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Abstract: This paper deals with new series space |C,|,(V) introduced by using Cesaro means and
difference operator. It is shown that this newly defined space |C,|,(V) is a BK- space and has
Schauder basis. Furthermore, the a, f, and y -duals of |C,|,(V) are computed and the
characterizations of classes of matrix mappings from |C,|,(V) to X = {£, c, c,} are also given.

Fark Seri Uzaylar1 ve Matris Doniisiimleri

Anahtar
Kelimeler
Fark dizi

Oz: Bu calismada, Cesaro ortalamasi ve fark operatorii kullanilarak yeni bir [C | (V) seri uzay:
tanimlanmustir. Bu yeni |C,|, (V) uzaymn bir BK- uzay1 oldugu ve Schauder bazina sahip oldugu
gosterilmistir. Ayrica, |Cyl, (V) uzaymnm a, , and y- dualleri hesaplanmis ve |C,|,(V) uzayindan

uzaylari,
a-B vey-
dualleri,
Matris
operatorleri,
BK uzaylari

X = {{, ¢, ¢y} uzayina matris doniisiimleri karakterize edilmistir.

1. INTRODUCTION

Recently, there has been a lot of intrest in studies on the
sequence spaces. In the literature, the basic concept is to
generate new sequence spaces by means of the matrix
domain of triangles (see, [1-17]). Besides this, several
authors have studied difference sequence spaces using
some newly defined infinite matrices. Also, they have
studied some topological properties of them, and they
have given the inclusion relations and some
characterizations of related matrix transformations.

Throughout this study, w, €4, ¢, and ¢, will be spaces of
all, bounded, convergent and null sequences x = (x;)
with complex terms, respectively. Also, by bs, cs and
£, (1 < p < =), we denote the spaces of all bounded,
convergent and p -absolutely convergent series,
respectively. A Banach sequence space X is called a BK-
space provided each of the maps B, : X — C defined by

B,(x) = x, (n = 0) is continuous, where C denotes the
complex field.

Let U and V be two sequence spaces and T = (t,;) be
an infinite matrix of complex number. The matrix
domain Uy is defined as

Ur={u€ew: TueU}. (D
Define the set M(U, V) as

MU, V)={a=(ay) € w:au = (a,u) €V forallu
= (w) € UL (2)

By the notation (2), the a, 8, and y-duals of the space
U are defined by

U =M(U,*,),UP = M(U,cs) and UY = M(U, bs),

respectively.
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Also, T defines a matrix mapping from U into V, if, for
every u = (u) € U, the sequence Tu = (T, (w)), the T-
transform of w, exists and is in V, where

[ee)

T(w) = Z b Uy

k=0

forn > 0. (U,V) denotes the class of all such matrices
that maps U into V. Thus, T € (U,V) if and only if
T, = (tp)s=o € UP for each n and Tu € V for all u €
U.

Throughout this study, g shows the conjugate of p, i.e.,
1/p+1/g=1.

2. DIFFERENCE SERIES SPACES AND CESARO
MEANS

The notion of difference sequence space has been
introduced by Kizmaz [18] as follows.

X(A) ={x=(xx) Ew : Ax € X}

for X € ¢y, ¢, €0, Where Ax = (Axy) = (x; — x44) for
all k € N. After, Sarig6l [14] has defined the sequence
space

X(Aq) = {x = (x) 1 Agx = (kq(xk - xk+1)) € X,
q< 1}.

Later on, some new sequence spaces are defined by
using the difference operator. For example, several
authors including Colak and Et [3], Orhan [19], Polat
and Altay [20], Aydin and Bagar [1], Basar and Altay
[2], Demiriz and Cakan [4] and others have introduced
and studied new sequence spaces by considering
difference operators. In this section, following [1-4, 6-
11, 14-16], we introduce the difference series space
|Cq |, (V) by using Cesaro means and difference operator
and we prove that this space linearly isomorphic to space
¢, and also construct its bases.

Let Xx,, be an infinite series with nth partial sums (s,,),
then the nth Cesaro mean (C, a) of order « (¢ > —1) of
the sequence (s,,) is defined by

n

a 1 a—1
Uy = ﬁ ERZo sy
n
v=0
where Ef =1, ES = (Z +n),E£‘n =0,n>1. The
series X'x,, is said to be summable |C, a|,,p = 1, if (see

[21])

Z nP Hul —ul_ P < .

n=1

Using the method |C, al,, the absolute Cesaro series
space |Cy |, has been defined by Sarigél in [16]. For any
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given sequence x = (x;) € |Cyl, , H® -transform of x
is in £,,, where the matrix H® = (h?, ) is defined by

E,‘f_‘,}k 1<k<
hflkz W’ =E=n
0, k > n.

The main purpose of this study is to define further
generalization of the absolute Cesaro series space
|Cq |, (V) using difference operator by

|Ca|p(v) = {x = (xk) Ew: (ka) € |Ca|p}
where Vx;,, = x; — x,_, for each k € N.

We first define the difference space |C,|, (V) by
1Celp(V) = {x =) €w

3

n=1

n

! Ef-lvv
Tll/pEﬁ‘ n—v UVVXy

v=1

P

< w}.
Let us define the sequence y = (v,) as the H®) (V)
transform of the sequence x = (x;), that is,

n
1
— -1
Vn = ni/PES ;:1 ER=yvVx, 3)

foreachn € N.

Then the difference space |C,|, (V) can be redefined by
all sequences whose H® (V) transform is in £,. This
leads us together with (1) to the fact that

| Cq |p W)= (‘gp)H(p)(V)' (4)

Now, we begin with following theorems which are
required in the study.

Theorem 2.1. The difference space |C,|,(V) is a BK-
space with the norm [lx|lc,,w) = ||H(p)(V)(x)||fp, that

is
[oe]

1/p
1l o0 = (Z |H1(1v)(v)(x)|p> .

n=1

Proof. It is known that £, is a BK space according to
usual p-norm, (4) holds and the matrix H® (V) is a
triangle. So, we deduce from Theorem 4.3.2 in [22] that
space |C,|, (V) is a BK-space with the given norm. This
concludes the proof.

Theorem 2.2. The difference space |C,|,(V) is linearly
isomorphic to the space £, for p = 1, that is, |C,|,(V) =
.
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Proof. We should show the existence of a linear
bijection between the spaces |C,|,(V) and £,. Consider
the transformation H® (V) : |C,|,(V) - ¢, such that
H® (V) (x) = y defined by (3). The linearity of H® (V)
is clear and also it is seen that x =6 whenever
H®(V)(x) = 6. So, HP) (V) is injective.

Furthermore, let y € £, and we define a sequence
X = (xn) by

n n
E7S1ET
x, = Z Z %]wyj (5)

and so

|-

(oo}

el = [HP@ G, = (Z |H£”)(V)<x)|”>

n=1

S

p

co n
1 a-1
= T E;7,vVx,
n=1 |NPEF v=1

= Iyl

Therefore, H®) (V) is norm preserving and x € |C,|, (V)
for all ye¢, namely, H®P(V) is surjective.

Consequently, H®) (V) is a linear bijection, this leads the
fact that |C, |, (V) = €, which concludes the proof.

Now, we determine the Schauder basis of the space
|Calp (V).

A sequence (b,) is called a Schauder basis (or briefly
basis) of a normed sequence space X, if for each x € X,
there exists a unique sequence (a,,) of scalars such that

and in this case, we write x = Y.;_, @y by.

Since |C,|,(V) = ¢, the Schauder basis of the new
space |Cql,(V) is the inverse image of the basis

(e®)._, of the space £,, where e™ (n=0,1,...) is

the sequence with e =1, e = 0(v £ n) for all
n = 0.

So, we have the following theorem without proof.

Theorem 2.3. Let a; = (HP(V)(x)),, for all k € N.

Define the sequence ) = (r,(lj)) as

n

1/112 Er_—ai_l ja 1

j i —,1<j<n

=Ly J
0,j >n.
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The sequence 97 is a basis for the space |C,|,(V) and
any x € [C,|,(V) has a unique representation of the
form

(oo}

— )
X—Z(Ij’fj.

=1

3. DUAL SPACES AND
TRANSFORMATIONS

MATRIX

We devote the last section of the paper to determine the
a, f and y -duals of spaces |C,|,(V) and to give
characterizations of certain matrix classes concerning the
spaces |Cy |, (V).

We continue with quoting following lemmas due to
Stieglitz and Tietz [23], Sarigol [24] and Maddox [25]
for our main results.

Lemma 3.1 [23]. The following statements hold:

a-)T = (tpx) € (44,¢) ifand only if

limt,, exists foreach k € N (6)

n-ow

and

suplty| < . (7
nk

b-) Let 1<p <oo. Then, T = (ty) € (¢,,¢) if and
only if (6) holds, and

sup Y eyl < . )
k=0

c-) T = (ty) € (£1,4,) ifand only if (7) holds.

d-) Let 1 <p < oo. Then, T = (tn) € (£,,6,) © (8)
holds.

e-) T = (ty) € (£1,¢o) © (7) holds, and

llmtnk = 0,

n—-oo

foreach k € N. 9

f-) Let 1 <p <oo. Then, T = (ty) € (¢p,co) & (8)
and (9) hold.

Lemma 3.2 [24]. Let 1 <p < oo. Then, T = (t ) €
(¢,,¢,) ifand only if

oo oo q
5 (3 tal) <o
k=0 ‘n=0

Lemma 3.3 [25]. Let 1 <p < oo. Then, T = (t ;) €
(¢1,4,) ifand only if
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[oe]
up Y el <
k n=0

We now give details about duals of the spaces |C,|, (V).
Theorem 3.4. Let define the sets A; and A, as follows.

44

q
* * aE lZ 1E0(
= a_(an)sz ZZ - — L jip

n=j

< oo

and
a, E %1«
A, =<a=(a,) € w: supz Z%]
n=j |r=j
< 00 p,

Then, the a-dual of the spaces |C,|,(V) for p > 1 and
|C, 1 (V) are given by

{ICal, (M} =
and

{ICa |1 (V)}* = 43,
respectively.

Proof. Let a = (a,) € w and p > 1. Then, we write

n n E a 1pa
} 1/p
AnXn = An Yj
j=1r=j
—a-lpa
J

= jMPy; = (FPy)n,

j=11=j

where the matrix F? = (fy;) is defined via the sequence
a = (a,) by

o 4B ER
P _ Z—T jYP1<j<n
nj — =)

0,j >n.

Therefore, we deduce that ax = (a,x,) € £; whenever
x € |Cyl,(V) if and only if FPy € £, whenever y € £,,,
which implies that a € {lCalp(V)}a if and only if
FP € (£,¢,) by Lemma 3.2, we obtain a€
{IC4l, (M} if and only if
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"o opraipe |
5 (5[5 =] )<

Jj=1 \n=j |r=j
Thus, we have {lCalp(V)}a =

Using Lemma 3.3 instead of Lemma 3.2, the proof can
be completed in a similar way.

Theorem 3.5. Let define the sets A3, A4, and Az by

43

m q

m n B
= a=(an)€(u:supz Zanz -

j=1 |n=j  r=j

a-lpa
Ef
J ] jl/p

< oy, (10)

m n fra-1ga
Ay =<5a="(a,) Ew:sup ZanzLj
j .

m n E—IX_—].
: lim Z anz T;] exists for each j € Ny,

respectively. Then, the -dual of the spaces |C,|,(V) for
p > 1and |C,|,(V) are given by

(ICL, MY = 450 4
and
{1C,1 (MY = A, 0 Ag

respectively.

Proof. Leta = (a,) € wand p > 1. Then, we consider
the following equation.

m m n n E‘a._l a
r—j =
D, = ) ), ) =y
n=1 n=1 j=1 r=j
m m n
E %1
-Jj
= D JE ) ) T,
j=1 n=j r=j
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where the matrix B = (b,;) is defined via the sequence
a= (an) by

m n E- -1
o jl/pEJ!IZanz r;j ,1<j<m,
™ n=j  r=j

0,j >m.

Therefore, we deduce that ax = (a,x,) € cs whenever
x € |C4l,(V) if and only if By € ¢ whenever y € £,

which implies that a € {|Ca|p(v)}ﬁ if and only if
B € (¢,,c), by part b-) of Lemma 3.1, we obtain that

a € {|Col, ™)’ ifand only if
m —a-1

m n E
supz jl/”EJf"Z anz T;]
m . .

j=1 n=j  r=j

and

a-1
—J

n Er
an Y =

j r=j

lim exists for eachj € N.

m

n=
B

Thus, we have {|C,|,(M}" = 45 N 4s.

Using part a-) instead of part b-) of Lemma 3.1, the
proof can be completed in a similar way.

Since the proof is similar to the previous one, we give
following theorem without proof.

Theorem 3.6. Let define the sets A5 and A, by (10) and
(11), respectively. The y-dual of the spaces |C,/|, (V) for
p > 1and |C,|,(V) are given by

{ICal, (MY = 45
and

{ICal (W} = A,
respectively.

Now, we characterize matrix transformations from
|Calp(V) 10 o, ¢, co. Let us define the matrix B®) =

(br(l’]’.)) via an infinite matrix T = (t,,) by

oo k
E%'EX
b = by L, (12)

We may begin with characterization of matrix classes
(lCall(v)lX)l Where X = {'eoo: c, CO}-

Theorem 3.7. Consider the matrix B® = (b,(f,’()) as in
(12) with p = 1. Then,
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i) T = (ty) € (IC411(V), £.,) if and only if

m k
E— a-1
lim Z tnkz ") exists foralln,jeEN, (13)
m-—oo

k=j r=j
m k E a- lE]tx
sup Z tnkz < o,
mJ k=j r=j
foreachn € N, (14)
su, |b(1)
by | < o (15)
nk

ii-) T = (tye) € (ICxl1(V),c) if and only if (13), (14),
(15) hold and

lim b(l)exlsts for each k € N.

n—-oo

iii-) T = (tne) € (ICe]1(V), co) if and only if (13), (14),
(15) hold and

llmbr(l}() =0,for each k € N.

n—-oo
Proof. i-) T = (ty) € (|Cx11(V), ) iff Tx exists and
is in ¢, for all xe€|C,;(V). Then (tux)r=1
€ (ICall(V))ﬁ and so the conditions (13) and (14) hold.

Moreover, the series Xyt x, converges uniformly in n
and so

limT,(x) = Z limt,,xy. (16)
n—-oo n—-oo
k=0

To prove necessity and sufficiency of (15), let x €
|C,],(V) be given and consider the operator HV(V) :
|C,11 (V) » £, defined by (3) with p = 1. Further,
x € |Cyl, (V) iff y = HO(V)(x) € ¢, , and also by (5),
let us consider the equality

k=1 1 j=1 r=j
m m k —a—1
VY, NV ESE
- nk r ]y]
j=1 k=j r=j
m
= > vy, (17)
j=1
where
m k E-a-lpa
r—=j 5j
™ = Ztnkz hlsjs=m
m k=j  r=j
0, >m

Then, since y € ¢, and ¥®™ = (y{) € (£5,¢), ¥™

exists and so the series };; 1/)m} y; converges uniformly
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for every n € N. Hence, by (16), this yields us under the
assumption that as m — oo in (17),

[ee)

TG = ) (lim )y

v =) by = B o),
j=1 j=1
where b7 = Lim Y
whenever x € |C,|,(V) if and only if By e ¢,
whenever y € £,. Therefore, it follows from part c-) of
Lemma 3.1 that BV € (¢,,2,,) iff (15) is satisfied, and
this step completes the proof of the part i-).

This means that Tx € £,

Since ii-) and iii-) are proved easily as in i-) using parts
a-), e-) instead of part c-) of Lemma 3.1, so we omit the
detail.

Now, we prove the following result on matrix
transformations.

Theorem 3.8. Let 1 <p < o and define the matrix
B® = (b,(l’,’c)) asin (12). Then,

i) T = (tax) € (1C,1,(V), £s,) if and only if (13) holds,
and

m m k a 1Ea q
s 3y B <o
=l =
for alln>1, (18)
sup )" bR < co. (19)
k=1

i) T = (ty) € (|Ca|p(V), c) if and only if (13), (18),
(19) hold, and

limb® exists for each k € N.
n—-oo

iii-) T = (tw) € (1Cal,(V), co) if and only if (13), (18),
(19) hold, and

limb(p) =0, for each k € N.
n-—

Proof. i-) Given T = (ty) € (IC4l,(V), ). Then,
equivalently, Tx exists and is in £, for all x € |C,|, (V).

B
Then (tue)re1 € (lCalp(V)) and so the conditions (13)
and (18) hold. Moreover, the series X, t,; X, converges
uniformly in n and so (16) holds.

To prove necessity and sufficiency of (19), consider the
operator H®P)(V) : |C, 1, (V) - £, defined by (3) and let
x € |Cyl,(V) be given. Then x € |Cyl,(V) iff y =
H®(V)(x) € ¢,. Let us now consider the following
equality derived by using the relation (5),
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m m k k E_a-_l a
e
Z barXy = Z tnkz Z ]r L jlry
k=1 k=1 j=1 r=j
m m k
E %'Ef
=Z Z tnkz ——jy
j=1 k=j r=j
m
= W0y, (20)
j=1
where
m k E;S a 1pa
(n)_ Ztnkz - jYP1<j<m
k= r=
O, ] >m.

and P™ = (P (")) € (¢,,¢) ,
P™ exists and so the series ¥; z/)fn].)y] converges

uniformly for every n € N. Therefore, if we pass to the
limit in (20) as m — oo, then we obtain by (16) that

Then, since y€ ¢,

[ee]

T = ) (limd)y,

j=1

Z by, = BP (),

where b = lim ") ,n>1. Thus, we deduce that
m—oo

Tx € 4, whenever x € |C,|,(V) if and only if By €
£, whenever y € £, , which implies that B® €
(¢,%5), and so it follows from part d-) of Lemma 3.1
that B® € (¢, ¢,,) iff (19) is satisfied. This completes
the proof of part i-) of the theorem.

Since parts ii-) and iii-) can be proved by using the
similar way of that used in the proof of part i-) taking
account of parts b-) and f-) instead of part d-) of Lemma
3.1, respectively; we leave the details to the reader.
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