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Abstract

In this paper, we obtain a unique common fixed point results by using Suzuki - (Zy(«, 3)) - type rational
contractive mappings in metric spaces. Also we give an example which supports our main theorem.
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1. Introduction

In 2008, the generalization theorem of Banach contraction principle [1], which was introduced by T.Suzuki
[3], later this theorem is also referred as Suzuki type contraction. In 2012, Samet et al. [4] introduced the
concept of a —)-contractive and « - admissible mappings and obtained various fixed point theorems for such
mappings in complete metric spaces.
Recently, Khojasteh et al. [5] introduced the notion of Simulation function and the notion of Z - contraction
with respect to n which generalized the Banach contractions. Following this direction of research, we intro-
duce the notion Suzuki - Zy(c, 8) - type rational contractive mapping and establish common fixed point
theorems for such mappings in metric spaces.

Throughout this paper, N denotes the set of all nonnegative integers. Further, R represent the real
numbers and Rt = [0, 00).
2. Preliminaries

Recently, Khojasteh et al. [5] introduced the notion of Simulation function and the notion of Z -
contraction with respect to n which generalized the Banach contractions. (see, ([6]- [13])
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Definition 2.1. [l Let n : [0,00) — [0,00) be a mapping, then n is called a simulation function if it satisfies
the following condtions:

(m) n(0,0) =0,
(n2) n(t,s) <s—t forallt,s>0,

(n3) if {tn},{sn} are the sequences in (0,00) such that
lim ¢, = lim s, >0 then lim supn(t,,s,) < 0. We denote the set of all simulation function by Z.
n—oo

n—o0 n—o0

Joonaghany et al. [6] proposed a new notion, the t-simulation function, and with the help of it, the
Zy-contraction in the setting of the standard metric space. The notion of the Zy-contraction covers several
distinct types of contraction, including the Z-contraction that was defined in [3]

U = {¢: Rt — R"|¢ is continuous and nondecreasing, and 1(r) =0 < r = 0}

Definition 2.2. [6] We say that ¢ : RY x Rt — R is a v-simulation function, if there exists 1 € VU such
that:
(C1) C(t,s) <o(s) — () for all t,5 >0,

(C2) if {tn},{sn} are the sequences in (0,00) such that

lim ¢, = lim s, > 0 then lim sup((t,,s,) <O0.
n—00 n—00 n—r00

Let Z, be the set of all - simulation functions. Note that if we take v as an identity mapping, then ")-
simulation" becomes "simulation function" in the sencse of [5]

Example 2.3. [6] Let ) € ¥
(1) Ci(t,s) = ky(s) —(t) for all t,s € [0,00, where k € [0,1).

(13) Ca(t,s) = @((s)) —(t) for all t,s € [0,00, where ¢ : [0,+00) — [0,4+00) so that ¢(0) = 0 and for
each s >0, ¢(s) < s
lim sup ¢(t) < s

t—s

(#11) G3(t,s) = 1(s) — d(s) —(t) for all t,s € [0,00),
where ¢ : [0, +00) — [0,+00) is a mapping such that, for each s > 0,

liminf ¢(t) > 0.

t—s

It 1s clear that (1,(2,(3 € Zy.

Remark 2.4. Fach simulation function forms a - simulation function. The contrary of the statement is
false [6]].

Lemma 2.5. (See e.g., [2]) Let (X,d) be a metric space, and let {p,} be a sequence in X such that

lim d(pn, pnt+1) = 0.

n—oo

If {pan} is not a Cauchy sequence. Then, there exists an e > 0 and monotone increasing sequences of natural
numbers {my} and {ny} such that ng > my and d(p2m,, p2n,) > € and

(4) nh—>Holo d(p2mk’ pQNk) =€
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(ZZ) nh—>Holo d(mek—lv p2nk+1) =€

(ZZZ) nlLII;O d(pgmk, ank—i—l) = €

(i) lim d(pamy_y s p2ny) = €
In 2012, Samet et al. [4] introduced the class of « - admissible mappings.
Definition 2.6. [{|] A mapping F : X — X is called o- admissible if for all p,o € X we have
a(p,0) = 1= a(Fp,Fo) > 1,
where a1 X x X — [0,00) is a given function.

Definition 2.7. Let X be a nonempty set, F,G: X — X and o, : X x X — [0,00). The two mappings
(F,G) is called a pair of (o, B) - admissible mappings, if

a(p,0) > 1 and B(p,0) > 1
mplies
a(Fp,Go) >1 and B(Gp,Fo)>1and B(Fp,Go)>1 and a(Gp,Fo)>1 forall p,oc X.

Motivated by the above results, we introduce the notion of Suzuki- (Zy(«, 3)) - type rational contraction
and prove some common fixed point results in metric spaces. Also we give an example which supports our
main theorem.

3. Main Results
We begin with the following notion:

Definition 3.1. Let (X,d) be a metric space. Let F,G : X — X be two mappings. we say that the pair
(F,G) is Suzuki - Z(y)(c, B) - type rational contraction if for all p,o € X and L >0

tmin{d(p, Fp),d(c,Go)} < d(p, o) implies

((alp, Fp)B(o,Go)d(Fp,Go), M(p,0)) =0 (1)

where € Zy,

M(p,0) = max {d(p, o), AL plipds00)l dodgbadpTol deddoIo)h o 1 min{d(p, Fp),d(o, Fp)}

Theorem 3.2. Let (X,d) be a complete metric space, and let F,G : X — X be two mappings and o, :
X x X —[0,00). Suppose that the following conditions are satisfied:
(1) (F,G) is pair of («, B)- admissible mappings;
(ii) there exists pg € X such that a(po, Fpo) > 1 and B(po,Gpo) > 1 ;
(iii) the pair (F,G) is Suzuki- Zy) (o, B) - type rational contraction;
)

either, F and G are continuous or
for every sequence {pn} in X such that a(pn, pny1) > 1 and
B(pnypnt1) =1 for allm € Ny and p, — x, we have a(p, Fp) > 1 and B(p,Gp) > 1.

(v
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Then F and G have a unique common fizxed point in X.

Proof. By assumption there exists pg € X such that a(pg, Fpo) > 1. Define the sequence {p,} in X by

letting p1 € X such that p; = Fpo, p2 = Gp1, p3 = Fpa,

ps = Gps,

continuing this process we get Fpp, = pn+1, Gpn+1 = pnt+2 where n > 0.

Since (F,G) is a pair of («, 8) — admissible, so

a(po, FGpo) = a(po, p1) = 1, a(Fpo,Gp1) = ap1, p2) = 1 and a(Gp1, Fp2) = a(pa, p3) > 1
continuing this manner, we obtain

a(pns pnt1) =1 forall n>0.

Similarly, we can get
B(pnys pnt1) =1 forall n>0.

If p, = ppy1 for some n € N, then u = p, is a common fixed point for F or G.
Consequently, we suppose that p, # pp+1 for all n € N.

Since § min{d(pan, Fpan), d(p2n+1,Gp2n+1)} < d(p2n, p2nt1)
from [1| we have

0 < {(apan, Fpan)B(p2n+1, Gpan+1)d(F p2n, Gpan+1), M(p2n, p2n+1))
0 <

Y(M (pan, pant1)) — (e pan, Fp2n)B(p2n+1, Gp2n+1)d(p2n+1, P2n+2));

SO
¢(M(p2n) p2n+1)) > ¢(01(P2n7 fp2n)ﬁ(p2n+la gp2n+1)d(p2n+1) p2n+2))-
Since 1 is strictly increasing,
M (pan, pan+1) > a(pan, Fpon)B(p2n+1, Gp2n+1)d(p2n+1, P2nt2),
on the other hand,

M(p2nv p2n+1)
d(pam p ) d(pan,Fp2n)[14+d(p2n+1,G02n+1)]
 ax 2ns P2n+1), 14+d(p2n,p2n+1) ’

d(p2n+1,Gp2n+1)[1+d(p2n,Fp2n)] d(p2n+1,9p2n+1)d(p2n,Fp2n)
1+d€p2n,p2n+1) ’ d(p2n,p2n+1)
+L mln{d(pzm(fmn) d([p2n+17 Fpan)} ]
d(p2an,pan+1)[1+d(p2n+1,p2n+2)
_ max{ d(p2n7p2”+1)’ 14+d(p2n,p2n+1) }

d(p2n+1,02n+2)[1+d(p2n,p2n+1)] d(P2n+1,p2n+2)d(ﬂ2n,p2n+1)
1+d(P2n:p2n+l) ’ d(P2nyP2n+1)
+L min{d(p2n, p2n+1), d(P2n+1, P2n+1)}

d FeR) n 1 d 7 P 7
= maX{ d(p2an; pant1), ez p21111)([p;,£§zﬁ)1 panss) d(p2n+1, P2n+2) }

for refining the inequality above, we shall consider the following Cases:

Case(i): If M(pon, p2n+1) = d(p2n+1, p2n+2), then by [2| we have
d(pan+1, pan+2) > d(pan+1, pan+2), which is a contradiction.
Case(ii): If M(pan, pont1) = d(pan, p2n+1), then the inequality 2| turns into the inequality

d(p2n+1, pan+2) < d(p2n; P2n+1)-

Case(iii): Suppose that

_ d(p2n7p2n+l)[1+d(P2n+1’p2n+2)]

M(PQm ,02n+1) 1+d(p2n,p2n+1)

This yields

d(p2na p2n+l)[1 + d(02n+1, p2n+2)]
1+ d(p2n7 p2n+1) ’

max{d(pan, pant1), d(p2n+1, pan+2)} <
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We shall illustrate that this case is not possible. For this reason, we consider the following subcases:
Case(iii)a: Suppose maX{d(ana p2n+1)’ d(p2n+17p2n+2)} = d(p2n+17 p2n+2)7 that is,

d(p2n, pn+1) < d(p2nt1, p2ni2) (5)
on the other hand, from ] we have

d(p2n, p2n+1)[1 + d(p2n+1, p2n+2)] (6)
1+ d(p2n, p2n+1)

d(p2n, pant+1) <

By a simple conclusion, we have, from the inequality above, that d(pan+1,p2n+2) < d(p2n, p2n+1), which
contradicts the assumption
Case(iii)y, : Assume that

max{d(pan, pan+1), d(P2n+1, P2n+2)} = d(p2n, P2n+1),
that is,
d(p2n+1, pan+2) < d(p2n; P2n+1)- (7)
Furthermore, from [ we have
d(pan, p2n+1)[1 + d(p2n+1, p2n+2)] ()

L+ d(pan, p2n+1)
A simple evaluation implies, from the inequality above, that

d(p2n, pant+1) <

d(p2n, p2n+1) < d(p2n+1, P2n+2)

which contradicts the assumption . Hence, Case(iii) does not occur. Hence,

d(pan+1, pan+2) < d(p2n, P2n+1)-

Hence, we deduce that the sequence {d(pp, pn+1)} is nonnegative and
nonincreasing.
Consequently, there exists 7 > 0 such that lim d(pp, ppt1) =7

n—oo

We claim that r = 0. Suppose, on the contrary, that » > 0.

lim d(pn, pnt1) = Hm M(pn, ppt1) =1 (9)

For each n > 0 we have %min{d(pzn,}"pgn), d(pan+1,Gpoan+1)} < d(pan, p2n+1)
from [T} we have

C(alpan, Fpon)B(p2n+1, Gpoant1)d(F pan, Gpant1), M (pan, p2n+1)) > 0

SO
lim sup ¢(a(p2n, F p2n) B(p2n+1, Gpon+1)d(F pan, Gpant1)s M (p2n, pant1)) > 0. (10)

n—oo

Therefore, from ((2)
lim sup C(a(p2n, Fp2n)B(p2ns1, Gp2nt1)d(F pon, Gpant1), M (pon, pont1)) < 0,
n—0o0

which contradicts So the claim is proved, that is,

lim d(pn, pn+1) = lim M(pn, ppi1) = 0. (11)
n—oo n—o0
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Now, we will show that {p,} is a Cauchy sequence. Suppose, to the contrary that {p,} is not a Cauchy
sequence. Then, there exists an ¢y > 0 and monotone increasing sequences of natural numbers {my} and
{ni} such that ng > my and d(pam,, p2n,) > €0

and

(Z) nlggo d(meka /02nk) = €0
('lZ) nll)ngo d(mek—h ank.H) = €0
(i) lim d(pamy,s P2n,+1) = €0

(iv) nh_)fglo d(p2my,_y+ P2ny,) = €o.

Therefore, from the definition of M(p, o) we have

lim M (pan,, p2m,—1)

n—oo
d d(Pan7P2nk+1)[1+d(P2mk,17P2mk+1)]
. (anka mekfl)a 1+d(p2n, pom ) 5
= lim max kPR -1
n—oo d(Pka,_l 7P27nk+1 ) [1+d(p2nk 7P27Lk+1 )} d(Pka_l 7p27nk+1 )d(ank 7P27Lk+1 )
1+d(p2ny .p2my_4 ) ’ d(p2ny,p2my,_q)

+L min{d(pgnk, p27m+1)7 d(p2mk_1’ p2nk+1)}
= max{0,e0} = €

SO
klggo d(p2my,> P2ny+1) = k11_>HC}O M (pany,, P2my—1) = €0 > 0.

Hence, (5 implies that
kli)H;o d(p2my > Pong+1) = k11_>HC}O M (pan,,, p2mj—1) = €0 > 0. (12)

On the other hand, we claim that for sufficiently large k € N, if ngy > my > k, then

1 .
9 mln{d(fpnkvpnk)> d(pmkfla gpmkfl)} > d(pnka pﬂ%*l) (13)

on letting as k — oo in [I3] we get that ¢y < 0, contradiction. Therefore

T .
5 mln{d(fpnk ’ Pnk)> d(pmkfla gpmkfl)} S d(pnk, pmkfl)

and from [Tl we have

0 < {(apang, Fp2any, ) B(P2me—15Gpame—1)d(F pong, Go2m—1), M (p2n,, P2mie—1))

Hence
lim sup ((a(p2ny, > F p2ny ) B(P2mi—15 GP2my—1)A(F p2ny» GP2my,—1)s M (p2ny, > p2my,—1)) = 0

k—o0

which contradicts This contradiction proves that {p,} is a Cauchy sequence and, since X is complete,
there exists u € X such that {p,} — u as n — oc.
We claim that u is a common fixed point of F and G. Since F and G are continuous, we deduce that

4= B et = B, P = PG, pan) = Fu
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and
w= lim papio = lim Gpopi1 =G (nh_{go pont+1) = Gu.
Therefore Fu = Gu = u, that is, u is a common fixed point of F and §.
Since from (iv), we have
for every sequence {p,} in X such that a(pn, pn+1) > 1 and B(pn, pn+1) =1 for all n € Ny and p,, — u as
n — oo, this implies pay, +1 — v and pay, 12 — u as k — oo.
Now we show that Fu = Gu = u.

Suppose u # Gu.
Now we claim that, for each n > 1, atleast one of the following assertions holds.

1
id(Pnk—h pnk) < d(pnk_17 u)

or
1
id(pnk ) ﬂnk—i-l) < d(ﬂnk ) u)

On contrary suppose that
1
id(pnk—h pnk) > d(pnk—h u)

and 1
id(pnmpmﬁ-l) > d(ﬂ”m“)'

For some n > 1. Then we have

< ai(pnk—lv u) + d(u> pnk)
< i[d(pnk—la pnk) + d(pnku Pnk-i-l)]
< d(ﬂnk—la pnk)v

which is a contradiction and so the claim holds.
From (1| we have § min{d(pan,, Fpan, ), d(u, Gu)} < d(pan, ) implies

0 < C(a(anku ngnk)B(uu gu)d(IPana gu)7 M(Pan, u))
< ¢(M(p2nk7u)) - w(a(ank,}—I)an)ﬁ(U, gu)d(}—pmbk, gu))

w(M(P%k ’ U)) > 1/1(a(/)2nk ) FPan)ﬁ(’U/, gu)d(ff)anv gu))

Since 1 is strictly increasing,

Oé(,02nk ) fPan)B(U, gu)d(fIO?nm gu) < M(ankv U) (14)

on the other hand,

Mipar, ) ( d(w,gw)]  duwGu)i+d( | d )
_ d P2n 7-F92n ) 1+d u7gu) d uygu) 1+d P2n ,Fp2n ) d uygu)d(an 7]:,0277,
= max {d(Pan, U)a : 1+d(;2nk7U) ) 1+d(p2nklju) B d(p%klfu) . }

+Lmin{d(p2nk"Fp2nk)vd(uv]:p2nk)'

Taking limit &k — oo, we get
lim M (pon,,,u) = d(u, Gu).

k—o00

Since, from [I4] we have

d(Fpan,,Gu) < alpong, Fpan,)B(w, Gu)d(F pan,,, Gu)

< M(Pan,u). (15)
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Taking limit & — oo, in [15| gives d(u, Gu) < d(u,Gu), a contradiction. Hence u = Gu. Similarly, we can find
that u = Fu. Hence, the pair (F,G) has a common fixed point © = Fu = Gu.
We claim F and G have a unique common fixed points u,v € X. Therefore Fu = Gu =u, Fv=Gv =0
and d(u,v) > 0.
Therefore ) .
5 min{d(u, Fu),d(v,Gv)} = 3 min{0,0} =0 < d(u,v),

from [Il we have
0 < C(afu, Fu)B(v, Go)d(Fu, gu), M(u,v)
<

B(M (1, 0)) ~ (o, Fu) B(v, Go)d(u, v)),

Since 1) is strictly increasing,

d(u,v) < a(u, Fu)B(v, Gv)d(u,v) < M(u,v) (16)
on the other hand,
M (u,v)
d(u,Fu)[1+d(v,Gv)] d(v,Gv)[1+d(u,Fu)] d(v,Gv)d(u,Fu
= max {d(u, v), & 1Jz[d(u,v() L4 12£d(u,51) 1,4 d()un(J) )}
+ L min{d(u, Fu), d(v, Fu)
d(u,u)[1+d(v,w)] d(vw)[1+d(u,u)] d(vw)d(u,u
= Iax {d(“v v), « 1J)r[d(u,1g;) 4 13r[d(u,1(z) 1 d(L,z()) )}
= d(u,v) > 0.

Therefore, from [I5] we have
d(u,v) < a(u, Fu)B(v,vG)d(u,v) < M(u,v) = d(u,v)
a contradiction. Hence F and G have a unique common fixed point. O

Corollary 3.3. Let (X, d) be a complete metric space, and let F : X — X be a mapping and o, : X x X —
[0,00). Suppose that the following conditions are satisfied:

(1) if for all p,o € X

s min{d(p, Fp),d(c, Fo)} < d(p,o) implies

((alp, Fp)B(o, Fo)d(Fp, Fo), M(p,0)) =0 (17)
where ¢ € Zy,
M(p, o)
d(p,Fp)l+d(o,Fo)] d(o,Fo)[l+d(p,F, d(o,Fo)d(p,F,
- s ) 07857 Tl seZ

+Lmin{d(p, Fp),d(o, Fp)}

(ii) F is (o, B) admissible mapping;
(791) there exists po € X such that a(po, Fpo) > 1 ;

(iv) either, F is continuous or
for every sequence {pn} in X such that a(pn, pny1) > 1 and
B(pnypnt1) =1 for alln € Ny and p, — x, we have o(p, Fp) > 1 and 5(p, Fp) > 1.

Then F has a unique fixed point in X.
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Example 3.4. Let X =[0,00), and let d: X x X — [0,00) be defined by

d(p, o) —{ maxgp’”} prp_ia

We define F,G: X — X by F(p) = § and G(p) = § for all p € X.
Clearly (X,d) is complete and F and G are continuous self- mappings on X and o, : X x X — [0,00) are
two mappings defined by
[ 1 if p,oel0,1],
olp,0) = { 0 otherwise

and
if p,o€0,1],
otherwise

Blpo) = { (1)
We now define ¢ : [0, 00) x [0,00) — [0,00) by ((t,s) = 29(s) — ¥(t), for all s,t € [0,00) and ¢(t) = L Now

L min{d(p, Fp), (o, go)} < d(p,0)

2
mplies
(alp, Fp)B(o,0)d(Fp, Fa), M(p,0)) = 50(M(p,0)) —¥(alp, Fp)B(o,Go)d(Fp,Go))
= %w(M(P, o)) = ¢(d(Fp,Go))
< IM(p.0) = 3d(Fp.Go) > 0,
where
M(p, o)
. d(p,Fp)[1+d(0,Go)] d(o,Go)[1+d(p,Fp)] d(c,Ga)d(p,Fp)
—max{d(p, U)’ s lp-i-d(p,a) ’ l+d(p,a§ s ) d(p,ag) P}

+Lmin{d(p, Fp),d(o, Fp)}.

Hence for p,o € [0,1] and L > 0 the pair (F,G) is a Suzuki - Zy(a,p) - type rational contraction. In
either case a(p,0) = 0 and B(p,0) = 0 then pair (F,G) is a Suzuki - Zy45) - type rational contraction.
Thus all the assumptions of Theorem [3.9 are satisfied and F and G have a common fized point in X.
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