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Abstract: This paper deals with new series space |𝐶𝛼|𝑝(∇) introduced by using Cesàro means and 

difference operator. It is shown that this newly defined space |𝐶𝛼|𝑝(∇) is a 𝐵𝐾- space and has 

Schauder basis. Furthermore, the 𝛼 , 𝛽 , and 𝛾 -duals of |𝐶𝛼|𝑝(∇)  are computed and the 

characterizations of classes of matrix mappings from |𝐶𝛼|𝑝(∇) to 𝑋 = {ℓ∞, 𝑐, 𝑐0} are also given. 

 

 

Fark Seri Uzayları ve Matris Dönüşümleri 
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Öz: Bu çalışmada, Cesàro ortalaması ve fark operatörü kullanılarak yeni bir |𝐶𝛼|𝑝(∇) seri uzayı 

tanımlanmıştır. Bu yeni |𝐶𝛼|𝑝(∇) uzayının bir 𝐵𝐾- uzayı olduğu ve Schauder bazına sahip olduğu 

gösterilmiştir. Ayrıca, |𝐶𝛼|𝑝(∇) uzayının 𝛼, 𝛽, and 𝛾- dualleri hesaplanmış ve |𝐶𝛼|𝑝(∇) uzayından 

𝑋 = {ℓ∞, 𝑐, 𝑐0} uzayına matris dönüşümleri karakterize edilmiştir.  

 

 

 

    

 

 

1. INTRODUCTION 

 

Recently, there has been a lot of intrest in studies on the 

sequence spaces. In the literature, the basic concept is to 

generate new sequence spaces by means of the matrix 

domain of triangles (see, [1-17]). Besides this, several 

authors have studied difference sequence spaces using 

some newly defined infinite matrices. Also, they have 

studied some topological properties of them, and they 

have given the inclusion relations and some 

characterizations of related matrix transformations. 

 

Throughout this study, 𝜔,  ℓ∞, 𝑐, and 𝑐0 will be spaces of 

all, bounded, convergent and null sequences 𝑥 = (𝑥𝑘) 

with complex terms, respectively. Also, by 𝑏𝑠, 𝑐𝑠  and 

ℓ𝑝  (1 ≤ 𝑝 < ∞), we denote the spaces of all bounded, 

convergent and 𝑝 -absolutely convergent series, 

respectively. A Banach sequence space 𝑋 is called a 𝐵𝐾- 

space provided each of the maps 𝑃𝑛 ∶   𝑋 → ℂ defined by 

𝑃𝑛(𝑥) = 𝑥𝑛  (𝑛 ≥ 0) is continuous, where ℂ denotes the 

complex field. 
 

Let 𝑈 and 𝑉  be two sequence spaces and 𝑇 = (𝑡𝑛𝑘) be 

an infinite matrix of complex number. The matrix 

domain 𝑈𝑇 is defined as 

𝑈𝑇 = {𝑢 ∈ 𝜔 ∶  𝑇𝑢 ∈ 𝑈}.                               (1) 

Define the set 𝑀(𝑈, 𝑉) as 

𝑀(𝑈, 𝑉) = {𝑎 = (𝑎𝑘) ∈ 𝜔 ∶ 𝑎𝑢 = (𝑎𝑘𝑢𝑘) ∈ 𝑉 for all 𝑢
= (𝑢𝑘) ∈ 𝑈}.                                        (2) 

 

By the notation (2),  the 𝛼, 𝛽, and 𝛾-duals of the space 

𝑈 are defined by 

 

𝑈𝛼 = 𝑀(𝑈, ℓ1), 𝑈𝛽 = 𝑀(𝑈, 𝑐𝑠) and 𝑈𝛾 = 𝑀(𝑈, 𝑏𝑠), 
 

respectively. 
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Also, 𝑇 defines a matrix mapping from 𝑈 into 𝑉, if, for 

every 𝑢 = (𝑢𝑘) ∈ 𝑈, the sequence 𝑇𝑢 = (𝑇𝑛(𝑢)), the 𝑇-

transform of 𝑢, exists and is in 𝑉, where 

 

𝑇𝑛(𝑢) = ∑  

∞

𝑘=0

𝑡𝑛𝑘𝑢𝑘 

 

for 𝑛 ≥ 0. (𝑈, 𝑉) denotes the class of all such matrices 

that maps 𝑈  into 𝑉.  Thus, 𝑇 ∈ (𝑈, 𝑉)  if and only if 

𝑇𝑛 = (𝑡𝑛𝑘)𝑘=0
∞ ∈ 𝑈𝛽  for each 𝑛  and 𝑇𝑢 ∈ 𝑉  for all 𝑢 ∈

𝑈. 

 

Throughout this study, 𝑞 shows the conjugate of 𝑝, i.e., 

1/𝑝 + 1/𝑞 = 1. 

 

2. DIFFERENCE SERIES SPACES AND CESÀRO 

MEANS 

 

The notion of difference sequence space has been 

introduced by Kızmaz [18] as follows. 

 

𝑋(Δ) = {𝑥 = (𝑥𝑘) ∈ 𝜔 ∶ Δ𝑥 ∈ 𝑋} 
 

for 𝑋 ∈ 𝑐0, 𝑐, ℓ∞,  where Δ𝑥 = (Δ𝑥𝑘) = (𝑥𝑘 − 𝑥𝑘+1)  for 

all 𝑘 ∈ ℕ. After, Sarıgöl [14] has defined the sequence 

space 

 

𝑋(Δ𝑞) = {𝑥 = (𝑥𝑘)  ∶ Δ𝑞𝑥 = (𝑘𝑞(𝑥𝑘 − 𝑥𝑘+1)) ∈ 𝑋,

𝑞 < 1}. 
 

Later on, some new sequence spaces are defined by 

using the difference operator. For example, several 

authors including Çolak and Et [3], Orhan [19], Polat 

and Altay [20], Aydın and Başar [1], Başar and Altay 

[2], Demiriz and Çakan [4] and others have introduced 

and studied new sequence spaces by considering 

difference operators. In this section, following [1-4, 6-

11, 14-16], we introduce the difference series space 

|𝐶𝛼|𝑝(∇) by using Cesàro means and difference operator 

and we prove that this space linearly isomorphic to space 

ℓ𝑝, and also construct its bases. 

 

Let 𝛴𝑥𝑣  be an infinite series with 𝑛th partial sums (𝑠𝑛), 
then the 𝑛th Cesàro mean (𝐶, 𝛼) of order 𝛼 (𝛼 > −1) of 

the sequence (𝑠𝑛) is defined by 

 

𝑢𝑛
𝛼 =

1

𝐸𝑛
𝛼

∑  

𝑛

𝑣=0

𝐸𝑛−𝑣
𝛼−1𝑠𝑣 , 

 

where 𝐸0
𝛼 = 1, 𝐸𝑛

𝛼 = (
𝛼 + 𝑛
𝑛

) , 𝐸−𝑛
𝛼 = 0, 𝑛 ≥ 1.  The 

series 𝛴𝑥𝑛 is said to be summable |𝐶, 𝛼|𝑝, 𝑝 ≥ 1, if (see 

[21]) 

 

∑ ‍

∞

𝑛=1

𝑛𝑝−1|𝑢𝑛
𝛼 − 𝑢𝑛−1

𝛼 |𝑝 < ∞. 

 

Using the method |𝐶, 𝛼|𝑝,  the absolute Cesàro series 

space |𝐶𝛼|𝑝 has been defined by Sarıgöl in [16]. For any 

given sequence 𝑥 = (𝑥𝑘) ∈ |𝐶𝛼|𝑝  , 𝐻(𝑝) -transform of 𝑥 

is in ℓ𝑝, where the matrix 𝐻(𝑝) = (ℎ𝑛𝑘
𝑝

) is defined by 

 

ℎ𝑛𝑘
𝑝

= {

𝐸𝑛−𝑘
𝛼−1𝑘

𝑛1/𝑝𝐸𝑛
𝛼

, 1 ≤ 𝑘 ≤ 𝑛

0,            𝑘 > 𝑛.    

 

 

The main purpose of this study is to define further 

generalization of the absolute Cesàro series space 

|𝐶𝛼|𝑝(∇) using difference operator by 

 

|𝐶𝛼|𝑝(∇) = {𝑥 = (𝑥𝑘) ∈ 𝜔 ∶ (∇𝑥𝑘) ∈ |𝐶𝛼|𝑝} 
 

where ∇𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘−1 for each 𝑘 ∈ ℕ. 
 

We first define the difference space |𝐶𝛼|𝑝(∇) by 
 

|𝐶𝛼|𝑝(∇) = {𝑥 = (𝑥𝑣) ∈ 𝜔

∶ ∑  

∞

𝑛=1

|
1

𝑛1/𝑝𝐸𝑛
𝛼

∑  

𝑛

𝑣=1

𝐸𝑛−𝑣
𝛼−1𝑣∇𝑥𝑣|

𝑝

< ∞}. 

 

Let us define the sequence 𝑦 = (𝑦𝑛)  as the 𝐻(𝑝)(∇) 

transform of the sequence 𝑥 = (𝑥𝑘), that is, 

 

𝑦𝑛 =
1

𝑛1/𝑝𝐸𝑛
𝛼

∑  

𝑛

𝑣=1

𝐸𝑛−𝑣
𝛼−1𝑣∇𝑥𝑣                      (3) 

 

for each 𝑛 ∈ ℕ. 
 

Then the difference space |𝐶𝛼|𝑝(∇) can be redefined by 

all sequences whose 𝐻(𝑝)(∇)  transform is in ℓ𝑝 .  This 

leads us together with (1) to the fact that 

 

|𝐶𝛼|𝑝(∇) = (ℓ𝑝)
𝐻(𝑝)(∇)

.                            (4) 

 

Now, we begin with following theorems which are 

required in the study. 

 

Theorem 2.1. The difference space |𝐶𝛼|𝑝(∇) is a BK-

space with the norm ‖𝑥‖|𝐶𝛼|𝑝(∇) = ‖𝐻(𝑝)(∇)(𝑥)‖
ℓ𝑝

, that 

is 

 

‖𝑥‖|𝐶𝛼|𝑝(∇) = (∑  

∞

𝑛=1

|𝐻𝑛
(𝑝)

(∇)(𝑥)|
𝑝

)

1/𝑝

. 

 

Proof. It is known that ℓ𝑝  is a BK space according to 

usual 𝑝 -norm, (4)  holds and the matrix 𝐻(𝑝)(∇)  is a 

triangle. So, we deduce from Theorem 4.3.2 in [22] that 
space |𝐶𝛼|𝑝(∇) is a 𝐵𝐾-space with the given norm. This 

concludes the proof. 

 

Theorem 2.2. The difference space |𝐶𝛼|𝑝(∇) is linearly 

isomorphic to the space ℓ𝑝 for 𝑝 ≥ 1, that is, |𝐶𝛼|𝑝(∇) ≅

ℓ𝑝. 
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Proof. We should show the existence of a linear 

bijection between the spaces |𝐶𝛼|𝑝(∇) and ℓ𝑝. Consider 

the transformation 𝐻(𝑝)(∇)  ∶ |𝐶𝛼|𝑝(∇) → ℓ𝑝  such that 

𝐻(𝑝)(∇)(𝑥) = 𝑦 defined by (3). The linearity of 𝐻(𝑝)(∇) 

is clear and also it is seen that 𝑥 = 𝜃  whenever 

𝐻(𝑝)(∇)(𝑥) = 𝜃. So, 𝐻(𝑝)(∇) is injective. 

Furthermore, let 𝑦 ∈ ℓ𝑝  and we define a sequence 

𝑥 = (𝑥𝑛) by 

 

𝑥𝑛 = ∑  

𝑛

𝑗=1

∑  

𝑛

𝑟=𝑗

𝐸𝑟−𝑗
−𝛼−1𝐸𝑗

𝛼

𝑟
𝑗1/𝑝𝑦𝑗                           (5) 

 

and so 

 

‖𝑥‖|𝐶𝛼|𝑝(∇) = ‖𝐻(𝑝)(∇)(𝑥)‖
ℓ𝑝

= (∑  

∞

𝑛=1

|𝐻𝑛
(𝑝)

(∇)(𝑥)|
𝑝

)

1

𝑝

 

      = (∑  

∞

𝑛=1

|
1

𝑛
1

𝑝𝐸𝑛
𝛼

∑  

𝑛

𝑣=1

𝐸𝑛−𝑣
𝛼−1𝑣∇𝑥𝑣|

𝑝

)

1

𝑝

 

= ‖𝑦‖ℓ𝑝
.                                              

 

Therefore, 𝐻(𝑝)(∇) is norm preserving and 𝑥 ∈ |𝐶𝛼|𝑝(∇) 

for all 𝑦 ∈ ℓ𝑝,  namely, 𝐻(𝑝)(∇)  is surjective. 

Consequently, 𝐻(𝑝)(∇) is a linear bijection, this leads the 

fact that |𝐶𝛼|𝑝(∇) ≅ ℓ𝑝, which concludes the proof. 

 

Now, we determine the Schauder basis of the space 

|𝐶𝛼|𝑝(∇). 

 

A sequence (𝑏𝑛) is called a Schauder basis (or briefly 

basis) of a normed sequence space 𝑋, if for each 𝑥 ∈ 𝑋, 

there exists a unique sequence (𝛼𝑛) of scalars such that 

 

𝑙𝑖𝑚
𝑚→∞

‖𝑥 − ∑  

𝑚

𝑘=0

𝛼𝑘𝑏𝑘‖

𝑋

= 0 

 

and in this case, we write 𝑥 = ∑  ∞
𝑘=0 𝛼𝑘𝑏𝑘 . 

 

Since |𝐶𝛼|𝑝(∇) ≅ ℓ𝑝,  the Schauder basis of the new 

space |𝐶𝛼|𝑝(∇)  is the inverse image of the basis 

(𝑒(𝑘))
𝑘=0

∞
 of the space ℓ𝑝,  where 𝑒(𝑛)  (𝑛 = 0,1, . . . )  is 

the sequence with 𝑒𝑛
(𝑛)

= 1 , 𝑒𝑣
(𝑛)

= 0(𝑣 ≠ 𝑛)   for all 

𝑛 ≥ 0. 
 

So, we have the following theorem without proof. 

 

Theorem 2.3. Let 𝛼𝑘 = (𝐻(𝑝)(∇)(𝑥))
𝑘

,  for all 𝑘 ∈ ℕ. 

Define the sequence 𝜏(𝑗) = (𝜏𝑛
(𝑗)

) as 

 

𝜏𝑛
(𝑗)

= {
𝑗1/𝑝 ∑  

𝑛

𝑟=𝑗

𝐸𝑟−𝑗
−𝛼−1𝐸𝑗

𝛼

𝑟
, 1 ≤ 𝑗 ≤ 𝑛

0, 𝑗 > 𝑛.

 

 

The sequence 𝜏(𝑗) is a basis for the space |𝐶𝛼|𝑝(∇) and 

any 𝑥 ∈ |𝐶𝛼|𝑝(∇)  has a unique representation of the 

form 

 

𝑥 = ∑  

∞

𝑗=1

𝛼𝑗𝜏(𝑗). 

 

3. DUAL SPACES AND MATRIX 

TRANSFORMATIONS 

 

We devote the last section of the paper to determine the 

𝛼 , 𝛽  and 𝛾 -duals of spaces |𝐶𝛼|𝑝(∇)  and to give 

characterizations of certain matrix classes concerning the 

spaces |𝐶𝛼|𝑝(∇). 

 

We continue with quoting following lemmas due to 

Stieglitz and Tietz [23], Sarıgöl [24] and Maddox [25] 

for our main results. 

 

Lemma 3.1 [23]. The following statements hold: 

 

a-) 𝑇 = (𝑡𝑛𝑘) ∈ (ℓ1, 𝑐) if and only if 

 

𝑙𝑖𝑚
𝑛→∞

𝑡𝑛𝑘  exists for each 𝑘 ∈ ℕ                    (6) 

 

and 

 

𝑠𝑢𝑝
𝑛,𝑘

|𝑡𝑛𝑘| < ∞.                                      (7) 

 

b-) Let 1 < 𝑝 < ∞.  Then, 𝑇 = (𝑡𝑛𝑘) ∈ (ℓ𝑝, 𝑐)  if and 

only if (6) holds, and 

 

𝑠𝑢𝑝
𝑛

∑ ‍

∞

𝑘=0

|𝑡𝑛𝑘|𝑞 < ∞.                              (8) 

 

c-) 𝑇 = (𝑡𝑛𝑘) ∈ (ℓ1, ℓ∞)  if and only if (7) holds. 

 

d-) Let 1 < 𝑝 < ∞.  Then, 𝑇 = (𝑡𝑛𝑘) ∈ (ℓ𝑝, ℓ∞) ⇔  (8) 

holds. 

 

e-) 𝑇 = (𝑡𝑛𝑘) ∈ (ℓ1, 𝑐0) ⇔ (7) holds, and  

 

𝑙𝑖𝑚
𝑛→∞

𝑡𝑛𝑘 = 0, for each 𝑘 ∈ ℕ.                 (9) 

 

f-) Let 1 < 𝑝 < ∞.  Then, 𝑇 = (𝑡𝑛𝑘) ∈ (ℓ𝑝, 𝑐0) ⇔ (8) 

and (9) hold. 

 

Lemma 3.2 [24]. Let 1 < 𝑝 < ∞.  Then, 𝑇 = (𝑡𝑛𝑘) ∈

(ℓ𝑝, ℓ1)  if and only if 

 

∑  

∞

𝑘=0

(∑  

∞

𝑛=0

|𝑡𝑛𝑘|)

𝑞

< ∞. 

 

Lemma 3.3 [25]. Let 1 ≤ 𝑝 < ∞.  Then, 𝑇 = (𝑡𝑛𝑘) ∈

(ℓ1, ℓ𝑝)  if and only if 
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𝑠𝑢𝑝
𝑘

∑  

∞

𝑛=0

|𝑡𝑛𝑘|𝑝 < ∞. 

 

We now give details about duals of the spaces |𝐶𝛼|𝑝(∇). 

 

Theorem 3.4. Let define the sets 𝛬1 and 𝛬2 as follows. 

 

𝛬1

= {𝑎 = (𝑎𝑛) ∈ 𝜔: ∑  

∞

𝑗=1

(∑  

∞

𝑛=𝑗

|∑  

𝑛

𝑟=𝑗

𝑎𝑛𝐸𝑟−𝑗
−𝛼−1𝐸𝑗

𝛼

𝑟
𝑗1/𝑝|

𝑞

)

< ∞} 

 

and 

 

𝛬2 = {𝑎 = (𝑎𝑛) ∈ 𝜔: 𝑠𝑢𝑝
𝑗

∑  

∞

𝑛=𝑗

|∑  

𝑛

𝑟=𝑗

𝑎𝑛𝐸𝑟−𝑗
−𝛼−1𝐸𝑗

𝛼

𝑟
𝑗|

< ∞}. 

 

Then, the 𝛼-dual of the spaces |𝐶𝛼|𝑝(∇) for 𝑝 > 1 and 

|𝐶𝛼|1(∇) are given by 

 

{|𝐶𝛼|𝑝(∇)}
𝛼

= 𝛬1 
 

and 

 

{|𝐶𝛼|1(∇)}𝛼 = 𝛬2, 
 

respectively. 

 

Proof. Let 𝑎 = (𝑎𝑛) ∈ 𝑤 and 𝑝 > 1. Then, we write 

 

𝑎𝑛𝑥𝑛 = 𝑎𝑛 ∑  

𝑛

𝑗=1

∑  

𝑛

𝑟=𝑗

𝐸𝑟−𝑗
−𝛼−1𝐸𝑗

𝛼

𝑟
𝑗1/𝑝𝑦𝑗  

                             = ∑  

𝑛

𝑗=1

∑  

𝑛

𝑟=𝑗

𝑎𝑛𝐸𝑟−𝑗
−𝛼−1𝐸𝑗

𝛼

𝑟
𝑗1/𝑝𝑦𝑗 = (𝐹𝑝𝑦)𝑛, 

 

where the matrix 𝐹𝑝 = (𝑓𝑛𝑗
𝑝

) is defined via the sequence 

𝑎 = (𝑎𝑛) by 

 

𝑓𝑛𝑗
𝑝

= {
∑  

𝑛

𝑟=𝑗

𝑎𝑛𝐸𝑟−𝑗
−𝛼−1𝐸𝑗

𝛼

𝑟
𝑗1/𝑝, 1 ≤ 𝑗 ≤ 𝑛

0, 𝑗 > 𝑛.

 

 

Therefore, we deduce that 𝑎𝑥 = (𝑎𝑛𝑥𝑛) ∈ ℓ1  whenever 

𝑥 ∈ |𝐶𝛼|𝑝(∇) if and only if 𝐹𝑝𝑦 ∈ ℓ1  whenever y ∈ ℓ𝑝, 

which implies that 𝑎 ∈ {|𝐶𝛼|𝑝(∇)}
𝛼

 if and only if 

𝐹𝑝 ∈ (ℓ𝑝, ℓ1)  by Lemma  3.2, we obtain 𝑎 ∈

{|𝐶𝛼|𝑝(∇)}
𝛼

 if and only if 

 

∑  

∞

𝑗=1

(∑  

∞

𝑛=𝑗

|∑  

𝑛

𝑟=𝑗

𝑎𝑛𝐸𝑟−𝑗
−𝛼−1𝐸𝑗

𝛼

𝑟
𝑗1/𝑝|

𝑞

) < ∞. 

 

Thus, we have {|𝐶𝛼|𝑝(∇)}
𝛼

= 𝛬1. 

 

Using Lemma 3.3 instead of Lemma 3.2, the proof can 

be completed in a similar way. 

 

Theorem 3.5. Let define the sets 𝛬3,  𝛬4 and 𝛬5 by 

 

𝛬3

= {𝑎 = (𝑎𝑛) ∈ 𝜔 ∶ 𝑠𝑢𝑝
𝑚

∑  

𝑚

𝑗=1

|∑  

𝑚

𝑛=𝑗

𝑎𝑛 ∑  

𝑛

𝑟=𝑗

𝐸𝑟−𝑗
−𝛼−1𝐸𝑗

𝛼

𝑟
𝑗1/𝑝|

𝑞

< ∞},                                                                                (10) 

 

𝛬4 = {𝑎 = (𝑎𝑛) ∈ 𝜔 ∶ 𝑠𝑢𝑝
𝑚,𝑗

|∑  

𝑚

𝑛=𝑗

𝑎𝑛 ∑  

𝑛

𝑟=𝑗

𝐸𝑟−𝑗
−𝛼−1𝐸𝑗

𝛼

𝑟
𝑗|

< ∞},                                             (11) 

 

and 

 

𝛬5

= {𝑎 = (𝑎𝑛) ∈ 𝜔

∶ 𝑙𝑖𝑚
𝑚→∞

∑  

𝑚

𝑛=𝑗

𝑎𝑛 ∑  

𝑛

𝑟=𝑗

𝐸𝑟−𝑗
−𝛼−1

𝑟
 𝑒𝑥𝑖𝑠𝑡𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑗 ∈ ℕ}, 

 

respectively. Then, the 𝛽-dual of the spaces |𝐶𝛼|𝑝(∇) for 

𝑝 > 1 and |𝐶𝛼|1(∇) are given by 
 

{|𝐶𝛼|𝑝(∇)}
𝛽

= 𝛬3 ∩ 𝛬5 
 

and 

 

{|𝐶𝛼|1(∇)}𝛽 = 𝛬4 ∩ 𝛬5 
 

respectively. 

 

Proof. Let 𝑎 = (𝑎𝑛) ∈ 𝑤 and 𝑝 > 1. Then, we consider 

the following equation. 

 

∑  

𝑚

𝑛=1

𝑎𝑛𝑥𝑛 = ∑  

𝑚

𝑛=1

𝑎𝑛 ∑  

𝑛

𝑗=1

∑  

𝑛

𝑟=𝑗

𝐸𝑟−𝑗
−𝛼−1𝐸𝑗

𝛼

𝑟
𝑗1/𝑝𝑦𝑗  

                     = ∑  

𝑚

𝑗=1

𝑗1/𝑝𝐸𝑗
𝛼 ∑  

𝑚

𝑛=𝑗

𝑎𝑛 ∑  

𝑛

𝑟=𝑗

𝐸𝑟−𝑗
−𝛼−1

𝑟
𝑦𝑗  

 = ∑  

𝑚

𝑗=1

𝑏𝑚𝑗𝑦𝑗 = (𝐵𝑦)𝑚, 
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where the matrix 𝐵 = (𝑏𝑚𝑗) is defined via the sequence 

𝑎 = (𝑎𝑛) by 

 

𝑏𝑚𝑗 = {
𝑗1/𝑝𝐸𝑗

𝛼 ∑  

𝑚

𝑛=𝑗

𝑎𝑛 ∑  

𝑛

𝑟=𝑗

𝐸𝑟−𝑗
−𝛼−1

𝑟
, 1 ≤ 𝑗 ≤ 𝑚,

0, 𝑗 > 𝑚.

 

 

Therefore, we deduce that 𝑎𝑥 = (𝑎𝑛𝑥𝑛) ∈ 𝑐𝑠 whenever 

𝑥 ∈ |𝐶𝛼|𝑝(∇)  if and only if 𝐵𝑦 ∈ 𝑐  whenever 𝑦 ∈ ℓ𝑝, 

which implies that 𝑎 ∈ {|𝐶𝛼|𝑝(∇)}
𝛽

 if and only if 

𝐵 ∈ (ℓ𝑝, 𝑐), by part b-) of Lemma 3.1, we obtain that 

𝑎 ∈ {|𝐶𝛼|𝑝(∇)}
𝛽

 if and only if 

 

𝑠𝑢𝑝
𝑚

∑  

𝑚

𝑗=1

|𝑗1/𝑝𝐸𝑗
𝛼 ∑  

𝑚

𝑛=𝑗

𝑎𝑛 ∑  

𝑛

𝑟=𝑗

𝐸𝑟−𝑗
−𝛼−1

𝑟
|

𝑞

< ∞ 

 

and 

 

𝑙𝑖𝑚
𝑚→∞

∑  

𝑚

𝑛=𝑗

𝑎𝑛 ∑  

𝑛

𝑟=𝑗

𝐸𝑟−𝑗
−𝛼−1

𝑟
𝑒𝑥𝑖𝑠𝑡𝑠 𝑓𝑜𝑟  𝑒𝑎𝑐ℎ 𝑗 ∈ ℕ. 

 

Thus, we have {|𝐶𝛼|𝑝(∇)}
𝛽

 = 𝛬3 ∩ 𝛬5. 
 

Using part a-) instead of part b-) of Lemma 3.1, the 

proof can be completed in a similar way. 

 

Since the proof is similar to the previous one, we give 

following theorem without proof. 

 

Theorem 3.6. Let define the sets 𝛬3 and 𝛬4 by (10) and 

(11), respectively. The 𝛾-dual of the spaces |𝐶𝛼|𝑝(∇) for 

𝑝 > 1 and |𝐶𝛼|1(∇) are given by 

 

{|𝐶𝛼|𝑝(∇)}
𝛾

= 𝛬3 
 

and 

 

{|𝐶𝛼|1(∇)}𝛾 = 𝛬4, 
 

respectively. 

 

Now, we characterize matrix transformations from 

|𝐶𝛼|𝑝(∇)  to ℓ∞, 𝑐, 𝑐0.  Let us define the matrix 𝐵(𝑝) =

(𝑏𝑛𝑗
(𝑝)

) via an infinite matrix 𝑇 = (𝑡𝑛𝑘) by 

 

𝑏𝑛𝑗
(𝑝)

= ∑  

∞

𝑘=𝑗

𝑡𝑛𝑘 ∑  

𝑘

𝑟=𝑗

𝐸𝑟−𝑗
−𝛼−1𝐸𝑗

𝛼

𝑟
𝑗1/𝑝.                   (12) 

 

We may begin with characterization of matrix classes 

(|𝐶𝛼|1(∇), 𝑋), where 𝑋 = {ℓ∞, 𝑐, 𝑐0}. 
 

Theorem 3.7. Consider the matrix 𝐵(𝑝) = (𝑏𝑛𝑘
(𝑝)

) as in 

(12) with 𝑝 = 1. Then, 

 

i-) 𝑇 = (𝑡𝑛𝑘) ∈ (|𝐶𝛼|1(∇), ℓ∞) if and only if 

 

𝑙𝑖𝑚
𝑚→∞

∑  

𝑚

𝑘=𝑗

𝑡𝑛𝑘 ∑  

𝑘

𝑟=𝑗

𝐸𝑟−𝑗
−𝛼−1

𝑟
𝑒𝑥𝑖𝑠𝑡𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛, 𝑗 ∈ ℕ,     (13) 

 

𝑠𝑢𝑝
𝑚,𝑗

|∑  

𝑚

𝑘=𝑗

𝑡𝑛𝑘 ∑  

𝑘

𝑟=𝑗

𝐸𝑟−𝑗
−𝛼−1𝐸𝑗

𝛼

𝑟
𝑗| < ∞,

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛 ∈ ℕ,                               (14) 
 

𝑠𝑢𝑝
𝑛,𝑘

|𝑏𝑛𝑘
(1)

| < ∞.                                          (15) 

 

ii-) 𝑇 = (𝑡𝑛𝑘) ∈ (|𝐶𝛼|1(∇), 𝑐)  if and only if (13), (14), 

(15) hold and 

 

𝑙𝑖𝑚
𝑛→∞

𝑏𝑛𝑘
(1)

𝑒𝑥𝑖𝑠𝑡𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑘 ∈ ℕ. 

 

iii-) 𝑇 = (𝑡𝑛𝑘) ∈ (|𝐶𝛼|1(∇), 𝑐0) if and only if (13), (14), 

(15) hold and 

 

𝑙𝑖𝑚
𝑛→∞

𝑏𝑛𝑘
(1)

= 0, 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑘 ∈ ℕ. 

 

Proof. i-) 𝑇 = (𝑡𝑛𝑘) ∈ (|𝐶𝛼|1(∇), ℓ∞)  iff 𝑇𝑥  exists and 

is in ℓ∞  for all 𝑥 ∈ |𝐶𝛼|1(∇).  Then (𝑡𝑛𝑘)𝑘=1
∞  

∈ (|𝐶𝛼|1(∇))
𝛽

 and so the conditions (13) and (14) hold. 

Moreover, the series 𝛴𝑘𝑡𝑛𝑘𝑥𝑘  converges uniformly in n 

and so 

 

𝑙𝑖𝑚
𝑛→∞

𝑇𝑛(𝑥) = ∑  

∞

𝑘=0

𝑙𝑖𝑚
𝑛→∞

𝑡𝑛𝑘𝑥𝑘.                        (16) 

 

To prove necessity and sufficiency of (15), let 𝑥 ∈
|𝐶𝛼|1(∇) be given and consider the operator 𝐻(1)(∇)  ∶
|𝐶𝛼|1(∇) → ℓ1  defined by (3) with 𝑝 = 1.  Further, 

𝑥 ∈ |𝐶𝛼|1(∇) iff 𝑦 = 𝐻(1)(∇)(𝑥) ∈ ℓ1 , and also by (5), 

let us consider the equality 

 

∑  

𝑚

𝑘=1

𝑡𝑛𝑘𝑥𝑘 = ∑  

𝑚

𝑘=1

𝑡𝑛𝑘 ∑  

𝑘

𝑗=1

∑  

𝑘

𝑟=𝑗

𝐸𝑟−𝑗
−𝛼−1𝐸𝑗

𝛼

𝑟
𝑗𝑦𝑗  

                   = ∑  

𝑚

𝑗=1

∑  

𝑚

𝑘=𝑗

𝑡𝑛𝑘 ∑  

𝑘

𝑟=𝑗

𝐸𝑟−𝑗
−𝛼−1𝐸𝑗

𝛼

𝑟
𝑗𝑦𝑗  

= ∑  

𝑚

𝑗=1

𝜓𝑚𝑗
(𝑛)

𝑦𝑗 ,                                     (17) 

 

where 

 

𝜓𝑚𝑗
(𝑛)

= {
∑  

𝑚

𝑘=𝑗

𝑡𝑛𝑘 ∑  

𝑘

𝑟=𝑗

𝐸𝑟−𝑗
−𝛼−1𝐸𝑗

𝛼

𝑟
𝑗, 1 ≤ 𝑗 ≤ 𝑚

0,              𝑗 > 𝑚.

 

 

Then, since 𝑦 ∈  ℓ1  and 𝛹(𝑛) = (𝜓𝑚𝑗
(𝑛)

) ∈ (ℓ1, 𝑐) , 𝛹(𝑛) 

exists and so the series ∑  𝑗 𝜓𝑚𝑗
(𝑛)

𝑦𝑗  converges uniformly 
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for every 𝑛 ∈ ℕ. Hence, by (16), this yields us under the 

assumption that as 𝑚 → ∞ in (17), 

 

𝑇𝑛(𝑥) = ∑  

∞

𝑗=1

( 𝑙𝑖𝑚
𝑚→∞

𝜓𝑚𝑗
(𝑛)

) 𝑦𝑗 = ∑  

∞

𝑗=1

𝑏𝑛𝑗
(1)

𝑦𝑗 = 𝐵𝑛
(1)

(𝑦), 

 

where 𝑏𝑛𝑗
(1)

= 𝑙𝑖𝑚
𝑚→∞

𝜓𝑚𝑗
(𝑛)

. This means that 𝑇𝑥 ∈ ℓ∞ 

whenever 𝑥 ∈ |𝐶𝛼|1(∇)  if and only if 𝐵(1)𝑦 ∈ ℓ∞ 

whenever 𝑦 ∈ ℓ1. Therefore, it follows from part c-) of 

Lemma 3.1 that 𝐵(1) ∈ (ℓ1, ℓ∞) iff (15) is satisfied, and 

this step completes the proof of the part i-). 

 

Since ii-) and iii-) are proved easily as in i-) using parts 

a-), e-) instead of part c-) of Lemma 3.1, so we omit the 

detail. 

 

Now, we prove the following result on matrix 

transformations. 

 

Theorem 3.8. Let 1 < 𝑝 < ∞  and define the matrix 

𝐵(𝑝) = (𝑏𝑛𝑘
(𝑝)

) as in (12). Then, 

 

i-) 𝑇 = (𝑡𝑛𝑘) ∈ (|𝐶𝛼|𝑝(∇), ℓ∞) if and only if (13) holds, 

and 

 

𝑠𝑢𝑝
𝑚

∑  

𝑚

𝑗=1

|∑  

𝑚

𝑘=𝑗

𝑡𝑛𝑘 ∑  

𝑘

𝑟=𝑗

𝐸𝑟−𝑗
−𝛼−1𝐸𝑗

𝛼

𝑟
𝑗1/𝑝|

𝑞

< ∞,

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 1,                                   (18) 
 

𝑠𝑢𝑝
𝑛

∑  

∞

𝑘=1

|𝑏𝑛𝑘
(𝑝)

|
𝑞

< ∞.                                  (19)  

 

ii-) 𝑇 = (𝑡𝑛𝑘) ∈ (|𝐶𝛼|𝑝(∇), 𝑐) if and only if (13), (18), 

(19) hold, and 

 

𝑙𝑖𝑚
𝑛→∞

𝑏𝑛𝑘
(𝑝)

𝑒𝑥𝑖𝑠𝑡𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑘 ∈ ℕ. 

 

iii-) 𝑇 = (𝑡𝑛𝑘) ∈ (|𝐶𝛼|𝑝(∇), 𝑐0) if and only if (13), (18), 

(19) hold, and 

 

𝑙𝑖𝑚
𝑛→∞

𝑏𝑛𝑘
(𝑝)

= 0, 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑘 ∈ ℕ. 

 

Proof. i-) Given 𝑇 = (𝑡𝑛𝑘) ∈ (|𝐶𝛼|𝑝(∇), ℓ∞).  Then, 

equivalently, 𝑇𝑥 exists and is in ℓ∞ for all 𝑥 ∈ |𝐶𝛼|𝑝(∇). 

Then (𝑡𝑛𝑘)𝑘=1
∞  ∈ (|𝐶𝛼|𝑝(∇))

𝛽

 and so the conditions (13) 

and (18) hold. Moreover, the series 𝛴𝑘𝑡𝑛𝑘𝑥𝑘  converges 

uniformly in 𝑛 and so (16) holds. 

 

To prove necessity and sufficiency of (19), consider the 

operator 𝐻(𝑝)(∇) ∶ |𝐶𝛼|𝑝(∇) → ℓ𝑝 defined by (3) and let 

𝑥 ∈ |𝐶𝛼|𝑝(∇)  be given. Then 𝑥 ∈ |𝐶𝛼|𝑝(∇)  iff 𝑦 =

𝐻(𝑝)(∇)(𝑥) ∈  ℓ𝑝.  Let us now consider the following 

equality derived by using the relation (5), 

 

∑  

𝑚

𝑘=1

𝑡𝑛𝑘𝑥𝑘 = ∑  

𝑚

𝑘=1

𝑡𝑛𝑘 ∑  

𝑘

𝑗=1

∑  

𝑘

𝑟=𝑗

𝐸𝑟−𝑗
−𝛼−1𝐸𝑗

𝛼

𝑟
𝑗1/𝑝𝑦𝑗  

                    = ∑  

𝑚

𝑗=1

∑  

𝑚

𝑘=𝑗

𝑡𝑛𝑘 ∑  

𝑘

𝑟=𝑗

𝐸𝑟−𝑗
−𝛼−1𝐸𝑗

𝛼

𝑟
𝑗1/𝑝𝑦𝑗 

      = ∑  

𝑚

𝑗=1

𝜓̃𝑚𝑗
(𝑛)

𝑦𝑗 ,                                    (20)   

 

where 

 

𝜓̃𝑚𝑗
(𝑛)

= {
∑  

𝑚

𝑘=𝑗

𝑡𝑛𝑘 ∑  

𝑘

𝑟=𝑗

𝐸𝑟−𝑗
−𝛼−1𝐸𝑗

𝛼

𝑟
𝑗1/𝑝, 1 ≤ 𝑗 ≤ 𝑚

0,              𝑗 > 𝑚.

 

 

Then, since 𝑦 ∈  ℓ𝑝  and 𝛹̃(𝑛) = (𝜓̃𝑚𝑗
(𝑛)

) ∈ (ℓ𝑝, 𝑐) , 

𝛹̃(𝑛) exists and so the series ∑  𝑗 𝜓̃𝑚𝑗
(𝑛)

𝑦𝑗  converges 

uniformly for every 𝑛 ∈ ℕ. Therefore, if we pass to the 

limit in (20) as 𝑚 → ∞,  then we obtain by (16)  that 

 

𝑇𝑛(𝑥) = ∑  

∞

𝑗=1

( 𝑙𝑖𝑚
𝑚→∞

𝜓̃𝑚𝑗
(𝑛)

) 𝑦𝑗 = ∑  

∞

𝑗=1

𝑏𝑛𝑗
(𝑝)

𝑦𝑗 = 𝐵𝑛
(𝑝)

(𝑦),   

 

where 𝑏𝑛𝑗
(𝑝)

= 𝑙𝑖𝑚
𝑚→∞

𝜓̃𝑚𝑗
(𝑛)

 , 𝑛 ≥ 1 . Thus, we deduce that 

𝑇𝑥 ∈ ℓ∞  whenever 𝑥 ∈ |𝐶𝛼|𝑝(∇) if and only if 𝐵(𝑝)𝑦 ∈

ℓ∞  whenever 𝑦 ∈ ℓ𝑝 , which implies that 𝐵(𝑝) ∈

(ℓ𝑝, ℓ∞), and so it follows from part d-) of Lemma 3.1 

that 𝐵(𝑝) ∈ (ℓ𝑝, ℓ∞) iff (19) is satisfied. This completes 

the proof of part i-) of the theorem. 

 

Since parts ii-) and iii-) can be proved by using the 

similar way of that used in the proof of part i-) taking 

account of parts b-) and f-) instead of part d-) of Lemma 

3.1, respectively; we leave the details to the reader. 
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