
 

Mugla Journal of Science and Technology  

 

112 
 

A STUDY ON ABSOLUTE EULER TOTIENT SERIES SPACE AND CERTAIN 
MATRIX TRANSFORMATIONS 

Merve İLKHAN, Department of Mathematics, Duzce University, Turkey, merveilkhan@duzce.edu.tr 

( https://orcid.org/0000-0002-0831-1474) 
*G. Canan HAZAR GÜLEÇ, Department of Mathematics, Pamukkale University, Turkey, gchazar@pau.edu.tr 

( https://orcid.org/0000-0002-8825-5555) 

 
Received: 27.04.2020, Accepted: 04.06.2020 
*Corresponding author 

Research Article 

DOI: 10.22531/muglajsci.727517 

Abstract 

Recently, many authors have focused on the studies related to sequence and series spaces. In the literature the simple and 
fundamental method is to construct new sequence and series spaces by means of the matrix domain of triangular 
matrices on the classical sequence spaces. Based on this approach, in this study, we introduce a new series space  𝜙𝑧 𝑝  as 

the set of all series summable by absolute summability method  𝛷, 𝑧𝑛  𝑝 , where 𝛷 =  𝜙𝑛𝑘   denotes Euler totient matrix, 
𝑧 =  𝑧𝑛  is  a sequence of non-negative terms and 𝑝 ≥ 1. Also, we show that the series space  𝜙𝑧 𝑝  is linearly isomorphic 

to the space of all 𝑝- absolutely summable sequences ℓ𝑝  for 𝑝 ≥ 1. Moreover, we determine some topological properties 

and 𝛼, 𝛽 and 𝛾-duals of this space and give Schauder basis for the space  𝜙𝑧 𝑝 . Finally, we characterize the classes of the 

matrix operators from the space |𝜙𝑧|𝑝  to the classical spaces ℓ∞ , 𝑐, 𝑐0, ℓ1 for 1 ≤ 𝑝 < ∞ and vice versa. 
Keywords: Absolute Series Spaces, Matrix Operators, BK Spaces. 

MUTLAK EULER TOTİENT SERİ UZAYI VE BAZI MATRİS DÖNÜŞÜMLERİ 
ÜZERİNE BİR ÇALIŞMA 

Özet 

Son zamanlarda birçok yazar dizi ve seri uzayları ile ilgili çalışmalara yoğunlaşmışlardır. Literatürde basit ve temel 
yaklaşım klasik dizi uzayları üzerinde üçgensel matrislerin matris etki alanı yardımıyla yeni dizi ve seri uzayları inşa 
etmektir. Bu çalışmada, bu yaklaşımdan yola çıkarak  𝛷, 𝑧𝑛  𝑝  mutlak toplanabilme metodu ile toplanabilen tüm serilerin 

uzayı olan yeni bir  𝜙𝑧 𝑝  seri uzayı tanımlanmıştır, burada 𝛷 =  𝜙𝑛𝑘   Euler totient matrisini gösterir, 𝑧 =  𝑧𝑛  terimleri 

negatif olmayan bir dizidir ve 𝑝 ≥ 1 dir.  𝜙𝑧 𝑝  seri uzayının tüm mutlak 𝑝- toplanabilen dizilerin ℓ𝑝 , 𝑝 ≥ 1, uzayına 

izomorf olduğu gösterilmiştir. Ayrıca, bu uzayın bazı topolojik özellikleri ile 𝛼, 𝛽 and 𝛾- dualleri belirlenmiştir ve  𝜙𝑧 𝑝  

uzayı için Schauder bazı verilmiştir. Son olarak, |𝜙𝑧 |𝑝  uzayından ℓ∞ , 𝑐, 𝑐0 , ℓ1 klasik dizi uzaylarına ve ℓ∞ , 𝑐, 𝑐0, ℓ1 klasik 

dizi uzaylarından |𝜙𝑧|𝑝  uzayına bazı matris operatörleri karakterize edilmiştir.  
Anahtar Kelimeler: Mutlak Seri Uzayları, Matris Operatörleri, BK Uzayları. 
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İlhan, M., Hazar Güleç, G. C., (2020). “A study on absulute euler totient series space and certain matrix transformations”, 
Mugla Journal of Science and Technology, 6(1), 112-119. 

 

1.  Introduction 

Let 𝜔 be the space of all real valued sequences. Each 
linear subspace of 𝜔 is called a sequence space. We 
write 𝜓, ℓ∞ , 𝑐 and 𝑐0  for the sequence spaces of all finite, 
bounded, convergent, null sequences and also by 𝑏𝑠, 𝑐𝑠 
and ℓ𝑝   1 ≤ 𝑝 < ∞ , we denote the spaces of all 

bounded, convergent and 𝑝-absolutely convergent 
series, respectively. Throughout the paper 𝑞 denotes the 
conjugate of 𝑝 > 1, i.e., 1/𝑝 + 1/𝑞 = 1, and 1/𝑞 = 0 for 
𝑝 = 1. 

For the sequence spaces X and Y, define the set 𝑆 𝑋: 𝑌  
by  

  

𝑆 𝑋: 𝑌 = {𝑢 =  𝑢𝑘 ∈ 𝜔: 𝑥𝑢 =  𝑥𝑘𝑢𝑘 ∈ 𝑌  (1)      

for all 𝑥 ∈ 𝑋}.  

With the notation in (1), 𝛼, 𝛽 and 𝛾-duals of a sequence 
space 𝑋, which are denoted by 𝑋𝛼 , 𝑋𝛽  and 𝑋𝛾  
respectively, are defined by 𝑋𝛼 = 𝑆 𝑋 ∶ ℓ1 , 𝑋𝛽 =
𝑆 𝑋 ∶ 𝑐𝑠  and 𝑋𝛾 = 𝑆 𝑋 ∶ 𝑏𝑠 . 

Let 𝐴 =  𝑎𝑛𝑘   be an infinite matrix of real numbers and 
𝑋, 𝑌 be non-empty subsets of 𝜔. We say that 𝐴 defines a 
matrix mapping from 𝑋 to 𝑌, and we denote it by 
𝐴 ∶ 𝑋 → 𝑌, if for every sequence 𝑥 = (𝑥𝑘) ∈ 𝑋,  

𝐴𝑥 =  𝐴𝑛 𝑥  , the 𝐴-transform of 𝑥, is in 𝑌, where the 
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series 𝐴𝑛(𝑥) =  ∞
𝑘=1 𝑎𝑛𝑘 𝑥𝑘  convergences for all 𝑛. By 

 𝑋, 𝑌 , we denote the class of all such matrices. 

For any subset 𝑋 of 𝜔, the matrix domain 𝑋𝐴  is 
introduced by  

𝑋𝐴 =  𝑥 ∈ 𝜔 ∶ 𝐴𝑥 ∈ 𝑋 . (2) 

A 𝐵𝐾 space 𝑋 ⊂ 𝜔 is a Banach space with continuous 
coordinates 𝑃𝑛 ∶ 𝑋 → ℂ, where 𝑃𝑛 𝑥 = 𝑥𝑛  for all 𝑥 ∈ 𝑋, 
𝑛 ≥ 1 and ℂ denotes the complex field. Also, a 𝐵𝐾- space 
𝑋 ⊃ 𝜓 is said to have 𝐴𝐾 if every sequence 𝑥 ∈ 𝑋 has a 

unique representation 𝑥 =  ∞
𝑘=1 𝑥𝑘𝑒 𝑘 , where 𝑒 𝑘  

denotes the sequence with 𝑒𝑘
 𝑘 

= 1 and 𝑒𝑗
 𝑘 

= 0 for 

𝑗 ≠ 𝑘 [1]. For example, the sequence spaces ℓ∞ , 𝑐 and 𝑐0  
are 𝐵𝐾-spaces with the norm given by  𝑥 ℓ∞

=

𝑠𝑢𝑝𝑘  𝑥𝑘   and ℓ𝑝  is a 𝐵𝐾-space with the norm 

 𝑥 ℓ𝑝
=   ∞

𝑘=1  𝑥𝑘  𝑝 1/𝑝 , 1 ≤ 𝑝 < ∞. Moreover, the 

spaces 𝑐0  and ℓp   1 ≤ 𝑝 < ∞  have the property 𝐴𝐾. 

If 𝐴 = (𝑎𝑛𝑘 ) is an infinite triangle matrix, i. e., 𝑎𝑛𝑛 ≠ 0, 
and 𝑎𝑛𝑘 = 0 for 𝑘 > 𝑛, there exists its unique inverse 
[2]. 

For a given 𝑚 ∈ ℕ with 𝑚 > 1, Euler totient function 𝜑 
is defined as the number of positive integers less than 𝑚 
that are coprime with 𝑚 and 𝜑 1 = 1. 

If two numbers 𝑚 and 𝑛 are coprime, then 𝜑 𝑚𝑛 =
𝜑 𝑚 𝜑 𝑛  and also 𝑚 =  𝑑|𝑚 𝜑 𝑑  holds. 

Consider the infinite matrix 𝛷 =  𝜙𝑛𝑘   such that 

𝜙𝑛𝑘 =  

𝜑 𝑘 

𝑛
, 𝑖𝑓 𝑘|𝑛

0 , 𝑖𝑓 𝑘 ∤ 𝑛.

  

Schoenberg [3] has proved that this matrix is regular 
and defined that a sequence  𝑥𝑛  of real numbers is 
𝜑 −convergent to 𝜉 ∈ ℝ if  

𝑙𝑖𝑚
𝑛→∞

1

𝑛
 

𝑑 |𝑛

𝜑 𝑑 𝑥𝑑 = 𝜉. 

This regular matrix is called as Euler totient matrix 
operator in [4] and some new sequence spaces have 
been introduced by using this matrix. 

For any given 𝑚 ∈ ℕ with 𝑚 > 1, Möbius function 𝜇 is 
defined as  

𝜇(𝑚)

=  

(−1)𝑟 if 𝑚 = 𝑝1𝑝2 . . . 𝑝𝑟 , where 𝑝1 , 𝑝2 , . . . , 𝑝𝑟  are

non equivalent prime numbers

0 if 𝑝2|𝑚 for some prime number 𝑝

  

 

 

and 𝜇(1) = 1. Also, if two numbers 𝑚 and 𝑛 are 
coprime, then 𝜇 𝑚𝑛 = 𝜇 𝑚 𝜇 𝑛  and  𝑑|𝑚 𝜇 𝑑 = 0 

holds except for 𝑚 = 1. 

Let   𝑥𝑛  be infinite series with nth partial sum 𝑠𝑛  and 
 𝑧𝑛  be a sequence of non-negative terms. The series 
 𝑥𝑛  is said to be summable  𝐴, 𝑧𝑛  𝑝 , 𝑝 ≥ 1, if  

 

∞

𝑛=1

𝑧𝑛
𝑝−1 Δ𝐴𝑛(𝑠) 𝑝 < ∞, 

where Δ𝐴𝑛(𝑠) = 𝐴𝑛(𝑠) − 𝐴𝑛−1(𝑠), for 𝑛 ≥ 1 [5]. This 
method includes the most of well known absolute 
summability methods. For example, if we take A as 

matrix of weighted mean  𝑁, 𝑡𝑛   resp. 𝑧𝑛 = 𝑇𝑛/𝑡𝑛 , then 

summability  𝐴, 𝑧𝑛  𝑝  reduces to summability methods 

 𝑁, 𝑡𝑛 , 𝑧𝑛  
𝑝

 (resp.  𝑁, 𝑡𝑛  
𝑝

[6]) [7], where 𝑡𝑛 > 0 for all 𝑛  

and 𝑇𝑛 =  𝑛
𝑘=0 𝑡𝑘 → ∞ 𝑎𝑠 𝑛 → ∞. Further, if 𝐴 is matrix 

of Nörlund mean  𝑁, 𝑡𝑛 , then summability  𝐴, 𝑧𝑛  𝑝  is 

same as the summability  𝑁, 𝑡𝑛  𝑝  given by Borwein and 

Cass [8] with 𝑧𝑛 = 𝑛 for 𝑛 ≥ 1, which also includes 
absolute Ces{ro summability  𝐶, 𝛼 𝑝  of Flett [9], where 

 𝑡𝑛  is a sequence of complex numbers with 
𝑇𝑛 =  𝑛

𝑘=0 𝑡𝑘 ≠ 0, 𝑡0 ≠ 0, 𝑇−𝑛 = 0 for 𝑛 ≥ 1. In addition 
to all these classical methods, if we take 𝐴 as Euler 
totient matrix 𝛷 =  𝜙𝑛𝑘  , we obtain a new absolute 
summability method  𝛷, 𝑧𝑛  𝑝 . 

Many authors have constructed sequence spaces by 
means of the matrix domain of triangles on the classical 
sequence spaces. For some of the papers and 
applications, we refer to [10-31] and references therein. 

In this paper, we introduce a new series space by using 
the Euler totient matrix and determine 𝛼, 𝛽 and 𝛾-duals 
of this space. Finally, we characterize the classes of 
matrix operators between the classical spaces 
ℓ∞ , 𝑐, 𝑐0 , ℓ1 and this new space. 

2.  The Series Space  𝝓𝒛 𝒑 

Now, we introduce the series space  𝜙𝑧 𝑝  as the set of all 

series summable by absolute summability method 
 𝛷, 𝑧𝑛  𝑝  as follows.  

 𝜙𝑧  𝑝 =  𝑥 =  𝑥𝑛 ∈ 𝜔:  

∞

𝑛=1

𝑧𝑛
𝑝−1 Δ𝛷𝑛 𝑠  𝑝 < ∞ ,  

where  𝛷𝑛 𝑠   Euler totient transform of the sequence 
 𝑠𝑛 , that is, 𝛷𝑛 𝑠 =  ∞

𝑘=1 𝜙𝑛𝑘 𝑠𝑘 . 

Note that since  𝑠𝑛   is the sequence of partial sum of 
infinite series   𝑥𝑛 , we can write Euler totient 

transform  𝛷𝑛 𝑠   of the sequence  𝑠𝑛  by 

  

𝛷𝑛 𝑠 =  

∞

𝑘=1

𝜙𝑛𝑘 𝑠𝑘 =  

𝑛

𝑘=1

𝜙𝑛𝑘  

𝑘

𝑗=1

𝑥𝑗

=  

𝑛

𝑗=1

𝑥𝑗  

𝑛

𝑘=𝑗
𝑘|𝑛

𝜑 𝑘 

𝑛
. 

 

Thus, we obtain that  

 𝜙𝑧 𝑝 = { 𝑥 =  𝑥𝑛 ∈ 𝜔:  
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∞

𝑛=1

𝑧𝑛
𝑝−1

   
  

𝑛−1

𝑗 =1

𝑥𝑗

 

 
 

 

𝑛

𝑘=𝑗
𝑘|𝑛

𝜑 𝑘 

𝑛
−  

𝑛−1

𝑘=𝑗
𝑘|𝑛−1

𝜑 𝑘 

𝑛 − 1

 

 
 

+ 𝑥𝑛

𝜑(𝑛)

𝑛  
 

𝑝

< ∞}. 

 

  

If we define the matrices 𝐸 𝑝 =  𝑒𝑛𝑘
 𝑝 

 , 1 ≤ 𝑝 < ∞ and 

𝐹 =  𝑓𝑛𝑘   by 

𝑒𝑛𝑘
 𝑝 

=  

−𝑧𝑛
1/𝑞

, 𝑘 = 𝑛 − 1

𝑧𝑛
1/𝑞

, 𝑘 = 𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (3) 

and 

𝑓𝑛𝑘 =  

1

𝑛
 

𝑛

𝑗 =𝑘 ,𝑗 |𝑛

𝜑 𝑗 , 1 ≤ 𝑘 ≤ 𝑛

0, 𝑘 > 𝑛,

  (4) 

then, we can write that  𝐸 𝑝 ∘ 𝐹 
𝑛
 𝑥 = 𝑧𝑛

1/𝑞
 𝐹𝑛 𝑥 −

𝐹𝑛−1 𝑥   for 𝑛 ≥ 1, where 𝐹𝑛 𝑥 =  𝑛
𝑗 =1 𝑥𝑗  𝑛

𝑘=𝑗
𝑘|𝑛

𝜑 𝑘 

𝑛
 and 

𝐹0 𝑥 = 0. 

So we may restate  𝜙𝑧 𝑝 =  ℓ𝑝 
𝐸 𝑝 ∘𝐹

 according to the 

notation of matrix domain (2). 

Also, since the matrices 𝐸 𝑝  and 𝐹 are triangles, they 
have the unique inverses and we denote these inverses 

by  𝐸 𝑝  
−1

= 𝐸  𝑝  and 𝐹−1 = 𝐹  for brevity. Further, we 

can calculate these matrices 𝐸  𝑝 =  𝑒 𝑛𝑘
 𝑝 

  and 𝐹 =  𝑓 𝑛𝑘   

by 

𝑒 𝑛𝑘
 𝑝 

=  
𝑧𝑘

−1/𝑞
, 1 ≤ 𝑘 ≤ 𝑛

0, 𝑘 > 𝑛
  (5) 

and  

𝑓 𝑛𝑘 =

 
 
 
 
 

 
 
 
 𝜇  

𝑛

𝑘
 𝑘

𝜑 𝑛 
, 𝑘|𝑛

−
𝜇  

𝑛−1

𝑘
 𝑘

𝜑 𝑛 − 1 
, 𝑘|𝑛 − 1

𝜇 𝑛 

𝜑 𝑛 
−

𝜇 𝑛 − 1 

𝜑 𝑛 − 1 
, 𝑘 = 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

  (6) 

Theorem 2.1 Let 1 ≤ 𝑝 < ∞ and the matrices 𝐸 𝑝  and 
𝐹 be defined by (3) and (4), respectively. Then, the 
space  𝜙𝑧 𝑝  is a 𝐵𝐾 space with respect to the norm  

 𝑥  𝜙𝑧  𝑝 =  𝐸 𝑝 ∘ 𝐹 𝑥  
ℓ𝑝

  

and norm isomorphic to the space ℓ𝑝 , that is,  𝜙𝑧 𝑝 ≅ ℓ𝑝 .  

Proof. Since ℓ𝑝  is a 𝐵𝐾 space and 𝐸(𝑝) ∘ 𝐹 is a triangle 

matrix and  𝜙𝑧 𝑝 =  ℓ𝑝 
𝐸 𝑝 ∘𝐹

, the space  𝜙𝑧 𝑝  is a 𝐵𝐾 

space by Theorem 4.3.2 in [2]. 

Further, consider the transformations 𝐹 ∶  𝜙𝑧  𝑝 → 

 ℓ𝑝 
𝐸 𝑝  and 𝐸 𝑝 ∶  ℓ𝑝 

𝐸 𝑝 → ℓ𝑝 . Since 𝐹 and 𝐸 𝑝  are 

linear bijections, then, it is clear that composite function 

𝐸 𝑝 ∘ 𝐹 is a linear bijective operator. In fact, if 

 𝐸 𝑝 ∘ 𝐹  𝑥 = 𝜃, then 𝑥 = 𝜃, so 𝐸 𝑝 ∘ 𝐹 is injective. 

Also, let 𝑢 =  𝑢𝑘 ∈ ℓ𝑝  be given. Then, since 

𝑦 =  𝑦𝑛 =   𝑛
𝑘=1 𝑧𝑘

−1/𝑞
𝑢𝑘  ∈  ℓ𝑝 

𝐸 𝑝 , we get 

𝑥 =  𝑥𝑛 =   

𝑘|𝑛

𝜇  
𝑛

𝑘
 𝑘

𝜑 𝑛 
𝑦𝑘 −  

𝑘|𝑛−1

𝜇  
𝑛−1

𝑘
 𝑘

𝜑 𝑛 − 1 
𝑦𝑘  

 ∈  𝜙𝑧 𝑝 .                                            

This gives that 𝑢 =  𝐸 𝑝 ∘ 𝐹  𝑥 ∈ ℓ𝑝 , so 𝐸 𝑝 ∘ 𝐹 is 

surjective. Furthermore, 𝐸 𝑝 ∘ 𝐹 preserves the norm 
since  

 𝐸 𝑝 ∘ 𝐹 𝑥  
ℓ𝑝

=  𝑥  𝜙𝑧  𝑝 .  

Note that the collection of all finite subsets of ℕ is 
denoted by 𝒩. 

Lemma 2.2 [32] 

a) 𝑇 = (𝑡𝑛𝑘 ) ∈ (ℓ1, 𝑐) if and only if   

𝑙𝑖𝑚
𝑛

𝑡𝑛𝑘  exists for each 𝑘 ≥ 1 (7) 

 and  

𝑠𝑢𝑝
𝑛 ,𝑘

 𝑡𝑛𝑘  < ∞. (8) 

b) 𝑇 = (𝑡𝑛𝑘 ) ∈ (ℓ1, ℓ∞) if and only if (8) holds. 

c) Let 1 < 𝑝 < ∞. 𝑇 = (𝑡𝑛𝑘 ) ∈ (ℓ𝑝 , 𝑐) if and only if (7) 

holds and  

𝑠𝑢𝑝
𝑛

 

∞

𝑘=1

 𝑡𝑛𝑘  𝑞 < ∞. (9) 

d) Let 1 < 𝑝 < ∞. 𝑇 = (𝑡𝑛𝑘 ) ∈ (ℓ𝑝 , ℓ∞) if and only if (9) 

holds. 

e) Let 1 < 𝑝 < ∞. 𝑇 = (𝑡𝑛𝑘 ) ∈  ℓ𝑝 , ℓ1  if and only if  

𝑠𝑢𝑝
𝑁∈𝒩

 

𝑘

  

𝑛∈𝑁

𝑡𝑛𝑘  

𝑞

< ∞.  

Lemma 2.3  [33] Let 1 ≤ 𝑝 < ∞. 𝑇 = (𝑡𝑛𝑘 ) ∈  ℓ1 , ℓ𝑝  if 

and only if  

𝑠𝑢𝑝
𝑘

 

∞

𝑛=1

 𝑡𝑛𝑘  𝑝 < ∞.  

Using following notations and Lemmas 2.2-2.3, we state 
following theorem related to 𝛼, 𝛽 and 𝛾-duals of the 
series space  𝜙𝑧 𝑝 . 

𝛺1 = { 𝑎 =  𝑎𝑗  ∈ 𝜔 ∶ 𝑙𝑖𝑚
𝑚

  

𝑚

𝑗 =𝑟

 

𝑗

𝑘=𝑟

𝑎𝑗 𝑓 𝑗𝑘   exists,

𝑟 ≥ 1}, 
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𝛺2 =  𝑎 =  𝑎𝑗  ∈ 𝜔: 𝑠𝑢𝑝
𝑚 ,𝑟

  

𝑚

𝑗 =𝑟

 

𝑗

𝑘=𝑟

𝑎𝑗𝑓 𝑗𝑘  < ∞ ,  

 

𝛺3 = {𝑎 =  𝑎𝑗  ∈ 𝜔: 𝑠𝑢𝑝
𝑚

 

𝑚

𝑟=1

 𝑧𝑟
−1/𝑞

 

𝑚

𝑗 =𝑟

 

𝑗

𝑘=𝑟

𝑎𝑗𝑓 𝑗𝑘  

𝑞

< ∞}, 

 

 

𝛺4 =  𝑎 =  𝑎𝑗  ∈ 𝜔: 𝑠𝑢𝑝
𝑟

 

∞

𝑛=𝑟

  

𝑛

𝑘=𝑟

𝑎𝑛𝑓 𝑛𝑘  < ∞ ,  

 

𝛺5 = {𝑎 =  𝑎𝑗  ∈ 𝜔: 𝑠𝑢𝑝
𝑁∈𝒩

 

𝑟

  

𝑛∈𝑁

 

𝑛

𝑘=𝑟

𝑎𝑛𝑓 𝑛𝑘 𝑧𝑟
−1/𝑞

 

𝑞

< ∞} 

 

Theorem 2.4  Let 𝐹 =  𝑓 𝑛𝑘   be defined by (6). Then, we 

have: 

a)   𝜙𝑧 𝑝 
𝛽

= 𝛺1 ∩ 𝛺3 for 1 < 𝑝 < ∞ and   ϕz 1 
β =

𝛺1 ∩ 𝛺2 . 

b)    𝜙𝑧 𝑝 
𝛾

= 𝛺3 for 1 < 𝑝 < ∞ and   𝜙𝑧 1 
𝛾 = 𝛺2. 

c)   𝜙𝑧  𝑝 
𝛼

= 𝛺5 for 1 < 𝑝 < ∞ and   𝜙𝑧 1 
𝛼 = 𝛺4 . 

Proof. a) Let 1 < 𝑝 < ∞. 𝑎 ∈   𝜙𝑧 𝑝 
𝛽

 if and only if 

𝑎𝑥 ∈ 𝑐𝑠 for every 𝑥 ∈  𝜙𝑧  𝑝 . Let 𝑦 = 𝐹(𝑥). Then, 𝑢 ∈ ℓ𝑝 , 

where 𝑢𝑛 = 𝑧𝑛
1/𝑞 𝑦𝑛 − 𝑦𝑛−1  for 𝑛 ≥ 1, 𝑦0 = 0, and also 

we have 𝑦𝑛 =  𝑛
𝑘=1 𝑧𝑘

−1/𝑞
𝑢𝑘 . Since we have 

  

𝑥𝑛 =  

𝑘|𝑛

𝜇  
𝑛

𝑘
 𝑘

𝜑 𝑛 
𝑦𝑘 −  

𝑘|𝑛−1

𝜇  
𝑛−1

𝑘
 𝑘

𝜑 𝑛 − 1 
𝑦𝑘  

 

 

=  

𝑛

𝑘=1

𝑓 𝑛𝑘 𝑦𝑘 ,                                        

we obtain that  

 

𝑚

𝑗=1

𝑎𝑗𝑥𝑗 =  

𝑚

𝑗 =1

𝑎𝑗  

𝑗

𝑘=1

𝑓 𝑗𝑘 𝑦𝑘   

                    =  

𝑚

𝑘=1

  

𝑚

𝑗 =𝑘

𝑎𝑗𝑓 𝑗𝑘  𝑦𝑘   

                                      =  

𝑚

𝑟=1

𝑧𝑟
−1/𝑞

  

𝑚

𝑗 =𝑟

 

𝑗

𝑘=𝑟

𝑎𝑗𝑓 𝑗𝑘  𝑢𝑟    

  =  

𝑚

𝑟=1

𝑑𝑚𝑟 𝑢𝑟 ,  

where the matrix 𝐷 =  𝑑𝑚𝑟   is given by 

𝑑𝑚𝑟 =

 
 

 
𝑧𝑟

−1/𝑞
  

𝑚

𝑗 =𝑟

 

𝑗

𝑘=𝑟

𝑎𝑗𝑓 𝑗𝑘  , 1 ≤ 𝑟 ≤ 𝑚

0,          𝑟 > 𝑚.

   (10) 

So it is written by part c) of Lemma 2.2 that 𝑎 ∈   𝜙𝑧  𝑝 
𝛽

 

iff   𝐷 ∈  ℓ𝑝 , 𝑐 , or equivalently, 𝑎 ∈ 𝛺1 ∩ 𝛺3, which 

completes the proof. 

Since the proof for 𝑝 = 1 is similar by using part a) of 
Lemma 2.2, we omit the detail. 

b) Let 1 < 𝑝 < ∞. Then, 𝑎 ∈   𝜙𝑧  𝑝 
𝛾

 if and only if 

𝑎𝑥 ∈ 𝑏𝑠 for every 𝑥 ∈  𝜙𝑧 𝑝 . Also, 𝑥 ∈  𝜙𝑧  𝑝  iff 𝑢 ∈ ℓ𝑝 , 

where 𝑢𝑛 = 𝑧𝑛
1/𝑞 𝑦𝑛 − 𝑦𝑛−1  , 𝑦0 = 0 and 𝑦𝑛 =

 𝑛
𝑗=1 𝑥𝑗  𝑛

𝑘=𝑗
𝑘|𝑛

𝜑 𝑘 

𝑛
 for 𝑛 ≥ 1.  Thus, since we have 

 

𝑚

𝑟=1

𝑎𝑟𝑥𝑟 =  

𝑚

𝑟=1

𝑑𝑚𝑟 𝑢𝑟 ,  

where 𝐷 =  𝑑𝑚𝑟   is defined by (10), this implies that 

𝑎 ∈   𝜙𝑧  𝑝 
𝛾

 iff 𝐷 ∈  ℓ𝑝 , ℓ∞ . Hence, it follows from part 

d) of Lemma 2.2 that 𝑎 ∈ 𝛺3 as asserted. 

Since the proof for 𝑝 = 1 is similar by using part b) of 
Lemma 2.2, we omit the detail. 

c) Let 1 < 𝑝 < ∞. Then, 𝑎 ∈   𝜙𝑧 𝑝 
𝛼

 if and only if 

𝑎𝑥 ∈ ℓ1 for every 𝑥 ∈  𝜙𝑧  𝑝 . Then, we get  

𝑎𝑛𝑥𝑛 = 𝑎𝑛  

𝑛

𝑘=1

𝑓 𝑛𝑘 𝑦𝑘 = 𝑎𝑛  

𝑛

𝑘=1

𝑓 𝑛𝑘  

𝑘

𝑟=1

𝑧𝑟
−1/𝑞

𝑢𝑟   

=  

𝑛

𝑟=1

 

𝑛

𝑘=𝑟

𝑎𝑛𝑓 𝑛𝑘 𝑧𝑟
−1/𝑞

𝑢𝑟 = 𝛿𝑛 𝑢 ,  

where 𝛿𝑛 =  𝛿𝑛𝑟   is defined by 

𝛿𝑛𝑟 =  

𝑛

𝑘=𝑟

𝑎𝑛𝑓 𝑛𝑘 𝑧𝑟
−1/𝑞

.   

So, 𝑎𝑥 ∈ ℓ1 for every 𝑥 ∈  𝜙𝑧  𝑝  if and only if 𝛿 𝑢 ∈ ℓ1  

for every 𝑢 ∈ ℓ𝑝 , or equivalently, 𝑎 ∈   𝜙𝑧 𝑝 
𝛼

 iff 

𝛿 ∈  ℓ𝑝 , ℓ1 , which gives 𝑎 ∈ 𝛺5 from Lemma 2.2, as 

desired. 

Since the proof for 𝑝 = 1 is similar by using Lemma 2.3, 
we omit the detail.  

Theorem 2.5 Let 1 ≤ 𝑝 < ∞ , 𝐹 =  𝑓 𝑛𝑘   and 

𝜏 𝑟 =  𝜏𝑗
 𝑟 

  be defined by (6) and 

𝜏𝑗
 𝑟 

=  
𝑧𝑟

−1/𝑞  
𝑗
𝑘=𝑟 𝑓 𝑗𝑘 , 𝑟 ≤ 𝑗

0, 𝑟 > 𝑗.
 , respectively. Then, the 

sequence  𝜏𝑗
 𝑟 

  is a Schauder base of the space  𝜙𝑧  𝑝 .  

Proof. It is known that the sequence  𝑒 𝑛   is a Schauder 

base for the space ℓ𝑝 , where 𝑒 𝑛  is a sequence with 1 in 

n-th place and zeros elsewhere. Because of the 
transformation 𝐸 𝑝 ∘ 𝐹 defined in the proof of Theorem 

2.1 is an isomorphism, the inverse image  𝐸 𝑝 ∘ 𝐹 
−1

 of 

 𝑒 𝑛   is a Schauder basis for  𝜙𝑧 𝑝 . In fact, if 𝑥 ∈  𝜙𝑧 𝑝 , 
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then there exists 𝑢 ∈ ℓ𝑝  such that 𝑢 =  𝐸 𝑝 ∘ 𝐹  𝑥 , so 

we can deduce from Theorem 2.1 that 

 𝑥 −  

𝑚

𝑟=1

𝑥𝑟𝜏
 𝑟  

 𝜙𝑧  𝑝

=  𝑢 −  

𝑚

𝑟=1

𝑢𝑟𝑒
 𝑟  

ℓ𝑝

→ 0   

as 𝑚 → ∞, where  𝐸 𝑝 ∘ 𝐹 
−1

 𝑒 𝑟  = 𝜏 𝑟 , 𝑟 ≥ 1. 

Furthermore, every 𝑥 ∈  𝜙𝑧 𝑝  has a unique 

representation of the form 𝑥 =  ∞
𝑟=1 𝑥𝑟𝜏

 𝑟 .  

3.  Some Matrix Operators 

In this section, we firstly characterize the matrix classes 
from the space |𝜙𝑧|𝑝  to the classical spaces ℓ∞ , 𝑐, 𝑐0, ℓ1 

for 1 ≤ 𝑝 < ∞. 

Lemma 3.1 [32] 

a) 𝑇 = (𝑡𝑛𝑘 ) ∈ (ℓ1, 𝑐0) if and only if (8) holds and  

𝑙𝑖𝑚
𝑛

𝑡𝑛𝑘 = 0 for each 𝑘 ≥ 1. (11) 

b) Let 1 < 𝑝 < ∞. 𝑇 = (𝑡𝑛𝑘 ) ∈ (ℓ𝑝 , 𝑐0) if and only if (9) 

and (11) hold.  

Theorem 3.2 Let define the matrix 𝑅1 = (𝑟𝑛𝑘
1 ) with a 

matrix 𝑇 = (𝑡𝑛𝑘 ) as  

𝑟𝑛𝑘
1 = 𝑙𝑖𝑚

𝑚→∞
 

𝑚

𝑗 =𝑘

𝑡𝑛𝑗  

𝑗

𝑙=𝑘

𝑓 𝑗𝑙   

for all 𝑛, 𝑘 ∈ ℕ. 

• 𝑇 ∈ (|𝜙𝑧|1, ℓ∞) if and only if  

𝑅1 =  𝑟𝑛𝑘
1    is well defined for all 𝑛, 𝑘 ∈ ℕ (12) 

 

𝑠𝑢𝑝
𝑚 ,𝑘

  

𝑚

𝑗 =𝑘

𝑡𝑛𝑗  

𝑗

𝑙=𝑘

𝑓 𝑗𝑙  < ∞ for each 𝑛 ∈ ℕ (13) 

 

𝑠𝑢𝑝
𝑛 ,𝑘

 𝑟𝑛𝑘
1  < ∞. (14) 

• 𝑇 ∈ (|𝜙𝑧|1, 𝑐) if and only if (12), (13) and (14) hold, 
and  

𝑙𝑖𝑚
𝑛→∞

𝑟𝑛𝑘
1  exists for each 𝑘 ∈ ℕ.  

• 𝑇 ∈ (|𝜙𝑧|1, 𝑐0) if and only if (12), (13) and (14) hold, 
and  

𝑙𝑖𝑚
𝑛→∞

𝑟𝑛𝑘
1 = 0 for each 𝑘 ∈ ℕ.  

• 𝑇 ∈ (|𝜙𝑧|1, ℓ1) if and only if (12) and (13) hold, and   

𝑠𝑢𝑝
𝑘

 

𝑛

 𝑟𝑛𝑘
1  < ∞.  

Proof. The proof is given only for the first case since 
others can be proved similarly. 

• 𝑇 ∈ (|𝜙𝑧|1, ℓ∞) if and only if 𝑇𝑥 ∈ ℓ∞  for all 𝑥 ∈ |𝜙𝑧|1. 
Since the series  ∞

𝑘=0 𝑡𝑛𝑘 𝑥𝑘  is convergent, we have that 

(𝑡𝑛𝑘 ) ∈ (|𝜙𝑧 |1)𝛽  for each fixed 𝑛 ∈ ℕ. By Theorem 2.4, 
we obtain that  

𝑙𝑖𝑚
𝑚→∞

 

𝑚

𝑗 =𝑘

 

𝑗

𝑙=𝑘

𝑡𝑛𝑗 𝑓 𝑗𝑙   

exists for each 𝑛, 𝑘 ∈ ℕ and  

𝑠𝑢𝑝
𝑚 ,𝑘

  

𝑚

𝑗 =𝑘

 

𝑗

𝑙=𝑘

𝑡𝑛𝑗 𝑓 𝑗𝑙  < ∞ for each 𝑛 ∈ ℕ.  

That is, (12) and (13) hold. Now, we prove the necessity 
and sufficiency of (14). Consider the linear operator 
𝐸(1) ∘ 𝐹 ∶  𝜙𝑧 1 → ℓ1 . Let 𝑦 = 𝐹𝑥 and                                 
𝑣 = Δ𝑦 = (𝐸(1) ∘ 𝐹)𝑥 for any 𝑥 ∈  𝜙𝑧  1. Then we have 
𝑦𝑛 =  𝑛

𝑘=1 𝑣𝑘 . Hence it follows that  

 

𝑚

𝑘=1

𝑡𝑛𝑘 𝑥𝑘 =  

𝑚

𝑘=1

𝑡𝑛𝑘  

𝑘

𝑗 =1

𝑓 𝑘𝑗 𝑦𝑗   

=  

𝑚

𝑘=1

𝑡𝑛𝑘  

𝑘

𝑗 =1

𝑓 𝑘𝑗  

𝑗

𝑙=1

𝑣𝑙   

=  

𝑚

𝑘=1

𝑡𝑛𝑘  

𝑘

𝑗 =1

 

𝑘

𝑙=𝑗

𝑓 𝑘𝑙𝑣𝑗   

=  

𝑚

𝑗 =1

  

𝑚

𝑘=𝑗

𝑡𝑛𝑘  

𝑘

𝑙=𝑗

𝑓 𝑘𝑙 𝑣𝑗   

=  

𝑚

𝑗 =1

𝑟 𝑚𝑗
1 𝑣𝑗 ,  

where  

𝑟 𝑚𝑗
1 =  

 

𝑚

𝑘=𝑗

𝑡𝑛𝑘  

𝑘

𝑙=𝑗

𝑓 𝑘𝑙 , 1 ≤ 𝑗 ≤ 𝑚

0 , 𝑗 > 𝑚

  

for each n ∈ ℕ. Also, it can be deduced by (12) and (13) 
that 𝑅 1 = (𝑟 𝑚𝑗

1 ) ∈ (ℓ1, 𝑐). Then the series 𝑅 𝑚
1 (𝑣) =

 ∞
𝑗=1 𝑟 𝑚𝑗

1 𝑣𝑗  converges uniformly in 𝑚 for all 𝑣 ∈ ℓ1  and 

so we have 𝑙𝑖𝑚𝑚→∞𝑅 𝑚
1 (𝑣) =  ∞

𝑗 =1 𝑙𝑖𝑚𝑚→∞𝑟 𝑚𝑗
1 𝑣𝑗 . Thus, 

we obtain that  

𝑇𝑛 𝑥 = 𝑙𝑖𝑚
𝑚→∞

𝑅 𝑚
1  𝑣 =  

∞

𝑗 =1

 𝑙𝑖𝑚
𝑚→∞

𝑟 𝑚𝑗
1  𝑣𝑗  

 

 

=  

∞

𝑗 =1

𝑟𝑛𝑗
1 𝑣𝑗 = 𝑅𝑛

1 𝑣 .  

This yields that 𝑇𝑥 ∈ ℓ∞  for 𝑥 ∈ |𝜙𝑧|1 if and only if 
𝑅1𝑣 ∈ ℓ∞  for 𝑣 ∈ ℓ1 . We conclude that 𝑇 ∈ (|𝜙𝑧|1, ℓ∞) if 
and only (12) and (13) hold and also 𝑅1 ∈ (ℓ1, ℓ∞) 
which means (14).  

Theorem 3.3 Let 1 < 𝑝 < ∞ and define the matrix 
𝑅𝑝 = (𝑟𝑛𝑘

𝑝
) with a matrix 𝑇 = (𝑡𝑛𝑘 ) as  

𝑟𝑛𝑘
𝑝

= 𝑧𝑘
−1/𝑞

𝑙𝑖𝑚
𝑚→∞

 

𝑚

𝑗 =𝑘

𝑡𝑛𝑗  

𝑗

𝑙=𝑘

𝑓 𝑗𝑙       
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for all 𝑛, 𝑘 ∈ ℕ. 

• 𝑇 ∈ (|𝜙𝑧|𝑝 , ℓ∞) if and only if (12) holds and  

𝑠𝑢𝑝
𝑚

 

𝑚

𝑘=1

 𝑧𝑘

−
1

𝑞  

𝑚

𝑗 =𝑘

𝑡𝑛𝑗  

𝑗

𝑙=𝑘

𝑓 𝑗𝑙  

𝑞

< ∞ for each 𝑛 ∈ ℕ,     (15) 

 

𝑠𝑢𝑝
𝑛

 

𝑘

 𝑟𝑛𝑘
𝑝

 
𝑞

< ∞.         (16) 

• 𝑇 ∈ (|𝜙𝑧|𝑝 , 𝑐) if and only if (12), (15) and (16) hold, 

and  

𝑙𝑖𝑚
𝑛→∞

𝑟𝑛𝑘
𝑝

 exists for each 𝑘 ∈ ℕ.  

• 𝑇 ∈ (|𝜙𝑧|𝑝 , 𝑐0) if and only if (12), (15) and (16) hold, 

and  

𝑙𝑖𝑚
𝑛→∞

𝑟𝑛𝑘
𝑝

= 0 for each 𝑘 ∈ ℕ.  

• 𝑇 ∈ (|𝜙𝑧|𝑝 , ℓ1) if and only if (12) and (15) hold, and  

𝑠𝑢𝑝
𝑁∈𝒩

 

𝑘

  

𝑛∈𝑁

𝑟𝑛𝑘
𝑝

 

𝑞

< ∞.  

Proof. The proof is given only for the first case since 
others can be proved similarly. 

• 𝑇 ∈ (|𝜙𝑧|𝑝 , ℓ∞) if and only if 𝑇𝑥 ∈ ℓ∞  for all 𝑥 ∈ |𝜙𝑧 |𝑝 . 

Since the series  ∞
𝑘=1 𝑡𝑛𝑘 𝑥𝑘  is convergent, we have that 

(𝑡𝑛𝑘 ) ∈ (|𝜙𝑧 |𝑝)𝛽  for each fixed 𝑛 ∈ ℕ. From Theorem 

2.4, we obtain that (12) holds and  

𝑠𝑢𝑝
𝑚

 

𝑚

𝑘=1

 𝑧𝑘
−1/𝑞

 

𝑚

𝑗 =𝑘

 

𝑗

𝑙=𝑘

𝑡𝑛𝑗 𝑓 𝑗𝑙  

𝑞

< ∞,  

for each 𝑛 ∈ ℕ. 

Now, we prove the necessity and sufficiency of (16). 
Consider the linear operator 𝐸(𝑝) ∘ 𝐹 ∶  𝜙𝑧  𝑝 → ℓ𝑝  

defined by (𝐸(𝑝) ∘ 𝐹)𝑛(𝑥) = 𝑧𝑛
1/𝑞

(𝐹𝑛(𝑥) − 𝐹𝑛−1(𝑥)), 

𝑛 ≥ 1 and 𝐹0(𝑥) = 0. Let 𝑦 = 𝐹𝑥 and 𝑣 = (𝐸(𝑝) ∘ 𝐹)𝑥 for 

any 𝑥 ∈  𝜙𝑧 𝑝 . Then we have 𝑦𝑛 =  𝑛
𝑘=1 𝑧𝑘

−1/𝑞
𝑣𝑘 . Hence 

it follows that  

 

𝑚

𝑘=1

𝑡𝑛𝑘 𝑥𝑘 =  

𝑚

𝑘=1

𝑡𝑛𝑘  

𝑘

𝑗 =1

𝑓 𝑘𝑗 𝑦𝑗   

=  

𝑚

𝑘=1

𝑡𝑛𝑘  

𝑘

𝑗 =1

𝑓 𝑘𝑗  

𝑗

𝑙=1

𝑧𝑙
−1/𝑞

𝑣𝑙   

=  

𝑚

𝑘=1

𝑡𝑛𝑘  

𝑘

𝑗 =1

 

𝑘

𝑙=𝑗

𝑓 𝑘𝑙𝑧𝑗
−1/𝑞

𝑣𝑗   

=  

𝑚

𝑗 =1

 𝑧𝑗
−1/𝑞

 

𝑚

𝑘=𝑗

𝑡𝑛𝑘  

𝑘

𝑙=𝑗

𝑓 𝑘𝑙 𝑣𝑗   

=  

𝑚

𝑗=1

𝑟 𝑚𝑗
𝑝

𝑣𝑗 ,  

where 𝑟 𝑚𝑗
𝑝

=  
𝑧𝑗

−1/𝑞  𝑚
𝑘=𝑗 𝑡𝑛𝑘  𝑘

𝑙=𝑗 𝑓 𝑘𝑙 , 1 ≤ 𝑗 ≤ 𝑚

0 , 𝑗 > 𝑚
  

for each 𝑛 ∈ ℕ. Also, it can be deduced by (12) and (15) 
that 𝑅 𝑝 = (𝑟 𝑚𝑗

𝑝
) ∈ (ℓ𝑝 , 𝑐). Then the series 𝑅 𝑚

𝑝
(𝑣) =

 ∞
𝑗=1 𝑟 𝑚𝑗

𝑝
𝑣𝑗  converges uniformly in 𝑚 for all 𝑣 ∈ ℓ𝑝  and 

so we have 𝑙𝑖𝑚𝑚→∞𝑅 𝑚
𝑝

(𝑣) =  ∞
𝑗 =1 𝑙𝑖𝑚𝑚→∞𝑟 𝑚𝑗

𝑝
𝑣𝑗 . Thus, 

we obtain that 

𝑇𝑛 (𝑥) = 𝑙𝑖𝑚
𝑚→∞

𝑅 𝑚
𝑝

(𝑣) =  

∞

𝑗 =1

( 𝑙𝑖𝑚
𝑚→∞

𝑟 𝑚𝑗
𝑝

)𝑣𝑗 =  

∞

𝑗 =1

𝑟𝑛𝑗
𝑝
𝑣𝑗

= 𝑅𝑛
𝑝

(𝑣). 

 

This yields that 𝑇𝑥 ∈ ℓ∞  for 𝑥 ∈ |𝜙𝑧|𝑝  if and only if 

𝑅𝑝𝑣 ∈ ℓ∞  for 𝑣 ∈ ℓ𝑝 . We conclude that 𝑇 ∈ (|𝜙𝑧|𝑝 , ℓ∞) if 

and only (12) and (15) hold and also 𝑅𝑝 ∈ (ℓ𝑝 , ℓ∞) 

which means (16).  

Now, we give the characterization of the matrix classes 
from the classical spaces ℓ∞ , 𝑐, 𝑐0, ℓ1 to the space |𝜙𝑧|𝑝  

for 1 ≤ 𝑝 < ∞. We need the following lemma to prove 
our results. 

Lemma 3.4 [32] 

a) 𝑇 = (𝑡𝑛𝑘 ) ∈ (ℓ∞ , ℓ1) = (𝑐, ℓ1) = (𝑐0, ℓ1) if and only if 

𝑠𝑢𝑝
𝐾∈𝒩

 

∞

𝑛=1

  

𝑘∈𝐾

𝑡𝑛𝑘  < ∞.  

b) Let 𝑝 > 1. 𝑇 = (𝑡𝑛𝑘 ) ∈ (ℓ∞ , ℓ𝑝) = (𝑐, ℓ𝑝) = (𝑐0, ℓ𝑝) if 

and only if 

𝑠𝑢𝑝
𝐾∈𝒩

 

∞

𝑛=1

  

𝑘∈𝐾

𝑡𝑛𝑘  

𝑝

< ∞.  

Theorem 3.5 Let 𝑇 = (𝑡𝑛𝑘 ) be an infinite matrix. 

• 𝑇 ∈ (ℓ∞ , |𝜙𝑧 |1) = (𝑐, |𝜙𝑧 |1) = (𝑐0 , |𝜙𝑧|1) if and only if
  

𝑠𝑢𝑝
𝐾∈𝒩

 

∞

𝑛=1

  

𝑘∈𝐾

  

𝑛

𝑗 =1

  

𝑛

𝑙=𝑗 ,𝑙|𝑛

𝜑(𝑙)

𝑛
−  

𝑛−1

𝑙=𝑗 ,𝑙|𝑛−1

𝜑(𝑙)

𝑛 − 1
 𝑡𝑗𝑘   

< ∞. 

• 𝑇 ∈ (ℓ1, |𝜙𝑧 |1) if and only if  

𝑠𝑢𝑝
𝑘

 

∞

𝑛=1

  

𝑛

𝑗 =1

  

𝑛

𝑙=𝑗 ,𝑙|𝑛

𝜑(𝑙)

𝑛
−  

𝑛−1

𝑙=𝑗 ,𝑙|𝑛−1

𝜑(𝑙)

𝑛 − 1
 𝑡𝑗𝑘  

< ∞. 

 

Proof. The proof is given only for the matrix class 
(ℓ∞ , |𝜙𝑧 |1) since the other cases can be proved similarly. 

Consider the matrix 𝑆1 = (𝑠𝑛𝑘
1 ) defined as 

𝑠𝑛𝑘
1 =  

𝑛

𝑗 =1

  

𝑛

𝑙=𝑗 ,𝑙|𝑛

𝜑(𝑙)

𝑛
−  

𝑛−1

𝑙=𝑗 ,𝑙|𝑛−1

𝜑(𝑙)

𝑛 − 1
 𝑡𝑗𝑘 < ∞.  

for all 𝑛, 𝑘 ∈ ℕ. Let 𝑥 = (𝑥𝑛 ) ∈ ℓ∞ . We obtain the 
following equality:  

 

∞

𝑘=1

𝑠𝑛𝑘
1 𝑥𝑘   



Merve İlhan, G. Canan Hazar Güleç 
A Study on Absolute Euler Totient Series Space and Certain Matrix Transformations  

 

118 

 

=  

∞

𝑘=1

  

𝑛

𝑗 =1

  

𝑛

𝑙=𝑗 ,𝑙|𝑛

𝜑(𝑙)

𝑛
−  

𝑛−1

𝑙=𝑗 ,𝑙|𝑛−1

𝜑(𝑙)

𝑛 − 1
 𝑡𝑗𝑘  𝑥𝑘   

=  

𝑛

𝑗 =1

 

∞

𝑘=1

𝑡𝑗𝑘 𝑥𝑘  

𝑛

𝑙=𝑗 ,𝑙|𝑛

𝜑(𝑙)

𝑛
  

−  

𝑛−1

𝑗 =1

 

∞

𝑘=1

𝑡𝑗𝑘 𝑥𝑘  

𝑛−1

𝑙=𝑗 ,𝑙|𝑛−1

𝜑(𝑙)

𝑛 − 1
  

= 𝐹𝑛(𝑇𝑥) − 𝐹𝑛−1(𝑇𝑥).  

This implies that 𝑆𝑛
1(𝑥) = (𝐸(1) ∘ 𝐹)𝑛 (𝑇𝑥) for all 𝑛 ∈ ℕ. 

Hence, it follows that 𝑇𝑥 ∈ |𝜙𝑧|1 for any 𝑥 ∈ ℓ∞  if and 
only if 𝑆1𝑥 ∈ ℓ1  for any 𝑥 ∈ ℓ∞ . We conclude that 

sup
𝐾∈𝒩

 

∞

𝑛=1

  

𝑘∈𝐾

  

𝑛

𝑗 =1

  

𝑛

𝑙=𝑗 ,𝑙|𝑛

𝜑(𝑙)

𝑛

−  

𝑛−1

𝑙=𝑗 ,𝑙|𝑛−1

𝜑(𝑙)

𝑛 − 1
 𝑡𝑗𝑘   < ∞ 

 

since we have 𝑆1 ∈ (ℓ∞ , ℓ1).  

Theorem 3.6 Let 𝑇 = (𝑡𝑛𝑘 ) be an infinite matrix and 
1 < 𝑝 < ∞. 

• 𝑇 ∈ (ℓ∞ , |𝜙𝑧 |𝑝) = (𝑐, |𝜙𝑧|𝑝) = (𝑐0 , |𝜙𝑧|𝑝) if and only if

  

𝑠𝑢𝑝
𝐾∈𝒩

 

∞

𝑛=1

  

𝑘∈𝐾

  

𝑛

𝑗 =1

𝑧𝑛
1/𝑞

  

𝑛

𝑙=𝑗 ,𝑙|𝑛

𝜑(𝑙)

𝑛

−  

𝑛−1

𝑙=𝑗 ,𝑙|𝑛−1

𝜑(𝑙)

𝑛 − 1
 𝑡𝑗𝑘   

𝑝

< ∞. 

• 𝑇 ∈ (ℓ1, |𝜙𝑧 |𝑝) if and only if   

𝑠𝑢𝑝
𝑘

 

∞

𝑛=1

  

𝑛

𝑗 =1

𝑧𝑛
1/𝑞

  

𝑛

𝑙=𝑗 ,𝑙|𝑛

𝜑(𝑙)

𝑛
−  

𝑛−1

𝑙=𝑗 ,𝑙|𝑛−1

𝜑(𝑙)

𝑛 − 1
 𝑡𝑗𝑘  

𝑝

< ∞. 

Proof. The proof is given only for the matrix class 
(ℓ1, |𝜙𝑧 |𝑝) since the other cases can be proved similarly. 

Let 𝑝 > 1. Consider the matrix 𝑆𝑝 = (𝑠𝑛𝑘
𝑝

) defined as  

𝑠𝑛𝑘
𝑝

=  

𝑛

𝑗 =1

𝑧𝑛
1/𝑞

  

𝑛

𝑙=𝑗 ,𝑙|𝑛

𝜑(𝑙)

𝑛
−  

𝑛−1

𝑙=𝑗 ,𝑙|𝑛−1

𝜑(𝑙)

𝑛 − 1
 𝑡𝑗𝑘  

for all 𝑛, 𝑘 ∈ ℕ. Let 𝑥 = (𝑥𝑛 ) ∈ ℓ1 . We obtain the 
following equality:  

 

∞

𝑘=1

𝑠𝑛𝑘
𝑝

𝑥𝑘   

=  

∞

𝑘=1

  

𝑛

𝑗 =1

𝑧𝑛
1/𝑞

  

𝑛

𝑙=𝑗 ,𝑙|𝑛

𝜑(𝑙)

𝑛

−  

𝑛−1

𝑙=𝑗 ,𝑙|𝑛−1

𝜑(𝑙)

𝑛 − 1
 𝑡𝑗𝑘  𝑥𝑘  

 

= 𝑧𝑛
1/𝑞

  

𝑛

𝑗 =1

 

∞

𝑘=1

𝑡𝑗𝑘 𝑥𝑘  

𝑛

𝑙=𝑗 ,𝑙|𝑛

𝜑(𝑙)

𝑛

−  

𝑛−1

𝑗 =1

 

∞

𝑘=1

𝑡𝑗𝑘 𝑥𝑘  

𝑛−1

𝑙=𝑗 ,𝑙|𝑛−1

𝜑(𝑙)

𝑛 − 1
  

 

= 𝑧𝑛
1/𝑞 𝐹𝑛(𝑇𝑥) − 𝐹𝑛−1(𝑇𝑥) .  

This implies that 𝑆𝑛
𝑝

(𝑥) = (𝐸(𝑝) ∘ 𝐹)𝑛 (𝑇𝑥) for all 𝑛 ∈ ℕ. 
Hence, it follows that 𝑇𝑥 ∈ |𝜙𝑧|𝑝  for any 𝑥 ∈ ℓ1  if and 

only if 𝑆𝑝𝑥 ∈ ℓ𝑝  for any 𝑥 ∈ ℓ1 . We conclude that  

𝑠𝑢𝑝
𝑘

 

∞

𝑛=1

  

𝑛

𝑗 =1

𝑧𝑛
1/𝑞

  

𝑛

𝑙=𝑗 ,𝑙|𝑛

𝜑(𝑙)

𝑛
−  

𝑛−1

𝑙=𝑗 ,𝑙|𝑛−1

𝜑(𝑙)

𝑛 − 1
 𝑡𝑗𝑘  

𝑝

< ∞, 

since we have 𝑆𝑝 ∈ (ℓ1 , ℓ𝑝).  

4.  Conclusion 
In this paper new series spaces are introduced by using 
a new summability method derived by Euler totient 
matrix. After determining dual spaces and some 
topological properties of the resulting spaces, 
characterization of certain matrix classes on these 
spaces are obtained. 
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