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Abstract

In this paper, we obtain a unique common �xed point results by using Suzuki - (Zψ(α, β)) - type rational
contractive mappings in metric spaces. Also we give an example which supports our main theorem.
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1. Introduction

In 2008, the generalization theorem of Banach contraction principle [1], which was introduced by T.Suzuki
[3], later this theorem is also referred as Suzuki type contraction. In 2012, Samet et al. [4] introduced the
concept of α−ψ-contractive and α - admissible mappings and obtained various �xed point theorems for such
mappings in complete metric spaces.
Recently, Khojasteh et al. [5] introduced the notion of Simulation function and the notion of Z - contraction
with respect to η which generalized the Banach contractions. Following this direction of research, we intro-
duce the notion Suzuki - Zψ(α, β) - type rational contractive mapping and establish common �xed point
theorems for such mappings in metric spaces.

Throughout this paper, N denotes the set of all nonnegative integers. Further, R represent the real
numbers and R+ = [0,∞).

2. Preliminaries

Recently, Khojasteh et al. [5] introduced the notion of Simulation function and the notion of Z -
contraction with respect to η which generalized the Banach contractions. (see, ([6]- [13])
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De�nition 2.1. [5] Let η : [0,∞) → [0,∞) be a mapping, then η is called a simulation function if it satis�es
the following condtions:

(η1) η(0, 0) = 0,

(η2) η(t, s) < s− t for all t, s > 0,

(η3) if {tn},{sn} are the sequences in (0,∞) such that
lim
n→∞

tn = lim
n→∞

sn > 0 then lim
n→∞

supη(tn, sn) < 0. We denote the set of all simulation function by Z.

Joonaghany et al. [6] proposed a new notion, the ψ-simulation function, and with the help of it, the
Zψ-contraction in the setting of the standard metric space. The notion of the Zψ-contraction covers several
distinct types of contraction, including the Z-contraction that was de�ned in [5]

Ψ = {ψ : R+ → R+|ψ is continuous and nondecreasing, and ψ(r) = 0 ⇔ r = 0}

De�nition 2.2. [6] We say that ζ : R+ × R+ → R is a ψ-simulation function, if there exists ψ ∈ Ψ such
that:

(ζ1) ζ(t, s) < ψ(s)− ψ(t) for all t, s > 0,

(ζ2) if {tn},{sn} are the sequences in (0,∞) such that
lim
n→∞

tn = lim
n→∞

sn > 0 then lim
n→∞

supζ(tn, sn) < 0.

Let Zψ be the set of all ψ- simulation functions. Note that if we take ψ as an identity mapping, then "ψ-
simulation" becomes "simulation function" in the sencse of [5]

Example 2.3. [6] Let ψ ∈ Ψ

(i) ζ1(t, s) = kψ(s)− ψ(t) for all t, s ∈ [0,∞, where k ∈ [0, 1).

(ii) ζ2(t, s) = ϕ(ψ(s)) − ψ(t) for all t, s ∈ [0,∞, where ϕ : [0,+∞) → [0,+∞) so that ϕ(0) = 0 and for
each s > 0, ϕ(s) < s

lim sup
t→s

ϕ(t) < s

(iii) ζ3(t, s) = ψ(s)− ϕ(s)− ψ(t) for all t, s ∈ [0,∞),
where ϕ : [0,+∞) → [0,+∞) is a mapping such that, for each s > 0,

lim inf
t→s

ϕ(t) > 0.

It is clear that ζ1, ζ2, ζ3 ∈ Zψ.

Remark 2.4. Each simulation function forms a ψ- simulation function. The contrary of the statement is
false [6].

Lemma 2.5. (See e.g., [2]) Let (X, d) be a metric space, and let {ρn} be a sequence in X such that

lim
n→∞

d(ρn, ρn+1) = 0.

If {ρ2n} is not a Cauchy sequence. Then, there exists an ϵ > 0 and monotone increasing sequences of natural
numbers {mk} and {nk} such that nk > mk and d(ρ2mk

, ρ2nk
) ≥ ϵ and

(i) lim
n→∞

d(ρ2mk
, ρ2nk

) = ϵ
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(ii) lim
n→∞

d(ρ2mk−1, ρ2nk+1
) = ϵ

(iii) lim
n→∞

d(ρ2mk
, ρ2nk+1) = ϵ

(iv) lim
n→∞

d(ρ2mk−1
, ρ2nk

) = ϵ.

In 2012, Samet et al. [4] introduced the class of α - admissible mappings.

De�nition 2.6. [4] A mapping F : X → X is called α- admissible if for all ρ, σ ∈ X we have

α(ρ, σ) ≥ 1 ⇒ α(Fρ,Fσ) ≥ 1,

where α : X ×X → [0,∞) is a given function.

De�nition 2.7. Let X be a nonempty set, F ,G : X → X and α, β : X ×X → [0,∞). The two mappings
(F ,G) is called a pair of (α, β) - admissible mappings, if

α(ρ, σ) ≥ 1 and β(ρ, σ) ≥ 1

implies

α(Fρ,Gσ) ≥ 1 and β(Gρ,Fσ) ≥ 1 and β(Fρ,Gσ) ≥ 1 and α(Gρ,Fσ) ≥ 1 for all ρ, σ ∈ X.

Motivated by the above results, we introduce the notion of Suzuki- (Zψ(α, β)) - type rational contraction
and prove some common �xed point results in metric spaces. Also we give an example which supports our
main theorem.

3. Main Results

We begin with the following notion:

De�nition 3.1. Let (X, d) be a metric space. Let F ,G : X → X be two mappings. we say that the pair
(F ,G) is Suzuki - Z(ψ)(α, β) - type rational contraction if for all ρ, σ ∈ X and L ≥ 0

1
2 min{d(ρ,Fρ), d(σ,Gσ)} ≤ d(ρ, σ) implies

ζ(α(ρ,Fρ)β(σ,Gσ)d(Fρ,Gσ),M(ρ, σ)) ≥ 0 (1)

where ζ ∈ Zψ

M(ρ, σ) = max
{
d(ρ, σ), d(ρ,Fρ)[1+d(σ,Gσ)]1+d(ρ,σ) , d(σ,Gσ)[1+d(ρ,Fρ)]1+d(ρ,σ) , d(σ,Gσ)d(ρ,Fρ)d(ρ,σ)

}
+ Lmin{d(ρ,Fρ), d(σ,Fρ)}

Theorem 3.2. Let (X, d) be a complete metric space, and let F ,G : X → X be two mappings and α, β :
X ×X → [0,∞). Suppose that the following conditions are satis�ed:

(i) (F ,G) is pair of (α, β)- admissible mappings;

(ii) there exists ρ0 ∈ X such that α(ρ0,Fρ0) ≥ 1 and β(ρ0,Gρ0) ≥ 1 ;

(iii) the pair (F ,G) is Suzuki- Z(ψ)(α, β) - type rational contraction;

(iv) either, F and G are continuous or
for every sequence {ρn} in X such that α(ρn, ρn+1) ≥ 1 and
β(ρn, ρn+1) ≥ 1 for all n ∈ N0 and ρn → x, we have α(ρ,Fρ) ≥ 1 and β(ρ,Gρ) ≥ 1.
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Then F and G have a unique common �xed point in X.

Proof. By assumption there exists ρ0 ∈ X such that α(ρ0,Fρ0) ≥ 1. De�ne the sequence {ρn} in X by
letting ρ1 ∈ X such that ρ1 = Fρ0, ρ2 = Gρ1, ρ3 = Fρ2,
ρ4 = Gρ3,
continuing this process we get Fρn = ρn+1, Gρn+1 = ρn+2 where n ≥ 0.
Since (F ,G) is a pair of (α, β)− admissible, so
α(ρ0,FGρ0) = α(ρ0, ρ1) ≥ 1, α(Fρ0,Gρ1) = α(ρ1, ρ2) ≥ 1 and α(Gρ1,Fρ2) = α(ρ2, ρ3) ≥ 1
continuing this manner, we obtain

α(ρn, ρn+1) ≥ 1 for all n ≥ 0.

Similarly, we can get
β(ρn, ρn+1) ≥ 1 for all n ≥ 0.

If ρn = ρn+1 for some n ∈ N , then u = ρn is a common �xed point for F or G.
Consequently, we suppose that ρn ̸= ρn+1 for all n ∈ N .
Since 1

2 min{d(ρ2n,Fρ2n), d(ρ2n+1,Gρ2n+1)} ≤ d(ρ2n, ρ2n+1)
from 1, we have

0 ≤ ζ(α(ρ2n,Fρ2n)β(ρ2n+1,Gρ2n+1)d(Fρ2n,Gρ2n+1),M(ρ2n, ρ2n+1))
0 < ψ(M(ρ2n, ρ2n+1))− ψ(α(ρ2n,Fρ2n)β(ρ2n+1,Gρ2n+1)d(ρ2n+1, ρ2n+2)),

so
ψ(M(ρ2n, ρ2n+1)) > ψ(α(ρ2n,Fρ2n)β(ρ2n+1,Gρ2n+1)d(ρ2n+1, ρ2n+2)).

Since ψ is strictly increasing,

M(ρ2n, ρ2n+1) > α(ρ2n,Fρ2n)β(ρ2n+1,Gρ2n+1)d(ρ2n+1, ρ2n+2), (2)

on the other hand,

M(ρ2n, ρ2n+1)

= max

{
d(ρ2n, ρ2n+1),

d(ρ2n,Fρ2n)[1+d(ρ2n+1,Gρ2n+1)]
1+d(ρ2n,ρ2n+1)

,
d(ρ2n+1,Gρ2n+1)[1+d(ρ2n,Fρ2n)]

1+d(ρ2n,ρ2n+1)
,d(ρ2n+1,Gρ2n+1)d(ρ2n,Fρ2n)

d(ρ2n,ρ2n+1)

}
+Lmin{d(ρ2n,Fρ2n), d(ρ2n+1,Fρ2n)}

= max

{
d(ρ2n, ρ2n+1),

d(ρ2n,ρ2n+1)[1+d(ρ2n+1,ρ2n+2)]
1+d(ρ2n,ρ2n+1)

,
d(ρ2n+1,ρ2n+2)[1+d(ρ2n,ρ2n+1)]

1+d(ρ2n,ρ2n+1)
,d(ρ2n+1,ρ2n+2)d(ρ2n,ρ2n+1)

d(ρ2n,ρ2n+1)

}
+Lmin{d(ρ2n, ρ2n+1), d(ρ2n+1, ρ2n+1)}

= max
{
d(ρ2n, ρ2n+1),

d(ρ2n,ρ2n+1)[1+d(ρ2n+1,ρ2n+2)]
1+d(ρ2n,ρ2n+1)

,d(ρ2n+1, ρ2n+2)
}

for re�ning the inequality above, we shall consider the following Cases:
Case(i): If M(ρ2n, ρ2n+1) = d(ρ2n+1, ρ2n+2), then by 2 we have
d(ρ2n+1, ρ2n+2) > d(ρ2n+1, ρ2n+2), which is a contradiction.
Case(ii): If M(ρ2n, ρ2n+1) = d(ρ2n, ρ2n+1), then the inequality 2 turns into the inequality

d(ρ2n+1, ρ2n+2) < d(ρ2n, ρ2n+1). (3)

Case(iii): Suppose that

M(ρ2n, ρ2n+1) = d(ρ2n,ρ2n+1)[1+d(ρ2n+1,ρ2n+2)]
1+d(ρ2n,ρ2n+1)

.

This yields

max{d(ρ2n, ρ2n+1), d(ρ2n+1, ρ2n+2)} ≤ d(ρ2n, ρ2n+1)[1 + d(ρ2n+1, ρ2n+2)]

1 + d(ρ2n, ρ2n+1)
. (4)
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We shall illustrate that this case is not possible. For this reason, we consider the following subcases:
Case(iii)a: Suppose max{d(ρ2n, ρ2n+1), d(ρ2n+1, ρ2n+2)} = d(ρ2n+1, ρ2n+2), that is,

d(ρ2n, ρ2n+1) ≤ d(ρ2n+1, ρ2n+2) (5)

on the other hand, from 4, we have

d(ρ2n, ρ2n+1) ≤
d(ρ2n, ρ2n+1)[1 + d(ρ2n+1, ρ2n+2)]

1 + d(ρ2n, ρ2n+1)
. (6)

By a simple conclusion, we have, from the inequality above, that d(ρ2n+1, ρ2n+2) < d(ρ2n, ρ2n+1), which
contradicts the assumption 5.
Case(iii)b : Assume that

max{d(ρ2n, ρ2n+1), d(ρ2n+1, ρ2n+2)} = d(ρ2n, ρ2n+1),

that is,
d(ρ2n+1, ρ2n+2) < d(ρ2n, ρ2n+1). (7)

Furthermore, from 6, we have

d(ρ2n, ρ2n+1) ≤
d(ρ2n, ρ2n+1)[1 + d(ρ2n+1, ρ2n+2)]

1 + d(ρ2n, ρ2n+1)
. (8)

A simple evaluation implies, from the inequality above, that

d(ρ2n, ρ2n+1) < d(ρ2n+1, ρ2n+2)

which contradicts the assumption 7. Hence, Case(iii) does not occur. Hence,

d(ρ2n+1, ρ2n+2) < d(ρ2n, ρ2n+1).

Hence, we deduce that the sequence {d(ρn, ρn+1)} is nonnegative and
nonincreasing.
Consequently, there exists r ≥ 0 such that lim

n→∞
d(ρn, ρn+1) = r.

We claim that r = 0. Suppose, on the contrary, that r > 0.

lim
n→∞

d(ρn, ρn+1) = lim
n→∞

M(ρn, ρn+1) = r. (9)

For each n ≥ 0 we have 1
2 min{d(ρ2n,Fρ2n), d(ρ2n+1,Gρ2n+1)} ≤ d(ρ2n, ρ2n+1)

from 1, we have

ζ(α(ρ2n,Fρ2n)β(ρ2n+1,Gρ2n+1)d(Fρ2n,Gρ2n+1),M(ρ2n, ρ2n+1)) ≥ 0

so
lim sup
n→∞

ζ(α(ρ2n,Fρ2n)β(ρ2n+1,Gρ2n+1)d(Fρ2n,Gρ2n+1),M(ρ2n, ρ2n+1)) ≥ 0. (10)

Therefore, from (ζ2)

lim sup
n→∞

ζ(α(ρ2n,Fρ2n)β(ρ2n+1,Gρ2n+1)d(Fρ2n,Gρ2n+1),M(ρ2n, ρ2n+1)) < 0,

which contradicts 10. So the claim is proved, that is,

lim
n→∞

d(ρn, ρn+1) = lim
n→∞

M(ρn, ρn+1) = 0. (11)
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Now, we will show that {ρn} is a Cauchy sequence. Suppose, to the contrary that {ρn} is not a Cauchy
sequence. Then, there exists an ϵ0 > 0 and monotone increasing sequences of natural numbers {mk} and
{nk} such that nk > mk and d(ρ2mk

, ρ2nk
) ≥ ϵ0

and

(i) lim
n→∞

d(ρ2mk
, ρ2nk

) = ϵ0

(ii) lim
n→∞

d(ρ2mk−1, ρ2nk+1
) = ϵ0

(iii) lim
n→∞

d(ρ2mk
, ρ2nk+1) = ϵ0

(iv) lim
n→∞

d(ρ2mk−1
, ρ2nk

) = ϵ0.

Therefore, from the de�nition of M(ρ, σ) we have

lim
n→∞

M(ρ2nk
, ρ2mk−1)

= lim
n→∞

max

 d(ρ2nk
, ρ2mk−1

),
d(ρ2nk

,ρ2nk+1
)[1+d(ρ2mk−1

,ρ2mk+1
)]

1+d(ρ2nk
,ρ2mk−1

) ,

d(ρ2mk−1
,ρ2mk+1

)[1+d(ρ2nk
,ρ2nk+1

)]

1+d(ρ2nk
,ρ2mk−1

) ,
d(ρ2mk−1

,ρ2mk+1
)d(ρ2nk

,ρ2nk+1
)

d(ρ2nk
,ρ2mk−1

)


+Lmin{d(ρ2nk

, ρ2nk+1
), d(ρ2mk−1, ρ2nk+1

)}
= max{0, ϵ0} = ϵ0

so
lim
k→∞

d(ρ2mk
, ρ2nk+1) = lim

k→∞
M(ρ2nk

, ρ2mk−1) = ϵ0 > 0.

Hence, ζ2 implies that

lim
k→∞

d(ρ2mk
, ρ2nk+1) = lim

k→∞
M(ρ2nk

, ρ2mk−1) = ϵ0 > 0. (12)

On the other hand, we claim that for su�ciently large k ∈ N , if nk > mk > k, then

1

2
min{d(Fρnk

, ρnk
), d(ρmk−1,Gρmk−1)} > d(ρnk

, ρmk−1) (13)

on letting as k → ∞ in 13, we get that ϵ0 ≤ 0, contradiction. Therefore

1

2
min{d(Fρnk

, ρnk
), d(ρmk−1,Gρmk−1)} ≤ d(ρnk

, ρmk−1)

and from 1, we have

0 ≤ ζ(α(ρ2nk
,Fρ2nk

)β(ρ2mk−1,Gρ2mk−1)d(Fρ2nk
,Gρ2mk−1),M(ρ2nk

, ρ2mk−1))

Hence
lim sup
k→∞

ζ(α(ρ2nk
,Fρ2nk

)β(ρ2mk−1,Gρ2mk−1)d(Fρ2nk
,Gρ2mk−1),M(ρ2nk

, ρ2mk−1)) ≥ 0

which contradicts 12. This contradiction proves that {ρn} is a Cauchy sequence and, since X is complete,
there exists u ∈ X such that {ρn} → u as n→ ∞.

We claim that u is a common �xed point of F and G. Since F and G are continuous, we deduce that

u = lim
n→∞

ρ2n+1 = lim
n→∞

Fρ2n = F( lim
n→∞

ρ2n) = Fu
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and
u = lim

n→∞
ρ2n+2 = lim

n→∞
Gρ2n+1 = G( lim

n→∞
ρ2n+1) = Gu.

Therefore Fu = Gu = u, that is, u is a common �xed point of F and G.
Since from (iv), we have
for every sequence {ρn} in X such that α(ρn, ρn+1) ≥ 1 and β(ρn, ρn+1) ≥ 1 for all n ∈ N0 and ρn → u as
n→ ∞, this implies ρ2nk+1 → u and ρ2nk+2 → u as k → ∞.
Now we show that Fu = Gu = u.
Suppose u ̸= Gu.
Now we claim that, for each n ≥ 1, atleast one of the following assertions holds.

1

2
d(ρnk−1, ρnk

) ≤ d(ρnk−1, u)

or
1

2
d(ρnk

, ρnk+1) ≤ d(ρnk
, u).

On contrary suppose that
1

2
d(ρnk−1, ρnk

) > d(ρnk−1, u)

and
1

2
d(ρnk

, ρnk+1) > d(ρnk
, u).

For some n ≥ 1. Then we have

d(ρnk−1, ρnk
) ≤ d(ρnk−1, u) + d(u, ρnk

)
< 1

2 [d(ρnk−1, ρnk
) + d(ρnk

, ρnk+1)]
≤ d(ρnk−1, ρnk

),

which is a contradiction and so the claim holds.
From 1 we have 1

2 min{d(ρ2nk
,Fρ2nk

), d(u,Gu)} ≤ d(ρ2nk
, u) implies

0 ≤ ζ(α(ρ2nk
,Gρ2nk

)β(u,Gu)d(Fρ2nk
,Gu),M(ρ2nk

, u))
< ψ(M(ρ2nk

, u))− ψ(α(ρ2nk
,Fρ2nk

)β(u,Gu)d(Fρ2nk
,Gu))

ψ(M(ρ2nk
, u)) > ψ(α(ρ2nk

,Fρ2nk
)β(u,Gu)d(Fρ2nk

,Gu)).

Since ψ is strictly increasing,

α(ρ2nk
,Fρ2nk

)β(u,Gu)d(Fρ2nk
,Gu) < M(ρ2nk

, u) (14)

on the other hand,

M(ρ2nk
, u)

= max
{
d(ρ2nk

, u),
d(ρ2nk

,Fρ2nk
)[1+d(u,Gu)]

1+d(ρ2nk
,u) ,

d(u,Gu)[1+d(ρ2nk
,Fρ2nk

)]

1+d(ρ2nk
,u) ,

d(u,Gu)d(ρ2nk
,Fρ2nk

)

d(ρ2nk
,u)

}
+Lmin{d(ρ2nk

,Fρ2nk
), d(u,Fρ2nk

).

Taking limit k → ∞, we get
lim
k→∞

M(ρ2nk
, u) = d(u,Gu).

Since, from 14, we have

d(Fρ2nk
,Gu) ≤ α(ρ2nk

,Fρ2nk
)β(u,Gu)d(Fρ2nk

,Gu)
< M(ρ2nk

, u).
(15)



M. HimaBindu Venigalla, Results in Nonlinear Anal. 5 (2022), 151�160. 158

Taking limit k → ∞, in 15 gives d(u,Gu) < d(u,Gu), a contradiction. Hence u = Gu. Similarly, we can �nd
that u = Fu. Hence, the pair (F ,G) has a common �xed point u = Fu = Gu.

We claim F and G have a unique common �xed points u, v ∈ X. Therefore Fu = Gu = u, Fv = Gv = v
and d(u, v) > 0.
Therefore

1

2
min{d(u,Fu), d(v,Gv)} =

1

2
min{0, 0} = 0 < d(u, v),

from 1 we have
0 ≤ ζ(α(u,Fu)β(v,Gv)d(Fu, gv),M(u, v))

< ψ(M(u, v))− ψ(α(u,Fu)β(v,Gv)d(u, v)),

Since ψ is strictly increasing,

d(u, v) < α(u,Fu)β(v,Gv)d(u, v) < M(u, v) (16)

on the other hand,

M(u, v)

= max
{
d(u, v), d(u,Fu)[1+d(v,Gv)]1+d(u,v) , d(v,Gv)[1+d(u,Fu)]1+d(u,v) , d(v,Gv)d(u,Fu)d(u,v)

}
+Lmin{d(u,Fu), d(v,Fu)
= max

{
d(u, v), d(u,u)[1+d(v,v)]1+d(u,v) , d(v,v)[1+d(u,u)]1+d(u,v) , d(v,v)d(u,u)d(u,v)

}
= d(u, v) > 0.

Therefore, from 15, we have

d(u, v) < α(u,Fu)β(v, vG)d(u, v) < M(u, v) = d(u, v)

a contradiction. Hence F and G have a unique common �xed point.

Corollary 3.3. Let (X, d) be a complete metric space, and let F : X → X be a mapping and α, β : X×X →
[0,∞). Suppose that the following conditions are satis�ed:

(i) if for all ρ, σ ∈ X

1
2 min{d(ρ,Fρ), d(σ,Fσ)} ≤ d(ρ, σ) implies

ζ(α(ρ,Fρ)β(σ,Fσ)d(Fρ,Fσ),M(ρ, σ)) ≥ 0 (17)

where ζ ∈ Zψ

M(ρ, σ)

= max
{
d(ρ, σ), d(ρ,Fρ)[1+d(σ,Fσ)]1+d(ρ,σ) , d(σ,Fσ)[1+d(ρ,Fρ)]1+d(ρ,σ) , d(σ,Fσ)d(ρ,Fρ)d(ρ,σ)

}
+Lmin{d(ρ,Fρ), d(σ,Fρ)}

(ii) F is (α, β) admissible mapping;

(iii) there exists ρ0 ∈ X such that α(ρ0,Fρ0) ≥ 1 ;

(iv) either, F is continuous or
for every sequence {ρn} in X such that α(ρn, ρn+1) ≥ 1 and
β(ρn, ρn+1) ≥ 1 for all n ∈ N0 and ρn → x, we have α(ρ,Fρ) ≥ 1 and β(ρ,Fρ) ≥ 1.

Then F has a unique �xed point in X.
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Example 3.4. Let X = [0,∞), and let d : X ×X → [0,∞) be de�ned by

d(ρ, σ) =

{
max{ρ, σ}

0
if ρ ̸= σ,
ρ = σ.

We de�ne F ,G : X → X by F(ρ) = ρ
2 and G(ρ) = ρ

3 for all ρ ∈ X.
Clearly (X, d) is complete and F and G are continuous self- mappings on X and α, β : X ×X → [0,∞) are
two mappings de�ned by

α(ρ, σ) =

{
1
0

if ρ, σ ∈ [0, 1],
otherwise

and

β(ρ, σ) =

{
1
0

if ρ, σ ∈ [0, 1],
otherwise

We now de�ne ζ : [0,∞)× [0,∞) → [0,∞) by ζ(t, s) = 1
2ψ(s)− ψ(t), for all s, t ∈ [0,∞) and ψ(t) = t

2 Now

1

2
min{d(ρ,Fρ), d(σ, gσ)} ≤ d(ρ, σ)

implies

ζ(α(ρ,Fρ)β(σ, σ)d(Fρ,Fσ),M(ρ, σ)) = 1
2ψ(M(ρ, σ))− ψ(α(ρ,Fρ)β(σ,Gσ)d(Fρ,Gσ))

= 1
2ψ(M(ρ, σ))− ψ(d(Fρ,Gσ))

< 1
4M(ρ, σ)− 1

2d(Fρ,Gσ) ≥ 0,

where
M(ρ, σ)

= max
{
d(ρ, σ), d(ρ,Fρ)[1+d(σ,Gσ)]1+d(ρ,σ) , d(σ,Gσ)[1+d(ρ,Fρ)]1+d(ρ,σ) , d(σ,Gσ)d(ρ,Fρ)d(ρ,σ)

}
+Lmin{d(ρ,Fρ), d(σ,Fρ)}.

Hence for ρ, σ ∈ [0, 1] and L ≥ 0 the pair (F ,G) is a Suzuki - Zψ(α,β) - type rational contraction. In
either case α(ρ, σ) = 0 and β(ρ, σ) = 0 then pair (F ,G) is a Suzuki - Zψ(α,β) - type rational contraction.
Thus all the assumptions of Theorem 3.2 are satis�ed and F and G have a common �xed point in X.
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