2]) Let V be an n-dimensional vector space over a finite
field F with q elements. Then the order of Γ(VB) is qn − 1 and the size m of Γ(VB) is
(q − 1)n[(q + 1)n − 3]

2
.

Theorem 2.5. ([4, Corollary 6.1])Let V be an n-dimensional vector space over a finite
field F with q elements. The maximum and minimum degree of Γ(VB) is ∆ = qn − 2 and
δ = q(q − 1)n−1.

Theorem 2.6. ([4, Theorem 7.1]) I = {α ∈ Γ(VB) : S(α) ⊆ {α1, α2, . . . , αn−1}} is
a maximal independent set in Γ(VB). Moreover if F is a finite field with q elements,
|I| = qn−1 − 1.

Lemma 2.7. ([15, Theorem 6.38]) g(Kn) = ⌈ (n−3)(n−4)
12 ⌉ if n ≥ 3. In particular g(Kn) = 1

if n = 5, 6, 7.

Lemma 2.8. ([15, Corollary 6.12]) If G is a finite connected graph with n vertices, m
edges, and genus g, then n − m + f = 2 − 2g, where f is the number of faces created when
G is minimally embedded on a surface of genus g.

Theorem 2.9. ([7, pp. 115]) Let m, n be integers and for a real number x, ⌈x⌉ is the least
integer that is greater than or equal to x . Then

(1) ḡ(Kn) =
{

⌈ (n−3)(n−4)
6 ⌉ if n ≥ 3 and n ̸= 7;

3 if n = 7.

(2) ḡ(Km,n) = ⌈ (m−2)(n−2)
2 ⌉ where m, n ≥ 2.

Proposition 2.10. [15, Theorem 5.14] Let φ : G → Nk be a 2-cell embedding of a
connected graph G to the non-orientable surface Nk. Then v − e + f = 2 − k, where v, e
and f are the numbers of vertices, edges, and faces that φ(G) has respectively, and k is
the crosscap of Nk.

Theorem 2.11. ([9, Theorem 1]) A graph G is outerplanar if and only if it contains no
subgraph homeomorphic to K4 or K2,3 except K4 − x, where x denotes an edge of K4.

3. Properties of Γ(VB)
In this section, we characterize all finite dimensional vector spaces whose non-zero

component union graph is unicyclic or claw-free. Recall that a graph G is said to be
unicyclic, if it contains a unique cycle. A graph G is said to be claw-free if G does not
contain K1,3 as an induced subgraph of G.

Theorem 3.1. Let n ≥ 1 and q ≥ 2 be integers. Let V be an n dimensional vector space
over the field F with q elements. Then Γ(VB) is unicyclic if and only if either (n = 1 and
q = 4) or (n = 2 and q = 2).

Proof. Assume that Γ(VB) is unicyclic. First we claim that n ≤ 2 and q ≤ 4.
Suppose n ≥ 3. Note that the vertices u1 = (1, 1, . . . , 1), u2 = (1, 1, 0, 1, 1, . . . , 1), u3 =

(0, 0, 1, 1, . . . , 1), u4 = (1, 0, 1, 1, . . . , 1) and u5 = (0, 1, 1, . . . , 1) form two distinct cycles
u1 − u2 − u3 − u1 and u1 − u4 − u5 − u1 in Γ(VB), which is a contradiction. Hence n ≤ 2.

Suppose q ≥ 5. Then F contains non-zero elements a1, a2, a3 and ai ̸= 1 for 1 ≤
i ≤ 3. Now, the vertices v1 = (1, 1, . . . , 1), v2 = (a1, 1, 1, . . . , 1), v3 = (a2, 1, . . . , 1), v4 =
(a3, 1, . . . , 1) and v5 = (0, 1, 1, . . . , 1) form two distinct cycles v1 − v2 − v3 − v1 and
v1 − v4 − v5 − v1 which is a contradiction.
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Thus we have n ≤ 2 and q ≤ 4.
Case 1. Let n = 1. If q is either 2 or 3, then by Theorem 2.1, Γ(VB) is isomorphic to
either K1 or K2 respectively, it contradicts to the fact that Γ(VB) contains a unique cycle.
This implies that n = 1 and q = 4.
Case 2. Let n = 2. Suppose that q > 2. Then F contains an element a1 with a1 ̸= 0 and
a1 ̸= 1. Now, the vertices u1 = (1, 1), u2 = (0, 1), u3 = (1, 0), u4 = (a1, a1), u5 = (a1, 0)
and u6 = (0, a1) of Γ(VB) form two distinct cycles u1 − u2 − u3 − u1 and u4 − u5 − u6 − u4,
a contradiction. Hence n = 2 and q = 2.

Conversely, assume that (n = 1 and q = 4) or (n = 2 and q = 2). In both the cases, by
Theorems 2.1 and 2.4, Γ(VB) ∼= K3 and so it is unicyclic. �

Theorem 3.2. Let n ≥ 1 and q ≥ 2 be integers. Let V be an n-dimensional vector space
over the field F with q elements. Then Γ(VB) is claw-free if and only if either (n = 1) or
(n = 2 and q ≤ 3).

Proof. Assume that Γ(VB) is claw-free. Suppose n ≥ 3. Then the vertices {(1, 1, . . . , 1),
(1, 0, 0, . . . , 0), (0, 1, 0, 0, . . . , 0), (0, 0, 1, 0, 0, . . . , 0)} induce K1,3 as an induced subgraph of
Γ(VB), which is a contradiction. Hence n ≤ 2.

If n = 1, then there is nothing to prove. If n = 2 and q ≥ 4, then F contains a1 and a2
with a1, a2 ̸= 0 and a1, a2 ̸= 1. From this, the vertices u1 = (1, 1), u2 = (0, 1), u3 = (0, a1)
and u4 = (0, a2) form K1,3 as an induced subgraph of Γ(VB) with center at u1, which is
a contradiction. Hence q ≤ 3.

Thus we have, either (n = 1) or (n = 2 and q ≤ 3).
Conversely, assume that either (n = 1) or (n = 2 and q ≤ 3). If n = 1, by Theorem 2.1,

Γ(VB) is complete and hence claw free. If n = 2 and q = 2, then by Theorems 2.1 and 2.4,
Γ(VB) ∼= K3 and hence claw-free. If n = 2 and q = 3, then the graph Γ(VB) is given in
Fig. 1. One can check that the graph Γ(VB) given in Fig. 1 is claw-free. �
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Fig. 1: Γ(VB) where dim(V) = 2 and F = Z3.

4. Genus of Γ(VB)
In this section, we characterize all finite dimensional vector spaces V over a finite field

F whose Γ(VB) is planar.

Theorem 4.1. Let n ≥ 1 and q ≥ 2 be integers. Let V be an n-dimensional vector space
over the field F with q elements. Then Γ(VB) is planar if and only if either (n = 1 and
q ≤ 5) or (n = 2 and q = 2) or (n = 3 and q = 2).

Proof. Let us assume that Γ(VB) is planar. First we claim that n ≤ 3 and q ≤ 5.
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Suppose n ≥ 4. Let u1 = (1, 1, . . . , 1), u2 = (0, 1, 1, . . . , 1), u3 = (1, 0, 1, 1, . . . , 1), u4 =
(1, 1, 0, 1, 1, . . . , 1) and u5 = (1, 1, 1, 0, 1, 1, . . . , 1). Then the induced subgraph of Γ(VB)
induced by Ω = {u1, u2, u3, u4, u5} is K5, which is a contradiction to Γ(VB) is planar.
Hence n ≤ 3.

Suppose q ≥ 6. Then F contains 0, 1 ̸= ai for 1 ≤ i ≤ 4. Consider the vertices
u1 = (1, 1, . . . , 1), u2 = (a1, 1, 1, . . . , 1), u3 = (a2, 1, 1, . . . , 1), u4 = (a3, 1, 1, . . . , 1) and u5 =
(a4, 1, 1, . . . , 1). Then the induced subgraph of Γ(VB) induced by Ω = {u1, u2, u3, u4, u5}
is K5, which is a contradiction to Γ(VB) is planar. Hence q ≤ 5.

Thus we have, n ≤ 3 and q ≤ 5.
Case 1. Suppose n = 3 and q ≥ 3. Then F contains 0, 1 ̸= a1. Let u1 = (1, 1, 1), u2 =
(a1, a1, a1), u3 = (1, 1, a1), u4 = (1, a1, 1), u5 = (a1, 1, 1) and Ω = {u1, u2, u3, u4, u5}. Note
that the induced subgraph of Γ(VB) induced by Ω is K5, which is a contradiction. Hence
q = 2.
Case 2. Suppose n = 2 and q ≥ 3. Then F contains 0, 1 ̸= a1. Let u1 = (1, 1), u2 =
(a1, 1), u3 = (1, a1), u4 = (a1, a1), u5 = (0, 1) and Ω = {u1, u2, u3, u4, u5}. Note that
⟨Ω⟩ = K5 is an induced subgraph of Γ(VB), which is a contradiction. Hence q = 2.
Case 3. Suppose n = 1 and q ≥ 6. By Theorem 2.1, Γ(VB) is complete. Since q ≥ 6, K5
is a subgraph in Γ(VB), which is a contradiction to the fact that Γ(VB) is planar. Hence
q ≤ 5.

Conversely, if n = 1 and q ≤ 5. By Theorems 2.1 and 2.7, Γ(VB) is the complete graph
Kt for t ≤ 4. Thus Γ(VB) is planar.

If n = 2 and q = 2, then V ∼= Z2 × Z2 and F = Z2. In this case, Γ(VB) = C3, which is
trivially a planar graph.

If n = 3 and q = 2, then V ∼= Z2 × Z2 × Z2 and F = Z2. A planar embedding of Γ(VB)
is given in Fig. 2 and hence in this case also Γ(VB) is planar. �
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Fig. 2: Γ(Z2 × Z2 × Z2) over F = Z2

In the following theorems, we characterize all finite dimensional vector spaces V over
finite field F for which Γ(VB) is toroidal.

Lemma 4.2. For the graph H given in Fig. 3, g(H) ≥ 2.
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Fig. 3: Graph H

Proof. Note that the induced subgraph H ′ = ⟨{u1, u2, u3, u4, u5}⟩ of Γ(VB) is K5. By
Lemma 2.7, g(H ′) = 1. Since H ′ contains 5 vertices and 10 edges, by Theorem 2.8, any
embedding of H ′ in S1 has 5 faces namely f ′

1, f ′
2, . . . , f ′

5. Let fk be the number of k-gons
in H ′. Then 20 = 2e =

∑
k≥3

kfk ≥ 3f3 + 4f4 + 5f5.

Note that, {w1, w′
1}, {w2, w′

2} and {w3, w′
3} are pair of adjacent vertices with one com-

mon neighbourhood u1. Also, each pair of vertices is adjacent with two distinct vertices in
{u2, u3, u4, u5}. Now, to insert one pair from {(wj , w′

j) : j = 1, 2, 3} and all edges incident
with u1, ui in an embedding of H ′ in S1, we need face of minimum length 5. Hence, for
the embedding of H ′ in S1, one of the following holds with respect to number of k-gons:

(1) f3 = 1, f4 = 3, f5 = 1
(2) f3 = 2, f4 = 1, f5 = 2

In each of the above two cases, there exists a face f ′
k of H ′ of length 5 in S1. First let

us insert any one pair {(wj , w′
j) : j = 1, 2, 3} and all the edges incident with u1, ui into f ′

k

without any crossing as shown in Fig.4. In this case, the face f ′
k is divided into 6 faces

where each face has length less than 5.

b

bb

bb

b b

u1

wj w′
j

Fig. 4: The face f ′
k

Since face f ′
k is divided into 6 faces with each faces has length less than 5, no one can

insert any more pair of vertices from {(wj , w′
j) : j = 1, 2, 3} in f ′

k. Now consider the two
cases mentioned above:
Case 1 Suppose f3 = 1, f4 = 3 and f5 = 1. Since there exists a face has length 5, as
argued above, one can insert only one pair of vertices from {(wj , w′

j) : j = 1, 2, 3} and
other two pairs from {(wj , w′

j) : j = 1, 2, 3} and all the edges incident with u1, ui cannot
be inserted into an embedding of H ′ in S1.
Case 2 Suppose f3 = 2, f4 = 1 and f5 = 2. Since there exist two faces of length 5, so one
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can insert two pairs of vertices from {(wj , w′
j) : j = 1, 2, 3} and all the edges incident with

u1, ui into embedding of H ′ in S1. However one more remaining cannot be inserted into
such embedding.

Hence in both the cases one cannot insert all pair of vertices {(wj , w′
j) : j = 1, 2, 3} and

incident edges of H into any embedding on S1. Hence we conclude that g(H) ≥ 2. �

Theorem 4.3. Let n ≥ 1 and q ≥ 2 be integers. Let V be an n dimensional vector
space over the field F with q elements. Then Γ(VB) is toroidal if and only if n = 1 and
q = 6, 7, 8.

Proof. Let Γ(VB) be toroidal. Suppose n ≥ 5. Let u1 = (1, 1, . . . , 1), u2 = (0, 1, . . . , 1),
u3 = (1, 0, 1, . . . , 1), u4 = (1, 1, 0, 1, . . . , 1), u5 = (1, 1, 1, 0, 1, . . . , 1) and u6 = (1, 1, 1, 1, 0, 1,
. . . , 1). Here the induced subgraph H = ⟨{u1, u2, . . . , u6}⟩ is K6. Consider the toroidal
embedding of H given in Fig. 5.
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Fig. 5: Embedding H in S1

Let u7 = (0, 0, 1, 1, 1, 0, 0, . . . , 0), u8 = (1, 0, 1, 1, 0, 0, . . . , 0), u9 = (1, 1, 0, 0, 1, 1, . . . , 1)
and H ′ = ⟨{u1, u2, . . . , u9⟩} be the induced subgraph. Note that H ⊂ H ′. Now, consider
the toroidal embedding of H ′ − {u9u3, u9u4} given in the Fig. 6.
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Fig. 6: Toroidal embedding of H ′ − {u9u3, u9u4}

Since the Fig. 6 is triangulated, one cannot draw edges u8u2 and u8u3 without crossing,
which is a contradiction. Hence n ≤ 4.

Case 1. Let n = 4.
Case 1.1 Suppose q ≥ 3. Then F contains a1 with a1 ̸= 0 and a1 ̸= 1. Consider the ver-

tices u1 = (1, 1, 1, 1), u2 = (0, 1, 1, 1), u3 = (1, 0, 1, 1), u4 = (1, 1, 0, 1), u5 = (1, 1, 1, 0), u6 =
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(a1, 1, 1, 1), u7 = (1, a1, 1, 1), and u8 = (1, 1, a1, 1). Note that the induced subgraph
⟨{u1, . . . , u8}⟩ is K8. By Lemma 2.7, g(Γ(VB)) ≥ g(K8) ≥ 2, which is a contradiction.

Case 1.2. Suppose q = 2. Then V ∼= Z2 ×Z2 ×Z2 ×Z2 and F ∼= Z2. Here V (Γ(VB)) =
{u1 . . . , u15} where u1 = (1, 1, 1, 1), u2 = (0, 1, 1, 1), u3 = (1, 0, 1, 1), u4 = (1, 1, 0, 1), u5 =
(1, 1, 1, 0), u6 = (1, 1, 0, 0), u7 = (0, 1, 1, 0), u8 = (0, 0, 1, 1), u9 = (1, 0, 0, 1), u10 =
(1, 0, 1, 0), u11 = (0, 1, 0, 1), u12 = (1, 0, 0, 0), u13 = (0, 1, 0, 0), u14 = (0, 0, 1, 0), u15 =
(0, 0, 0, 1).

Consider the mapping λ defined by λ(ui) = ui for 1 ≤ i ≤ 5, λ(u6) = w1, λ(u7) = w2,
λ(u8) = w′

1, λ(u9) = w′
2, λ(u10) = w3, and λ(u11) = w′

3. One can check that this mapping
λ induces an isomorphism between the induced subgraph ⟨{ui : 1 ≤ i ≤ 11}⟩ of Γ(VB)
and H given in Fig. 3. By Lemma 4.2, g(Γ(VB)) ≥ g(H) = 2, which is a contradiction.

Case 2. Let n = 3.
Case 2.1. Suppose q ≥ 3. Then F contains a1 with a1 ̸= 0, and a1 ̸= 1. Let

u1 = (1, 1, 1), u2 = (a1, a1, a1), u3 = (a1, 1, 1), u4 = (1, a1, 1), u5 = (1, 1, a1), u6 =
(a1, a1, 1), u7 = (1, a1, a1), u8 = (a1, 1, a1). Then the induced subgraph ⟨{u1, . . . , u8}⟩ of
Γ(VB) is K8. By Lemma 2.7, g(Γ(VB)) ≥ g(K8) ≥ 2, which is a contradiction.

Case 2.1. Suppose q = 2. By Theorem 4.1, Γ(VB) is planar, which is a contradiction.
Case 3. Let n = 2.
Case 3.1. Suppose q ≥ 3. Then F contains a1 with a1 ̸= 0, and a1 ̸= 1. Let u1 =

(1, 1), u2 = (a1, a1), u3 = (a1, 1), u4 = (1, a1), u5 = (1, 0), u6 = (0, 1), u7 = (a1, 0).
Note that the subgraph H of Γ(VB) induced by {u1, . . . , u7} is K7 − u5u7. Here H has 7
vertices and 20 edges. Consider the toroidal embedding of H given in the Fig. 7.
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Fig. 7: Toroidal embedding of H

Applying Lemma 2.8, we get that H has 13 faces. Let fk be the number of k-gons in
H. Then 40 = 2e =

∑
k≥3

kfk. Hence, an embedding with 13 faces of H in S1 is possible

only when f3 = 12 and f4 = 1.
By Theorem 2.5, degree of (0, a1) is at least 6 and so one cannot insert the vertex

u8 = (0, a1) and all the edges incident with u8 in Fig. 7 without crossing the edges.
Therefore g(Γ(VB)) ≥ g(H) ≥ 2, which is a contradiction.
Case 3.2. Suppose q = 2. By Theorem 4.1, Γ(VB) is planar, which is a contradiction.
Case 4. Let n = 1.
Case 4.1. Suppose q ≥ 9. By Theorem 2.1 and 2.4, Γ(VB) is not toroidal, a contradiction
to the assumption.
Case 4.2. Suppose q ≤ 5. By Theorem 4.1, Γ(VB) is planar which is a contradiction.

Hence n = 1 and q = 6, 7, 8.
Conversely follows from Theorems 2.1 and 2.7. �

Now, we characterize all finite dimensional vector space V over a finite field F for which
Γ(VB) is of genus two.
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Theorem 4.4. Let n ≥ 1 and q ≥ 2 be integers. Let V be a n-dimensional vector space
over the field F with q elements. Then Γ(VB) is of genus two if and only if either (n = 1
and q = 9) or (n = 2 and q = 3) or (n = 4 and q = 2).

Proof. Assume that g(Γ(VB)) = 2. Suppose n ≥ 5.
Let u1 = (1, 1, . . . , 1), u2 = (0, 1, . . . , 1), u3 = (1, 0, 1, . . . , 1), u4 = (1, 1, 0, 1, . . . , 1), u5 =

(1, 1, 1, 0, 1, . . . , 1), u6 = (1, 1, 1, 1, 0, 1, . . . , 1), u7 = (0, 1, 0, 1, 0, 1, 1, . . . , 1), u8 = (1, 0, 1, 0,
1, 1, . . . , 1), u9 = (1, 0, 1, 1, 0, 1, 1, . . . , 1), u10 = (0, 0, 1, 1, . . . , 1), u11 = (0, 1, 0, 1, 1, . . . , 1),
u12 = (1, 1, 1, 0, 0, 1, 1, . . . , 1) and u13 = (1, 1, 0, 0, 1, 1, . . . , 1). Then the subgraph H of
Γ(VB) induced by Ω = {ui : 1 ≤ i ≤ 13} is given in the Fig. 8.
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Fig. 8: Graph H

Now, consider the subgraph H ′ = H − u13 of H with 12 vertices and 42 edges. By
Lemma 2.8, H ′ has 28 faces. Let fk be the number of k-gons in H ′. Then 84 = 2e =

∑
k≥3

kfk.

Hence an embedding of H ′ with 28 faces in S2 is possible only when f3 = 28.
Suppose there exists an embedding of H ′ on S2 which is triangulated. Since the degree of

u13 is 5, one cannot insert the vertex u13 and all edges adjacent with vertices in H ′ without
crossing the edges on S2. Therefore g(Γ(VB)) ≥ g(H) ≥ 3, which is a contradiction. Hence
n ≤ 4.
Case 1. Let n = 4. Suppose q ≥ 3. Then F contains a1 with a1 ̸= 0, and a1 ̸= 1. Let
u1 = (1, 1, 1, 1), u2 = (0, 1, 1, 1), u3 = (1, 0, 1, 1), u4 = (1, 1, 0, 1), u5 = (1, 1, 1, 0), u6 =
(a1, 1, 1, 1), u7 = (1, a1, 1, 1), u8 = (1, 1, a1, 1) and u9 = (1, 1, 1, a1). Then the induced
subgraph ⟨{u1, u2, . . . , u9}⟩ is K9. By Lemma 2.7, g(Γ(VB)) ≥ 3, which is a contradiction.

Hence n = 4 and q = 2.
Case 2. Let n = 3.
Case 2.1. Suppose q ≥ 3. Then F contains a1 with a1 ̸= 0, and a1 ̸= 1. Let

u1 = (1, 1, 1), u2 = (0, 1, 1), u3 = (a1, a1, a1), u4 = (a1, 1, 1), u5 = (1, a1, 1), u6 =
(1, 1, a1), u7 = (a1, a1, 1), u8 = (1, a1, a1), u9 = (a1, 1, a1). Then the induced subgraph
⟨{u1, u2, . . . , u9}⟩ is K9 and is a subgraph in Γ(VB). By Lemma 2.7, g(H) = 3 and so
g(Γ(VB)) ≥ 3, which is a contradiction.

Case 2.2. Suppose q = 2. By Theorem 4.1, Γ(VB) is planar, which is a contradiction
to our assumption that Γ(VB) is of genus two. Therefore n ̸= 3.

Case 3. Let n = 2.
Case 3.1. Suppose q = 2. By Theorem 4.1, Γ(VB) is planar, which is a contradiction.
Case 3.2. Suppose q ≥ 4. Then F contains a1, a2 with a1, a2 ̸= 0 and a1, a2 ̸= 1. Let

u1 = (1, 1), u2 = (0, 1), u3 = (0, 1), u4 = (a2, a2), u5 = (1, a1), u6 = (1, a2), u7 =
(a1, 1), u8 = (a2, 1), and u9 = (a1, a1). Note that the induced subgraph ⟨{u1, . . . , u9}⟩ is
K9. By Lemma 2.4, g(Γ(VB)) ≥ g(K9) ≥ 3, which is a contradiction.
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From the above, we have that n = 2 and q = 3.
Case 4. Let n = 1. Suppose q ≤ 5. By Theorem 4.1, g(Γ(VB)) = 0, a contradiction.

Suppose 6 ≤ q ≤ 8. By Theorem 4.3, g(Γ(VB)) = 1, a contradiction. Hence q ≥ 9.
Suppose q ≥ 10. By Theorem 2.1, Γ(VB) ∼= K9. By Lemma 2.7, g(Γ(VB)) = 3, which is a
contradiction to the fact that Γ(VB) is of genus two.

Hence n = 1 and q = 9.
Conversely, assume that n = 1 and q = 9. Then Γ(VB) ∼= K8. By Lemma 2.4,

g(Γ(VB)) = 2.
Assume that n = 2 and q = 3. Then V ∼= Z3 × Z3 and F = Z3. By Theorem 2.4, order

of Γ(VB) is 8 and so Γ(VB) ⊆ K8. By Lemma 2.7, g(Γ(VB)) ≤ 2. On the other hand, by
Theorem 4.3, g(Γ(VB)) > 1. Therefore g(Γ(VB)) = 2.

Assume that n = 4 and q = 2. Then V ∼= Z2 ×Z2 ×Z2 ×Z2 and F = Z2. An embedding
of Γ(VB) in S2 is given in the Fig. 9. Hence g(Γ(VB)) = 2. �
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Fig. 9: An embedding of Γ(Z2 × Z2 × Z2 × Z2) where F = Z2

5. Outerplanar property of Γ(VB)
In this section, we characterize outerplanar and outerplanarity index of Γ(VB) where V

is a finite dimensional vector space. A graph is said to be outerplanar if it can be drawn in
the plane without crossings in such a way that all of the vertices belong to the unbounded
face of the drawing. Recall that, a graph G is k-outerplanar if G can be drawn in the
plane without crossings such that after k-fold removal of the vertices on the outer-face,
there are no vertices left. The minimum value of k is called outerplanarity index. Inner
vertex number i(G) of a plane graph is defined as minimum number of vertices which are
not in the exterior face of the planar embedding of G.

Theorem 5.1. Let n ≥ 1 and q ≥ 2 be integers. Let V be a n-dimensional vector space
over the field F with q elements. Then Γ(VB) is outerplanar if and only if either (n = 1
and q ≤ 4) or (n = 2 and q = 2).
Proof. Assume that Γ(VB) is outerplanar.

Suppose n ≥ 3. Let u1 = (1, 1, . . . , 1), u2 = (0, 1, 1, . . . , 1), u3 = (1, 0, 1, 1, . . . , 1) and
u4 = (1, 1, 0, 1, 1, . . . , 1). Note that the subgraph of Γ(VB) induced by {u1, u2, u3, u4} is K4.



Genus of non-zero component union graphs of vector spaces 1605

By Theorem 2.11, K4 is not outerplanar and so Γ(VB) is not outerplanar, a contradiction.
Hence n ≤ 2.
Case 1. Assume n = 1. Suppose q ≥ 5. By Theorem 2.1, Γ(VB) ∼= K4. By Theorem 2.11,
Γ(VB) is not a outerplanar, a contradiction. Therefore q ≤ 4.

Hence n = 1 and q ≤ 4.
Case 2. Assume n = 2. Suppose q ≥ 3. Then F contains a1 with a1 ̸= 0 and a1 ̸=
1. Let u1 = (1, 1), u2 = (0, 1), u3 = (1, 0), u4 = (a1, a1). Note that the subgraph
induced by {u1, u2, u3, u4} is K4 ⊂ Γ(VB). By Theorem 2.11, Γ(VB) is not a outerplanar,
a contradiction Therefore q = 2.

Conversely, assume that n = 1 and q = 2, 3, 4. By Theorem 2.1, Γ(VB) ∼= K1, K2, and
K3 respectively. It is obvious that K1, K2 and K3 are outerplanar.

Suppose n = 2 and q = 2. Then by Theorem 2.1, Γ(VB) ∼= K3, which is outerplanar. �

By Theorems 4.1 and 5.1, we have the following corollary.

Corollary 5.2. Let n ≥ 1 and q ≥ 2 be integers. Let V be a n-dimensional vector space
over the field F with q elements. Then Γ(VB) is planar but not outerplanar if and only if
either (n = 1 and q = 5) or (n = 3 and q = 2).

Theorem 5.3. Let n ≥ 1 and q ≥ 2 be integers. Let V be a n-dimensional vector space
over the field F with q elements. Then the outerplanarity index of Γ(VB) is either 1 or 2.

Proof. By the Theorem 5.1, Γ(VB) is outerplanar (1-outerplanar) if and only if either
(n = 1 and q ≤ 4) or (n = 2 and q = 2). By Corollary 5.2, Γ(VB) is planar and not
outerplanar if and only if either (n = 1 and q = 5) or (n = 3 and q = 2.).
Case 1. Suppose n = 1 and q = 5. By Theorem 2.1, Γ(VB) ∼= K4. Note that K4 is
2-outerplanar graph and so the outerplanar index of Γ(VB) is 2.
Case 2. Suppose n = 3 and q = 2. Then the planar embedding of Γ(VB) is given in the
Fig. 2. Removing the three vertices {(1, 1, 0), (1, 0, 1), (0, 1, 1)} in the unbounded face, we
get the star graph which is outerplanar. Hence in this case outerplanar index of Γ(VB) is
1.

Therefore outerplanarity index of Γ(VB) is either 1 or 2. �

Theorem 5.4. Let n ≥ 1 and q ≥ 2 be integers. Let V be a n-dimensional vector space
over the field F with q elements. Then inner vertex number of Γ(VB) is given by

i(Γ(VB)) =


0, if (n = 1 and q ≤ 4) or (n = 2 and q = 2);
1, if n = 1 and q = 5;
2, if n = 3 and q = 2.

Proof. Case 1. Let (n = 1 and q ≤ 4) or (n = 2 and q = 2). By Theorem 5.1, Γ(VB) is
outerplanar so it is a 1-outerplanar graph. Hence i(Γ(VB)) = 0.
Case 2. Let n = 1 and q = 5. By Theorem 2.1, Γ(VB) ∼= K4. By Theorem 5.3 Γ(VB)
is 2-outerplanar. Since the minimum number of vertices in an interior face is one, so
i(Γ(VB)) = 1.
Case 3. Let n = 3 and q = 2. Then V ∼= Z2 ×Z2 ×Z2 and F = Z2. A planar embedding of
Γ(VB) is given by the Fig. 10(b). Note that, the graph H given in Fig. 10(a) is a maximal
outer planar subgraph of Γ(VB). If we insert the edges ((1, 1, 1)(1, 1, 0)), ((1, 1, 1)(0, 0, 1))
and ((0, 0, 1)(1, 1, 0)), then we get two as the minimum inner vertex. Hence i(Γ(VB)) =
2. �



1606 G. Kalaimurugan, S. Gopinath, T. Tamizh Chelvam

b

bb

bb b
(1, 1, 1)

(0, 1, 1) (1, 0, 1)

(1, 1, 0)

(1, 0, 0) (0, 1, 0)

b

bb

bb b

b

(1, 1, 1)

(0, 1, 1) (1, 0, 1)

(1, 1, 0)

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

Fig. 10(b) : Γ(Z2 × Z2 × Z2) with F = Z2Fig. 10(a) : A subgraph H of Γ(Z2 × Z2 × Z2)

6. Crosscap of Γ(VB)
In this section, we characterize all finite dimensional vector spaces whose non-zero

component union graph is of crosscap one.

Lemma 6.1. Let H be a graph shown in Fig. 3. Then ḡ(H) ≥ 2.

Proof. Note that the induced subgraph H ′ = ⟨{u1, u2, u3, u4, u5}⟩ of H is K5. By Theo-
rem 2.9, ḡ(H ′) = 1. Note that H ′ has 5 vertices and 10 edges. Let fk be the number of
i-gons in H ′. Then 20 = 2e =

∑
k≥3

kfk.

By Proposition 2.10, any embedding of H ′ has 6 faces in N1.
Note that {w1, w′

1}, {w2, w′
2} and {w3, w′

3} are pair of adjacent vertices with one common
neighbourhood u1. Also, every vertex in each of these pairs, has two distinct adjacent
neighbourhoods in {ui : i = 2, 3, 4, 5}. To insert one pair from {wj , w′

j : j = 1, 2, 3} and all
edges incident with u1, ui, wj , w′

j , then we need a face of minimum length 5.
Thus an embedding of H ′ in N1 needs either of the following:
(1) f3 = 5, f5 = 1;
(2) f3 = 4, f4 = 2.

Suppose there exists a face f ′ of length 5. After inserting one pair from {(wj , w′
j) : j =

1, 2, 3} and all edges incident with u1, ui, wj , w′
j in f ′, we get a graph F given in Fig. 11.

b

bb

bb

b b

u1

wj w′
j

Fig. 11: The graph F and face f ′

Since each face has length less than 5, no one can insert any more pair of vertices from
{(wj , w′

j) : j = 1, 2, 3} and all incident edges in f ′. Now consider the two cases mentioned
above:
Case 1. Suppose f3 = 5 and f5 = 1. Since there exists a face has length 5, as argued
above, one can insert only one pair of vertices from {(wj , w′

j) : j = 1, 2, 3} and other two
pairs from {(wj , w′

j) : j = 1, 2, 3} and all the edges incident with u1, ui cannot be inserted
into an embedding of H ′ in N1.
Case 2 Suppose f3 = 4, f4 = 2. There is no face of length greater than or equal to 5, no
one can insert any pair of vertices from {(wj , w′

j) : j = 1, 2, 3} and all the edges incident
with u1, ui into an embedding of H ′ in N1.

Hence in both the cases one cannot insert all pair of vertices {(wj , w′
j) : j = 1, 2, 3} and

incident edges of H into any embedding on N1. Hence we conclude that ḡ(H) ≥ 2. �
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Theorem 6.2. Let n ≥ 1 and q ≥ 2 be integers. Let V be a n-dimensional vector space
over the field F with q elements. Then ḡ(Γ(VB)) = 1 if and only if n = 1 and q = 6 or 7.

Proof. Assume that ḡ((Γ(VB)) = 1. Suppose n ≥ 4. Let u1 = (1, 1, . . . , 1), u2 = (0, 1, 1,
. . . , 1), u3 = (1, 0, 1, 1, . . . , 1), u4 = (1, 1, 0, 1, 1, . . . , 1), u5 = (1, 1, 1, 0, 1, 1, . . . , 1), u6 =
(1, 1, 0, 0, 1, 1, . . . , 1), u7 = (0, 1, 1, 0, 1, 1, . . . , 1), u8 = (0, 0, 1, 1, . . . , 1), u9 = (1, 0, 0, 1, 1,
. . . , 1), u10 = (1, 0, 1, 0, 1, 1, . . . , 1), and u11 = (0, 1, 0, 1, 1, . . . , 1). Then the induced sub-
graph ⟨{u1, . . . , u11}⟩ is isomorphic to H in Fig. 3. Applying Lemma 6.1, we get that
ḡ((Γ(VB)) ≥ ḡ(H) ≥ 2, which is a contradiction. Hence n ≤ 3.

Case 1. Let n = 3. If q = 2, then by Theorem 4.1 Γ(VB) is planar, a contradiction. If
q ≥ 3, then by Theorems 2.2 and 2.9, ḡ(H) ≥ 10, a contradiction.

Case 2. Let n = 2. If q = 2, then by Theorem 4.1, Γ(VB) is planar a contradiction. If
q ≥ 3, then by Theorem 2.2, clique number of Γ(VB) is at least 6 and so H = K6 ⊆ Γ(VB).
By Theorem 2.10, H in N1 is triangulated. By Theorem 2.4, order of Γ(VB) is 8 and by
Theorem 2.5, minimum degree of Γ(VB) is 6. This shows that existence of at least one
vertex u not in H with degree greater than or equal to 6. One cannot insert u and all
incident edges in the embedding of H on N1 and so ḡ(Γ(VB)) ≥ ḡ(H) ≥ 2, a contradiction.

Case 3. Let n = 1. If q ≤ 5, by Theorem 4.1, Γ(VB) is planar, a contradiction. If
q ≥ 8, then by Theorem 2.1 and Theorem 2.9, ḡ(Γ(VB)) = 3, which is a contradiction.
Hence, only possible values of q are 6 or 7.

Thus n = 1 and q = 6 or 7.
Conversely, assume that n = 1 and q = 6, 7. By Theorem 2.1 and 2.9, ḡ(Γ(VB)) =

1. �
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