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ABSTRACT 

In the present study, the aeroelastic energy response of a twin-engine composite wing system is optimized based on 
sequential quadratic programming (SQP) method. The variable stiffness is acquired by constructing laminates of thin wall 
beam (TWB) with curvilinear fibers having prescribed paths. In order to account the effect of spanwise locations and 
mass of the engines on the aeroelastic characteristics of TWB, the novel governing equations of motion are obtained using 
Hamilton's variational principle. The paper aims to exploit desirable fiber paths with improved aeroelastic properties for 
different twin-engine wing configuration. Ritz based solution methodology is employed to solve the equations with 
coupled incompressible unsteady aerodynamic model based on Wagner’s function. A novel optimization strategy based 
on the total energy of the aeroelastic system is introduced. The proposed total energy, as a cost function, is minimized in 
terms of four optimization variables of two engine’s locations and wing structure curvilinear fiber angle with two design 
parameters. The total energy is obtained by integrating responses of kinetic and potential energy in a specific time interval. 
The minimum total energy is an indication of ideal optimization variables which leads to the optimum flutter performance. 
Numerical results demonstrate the effectiveness of the optimization variables on the total energy of the aeroelastic system 
and determine the optimal values of introduced variables in case of minimum total energy and improved aeroelastic 
characteristics. 

Keywords: aeroelastic optimization, sequential quadratic programming, twin engine-wing system, composite thin walled 
beam, curvilinear fiber path 

1. Introduction

In aircraft design, engine positioning is a 
challenging task that highly affects the aircraft 
configuration and characteristics. Engine 
positioning has major consequences on the 
aircraft’s weight, balance, aerodynamics, structural 
design, vibration, stability, handling quality, 
accessibility, maintainability and safety. In fact, 

several parameters must be considered in 
determining appropriate locations of engines. For 
instance, inlet requirements and the resulting effect 
on engine efficiency dominantly influence the 
location of engine. Another dominant factor 
affecting the engine location is the aeroelastic 
considerations. In modern aviation, various aircraft 
configurations usually have high-aspect-ratio wings 
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under which the engines are mounted. In fact, wing–
engine configuration has attracted aircraft designers 
since this configuration provide a significant 
bending relief on the wing, allowing better wing 
structure design, and therefore leads to thinner 
wings with less aerodynamic drag. Besides the 
aforementioned benefit, the mass and thrust of the 
engine couple with the aerodynamics and structure 
of the wing and cause substantial effects on the wing 
structural frequencies and the flutter speed [1]. The 
aeroelastic stability of a high-aspect-ratio wing 
subjected to thrust force has been analyzed by 
Hodges et. al.  [2]. The results demonstrated the 
effects of thrust magnitude and the ratio of wing 
bending stiffness to torsional stiffness on the 
aeroelastic instabilities of the wing. Mardanpour et. 
al. [3, 4] derived the desired spanwise location of 
engines and investigated the effect of multiple 
engine placements on the flying wing geometry. 
They concluded that the flutter speed considerably 
increases when the engines are located forward of 
the wing elastic axis. The influence of engine thrust 
and arbitrarily engine locations on the flutter 
boundaries of a cantilever beam model were also 
investigated in [5-7]. 

In order to have slender and lighter wing 
structure, advanced composite materials with thin 
walled beams (TWBs) structure has been 
developed. Application of TWBs in aircraft wings 
as a load carrying part of the wing and studying 
their dynamic behavior has been the topic of many 
researches [8-13]. Librescu [9] thoroughly 
investigated the theoretical foundations of 
composite TWBs and derived the necessary 
relations. The key point in the composite TWBs is 
that the desired mechanical and aeroelastic behavior 
of the structure can be achieved by optimizing and 
tailoring the directional strength and stiffness of the 
composite material [14-19].  Initially, the curved 
fibers were used by Gurdal et al. [20] to vary 
stiffnesses of rectangular composite plates.  Later, 
Gurdal [21] studied the effects of fiber path 
definitions on in-plane and out-of-plane response 
characteristics of flat rectangular variable stiffness 
laminates. The concept of variable stiffness 
composites with curvilinear fibers were also 
investigated in several literatures [22, 23] where the 
optimization of curvilinear fibers was investigated 
in designing the composite TWB.  

The aircraft structure performance is 
significantly dependent on the part and quality of 
the advanced composites used in aircraft. However, 
it is difficult to achieve good designs of the 

composites in aircraft structure to guarantee 
requirements for different missions [24]. Therefore, 
to fully explore the directional properties of 
curvilinear fiber composites, the designable ability 
of aero-structure performance, it is necessary to 
introduce the principle of optimization to the 
composite structure design [25-27]. 

This paper extends the author’s previous work 
[28] on aeroelastic behavior of TWB composite 
wing- single engine system flutter speed 
instabilities by optimizing the aeroelastic energy of 
the twin-engine wing system with variable stiffness. 
In the present study, the curvilinear fiber paths of a 
high aspect ratio wing modeled as a thin-walled 
composite wing carrying two powered engines, 
arbitrarily located along the wing span, are 
optimized to achieve the minimum aeroelastic 
energy which leads to maximum flutter 
performance. In fact, the wing structure initial and 
final fiber angles as well as two engines spanwise 
positions have been considered as the optimization 
variables. The novel equations of motion that 
account for the effects of engine mass and thrust 
force on a composite TWB model with variable 
curvilinear fibers are discussed. A novel 
optimization strategy based on the total energy of 
the aeroelastic system is introduced. The proposed 
total energy, as a cost function, is minimized in 
terms of four variables of two engine locations and 
wing structure two curvilinear fiber angle 
parameters. 

The aeroelastic stabilities of the twin-engine 
wing system are improved by optimizing the 
composite fiber paths for different spanwise 
locations of engines. The governing equations of 
motion of the twin-engine wing system are obtained 
utilizing the Hamilton’s principle along with a 
coupled incompressible unsteady aerodynamic 
model based on Wagner’s function. Variable 
stiffness is acquired by constructing laminates of the 
walls of the TWB with curvilinear fibers having 
prescribed paths. Aeroelastic response of the 
composite wing is performed by means of a Ritz 
based solution methodology. Asymmetric layup 
configuration accounts for flapwise bending-torsion 
coupling which is utilized in load alleviation. 
 

2. Structural Model and Kinematic Relations 

As shown in Figure 1, thin walled beam (TWB) 
studied in this paper is composed of a single cell 
with straight edges according to Librescu beam 
theory. The structural model considered is similar to 
the model developed in Refs. [10, 13, 28] in linear 
form. For a detailed description of the original 
structural model, the reader is referred to the 
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aforementioned references. The TWB model has a 
length of L, width of l, height of d, and wall 
thickness of h. As shown in Figure 1, two different 
coordinate systems are used in mathematical 
modeling. A Cartesian fixed coordinate system 
( , , )x y z  which is placed at the root, and a local 
coordinate system ( , , )s n z . In the local axes, n 
represents the coordinate axis perpendicular to the 
tangential coordinate axis s and the origin is at the 
mid-plane of the wall thickness of the TWB. �  is 
the angle that fibers make with s axis. 
 

 

 

 
 
Figure 1. Schematic description of the twin-
engine wing system and wing box modelled as 
TWB and its cross section 
 
As illustrated in Figure 1, in mathematical 

modeling of the twin-engine wing system, the C.G 
location of the engines measured from the box shear 
center and root, is denoted by xE, zE1 and zE2 in x and 
z directions, respectively. Note that the C.G distance 
in y direction is considered to be very small and 
negligible. 

In deriving the governing equations of motion, 
basic assumptions in the present study follow those 
of Ref [9]. The linear displacements of any generic 
point on the beam( , , )u v w are described in terms 
of the displacements
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(1) 

 
where,  

(2) 

 
where, ,  and  are the translations of the 

shear center of the thin walled beam in x , y  and z  
directions, and 

x
 , 

y
  and   are the rotations about 

,  and  axes, respectively. Additionally, 
( , ), ( , )

yz xz
z t z t   represent the transverse shear 

strains. In Eqs. (1) and (2) prime sign denotes 
differentiation with respect to the  direction. ( )

w
F s  

and ( )na s  are the primary and secondary warping 

functions that are given in [10].  
Figure 2 illustrates the displacements and the 

rotations of the TWB cross section with respect to 
the , ,x y z  coordinate system established at the root 

of the TWB. 
 

 
Figure 2. Cross-section of the TWB showing the 
displacements and rotations 
 
 
The axial strains associated with the displacement 

field is, 
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(3) 

The tangential shear strain components can be 
defined as, 

 

 
 
(4) 

where 0 0,
zz sz
   are the normal and shear strain 

components on the mid-surface of the box beam, 
respectively. 

C
A  is the area enclosed by the midline 

contour and S is the contour's perimeter. 

2.1. Constitutive relations 
   The contracted form of relationship between the 
stresses and strains in a layer can be expressed in 
terms of the reduced stiffness coefficients ijQ  of the 

thk  layer of the composite TWB according to Eq. 5. 
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The 
ijQ  components are used to transform the stiffness 

coefficients from the principle axes to the material axes. 
All the above components are defined explicitly in Ref 
[13]. The 2D first order force and moment resultants of 
the cross-section of the TWB are defined in terms of the 
3D stresses. These terms are derived by integrating the 
3D stresses in thickness direction.  

3. Twin-Engine Wing System Equations 

Governing equations of motion are determined 

using the Hamilton’s principle as below; 
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where T, V, and W are the total kinetic energy, strain 
energy, and the work done by external forces. The 
subscripts w , e and ae stand for wing, engine and 
aerodynamic loads, respectively. 
 

 
 

3.1. Kinetic energy of wing-engine system 

Variation of the kinetic energy of the wing-beam model 
is expressed as, 
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(7) 

 
In the above equation,  is the average mass 
density, ml and nk are the number of layers and 
thickness of each layer, respectively.R  is the 
position vector of an arbitrary point on the TWB 
which is defined as, 
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where , ,u v w  are displacement components 

according to Eq. 1. 
The kinetic energy due to the engine weight ( eT ) is 
defined as, 
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(12) 

 

3.2. Potential energy of wing-engine system 

The strain energy in terms of the non-zero 3D 
stress and strain components can be expressed as, 

10
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1
2

l
k
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w
mL n zz zz sz sz
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dndsdz
   
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
   
   

  

 
(13) 

where, the integral is taken over the whole cross-
section of the beam and it is assumed that the wing 
has a length of L. Utilizing the strain displacement 
relations and taking the integral along the wall 

thickness and along the contour of the cross-section 
of the TWB, the strain energy due to the 
deformation of the wing caused by the internal 
forces can be expressed as, 

0 0 0

0

( ) ( )1

2

w
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z x y y x

y y x x z w

V

T w Q u Q v
dz

M M M B
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        
        


 

(14) 

where z
T

 (axial force), x
Q

 (chordwise shear force), 

y
Q  (flap-wise shear force), x

M
 (flap-wise bending 

moment), y
M  (chordwise bending moment), z

M
 

(Saint-Venant twist moment), and w
B

(bi-moment 
or warping torque). One dimensional beam force 
and moment resultants and their generalized strain 
counterparts, are related to each other through Eq. 
(15). Details of force and moment resultants are 
explicitly defined in our previous study [10, 13]. 

   

0

0

0

7 7

( )

( )

z

x y

y x

y ij y

x x

z

F A D

T w

Q u

Q v

M a

M

M

B











   
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(15) 

where F, A, D are the one dimensional beam forces 
and moment resultants, the resulting stiffness 
matrix, and generalized strain, respectively. For a 
single cell thin walled beam, stiffness coefficients 

ija  are given by the contour integral of the stiffness 
coefficients as shown in [13]. Potential energy due 
to engine thrust is given as,  

 

 

1

2

1 1 0 0
0

2 2 0 0
0

( )

( )

E

E

z

e E E

z

E E

V P z z u v dz

P z z u v dz





      

    




 

 

(16) 

where, EP is the first and second engine thrusts. 
The variation of the potential energy due to thrust 
force is obtained as, 



JAV e-ISSN:2587-1676                                                                                   Journal of Aviation  4 (1): 1-14 (2020) 

 6 

1

2

1 1 0

1 1 0
0

1 1 0

2 2 0

2 2 0
0

2 2 0

( )

( )

( )

( )

( )

( )

E

E

e

z E E

E E

E E

z E E

E E

E E

V

P z z u

P z z v dz

P z z v

P z z u

P z z v dz

P z z v




 




 




   
    
   

   
   
   





 

 

(17) 

 

3.3. External works includes aerodynamic and 
engine thrust 

The work done by the external unsteady 
aerodynamic force and moment is expressed by, 

00

=

[ ( , ) ( )+ ( , ) ( )]

ae
L

ae ae

W

L z t v z M z t z dz
 

(18) 

where 0v  and   are plunging and pitching motions, 
respectively. 

aeL  and 
aeM denote the unsteady 

aerodynamic lift force and pitching moment which 
are defined according to Ref [10] as below: 
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(19) 
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(20) 

In the above equations, , ,b U  are the air density, 

wing semi-chord length, and free stream speed, 
respectively. 

iB  terms have to satisfy Eq. (21). i  
and i are known as Wagner’s function. 

0.75

0

( , ) ; 1, 2

( , , ) ( )

i i i c

a ae

U
B B w z t i

b
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(21) 

The variation of the virtual work due to thrust force 
is given by, 
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L
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

 

(22) 

Where, the thrust force 


can be simplified in the 
inertial coordinate system as, 
 

( )E E E yP i P j P k    


 
(23) 

Substituting the engine position vector into Eq. (22), 
the vibrational form of virtual work due to the thrust 
force can be formulated as, 
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(24) 

3.4. Aeroelastic governing equation of motion 

The wing box is assumed to have the layup 
configuration of Circumferentially Asymmetric 
Stiffness (CAS) according to Figure 1. Definition of 
fiber angles, the stiffness coefficients, coupling 
stiffness, and the mass/inertia terms of the layup are 
according to our previous study and the details can 
be found in Ref. [10, 13]. 
After quite burdensome manipulation of formulas, 
the integral form of equation of motion for the TWB 
composite twin-engine wing system with CAS 
configuration is obtained as; 
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(25) 

 
where   is defined as  0, , , , ,o o x yu v w     ; 

moreover, the function 1...14;if i   are given by; 
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3.5. Description of variable stiffness 

Figure 3. illustrates curvilinear fiber 
configuration ( ( ))z   in which   denotes the 
ply-angle measured from the positive s-axis toward 
the positive z-coordinate. Fibers start with T0 angle, 
varies with x and z distance and end with T1 angle. 
Thus, two design variables are required in each 
layer to determine the variation of fiber orientation 
on the surface of the beam. 
 

 
Figure 3. Top view, top spar cap of curvilinear 
fiber configuration of TWB 

 
As introduced in Ref [18,19], the variation of fiber 
path for ( )z  are formulated as, 
 

 
(27) 

4. Solution Method 

In order to solve the eigenfunctions of TWB 
with Asymmetric layup, Ritz based solution method 
utilizing mode shapes of TWB is applied. The mode 
shapes are used to give the reduced modal matrix R, 
which is derived from the solution of the state space 
form of TWB equations of motion, for m right 
eigenvectors of the system, 

 (28) 

Seven trial functions, sufficient for convergence of 
flutter solutions, are used to meet the boundary 
conditions of clamped-free wing structure. A 
reduced order model for six degree of freedom 

 0 0 0, , , , ,x yu v w      is then introduced in terms 

of pertinet trial functions   and related reduced 
modal matrix R composed of main m right 
eigenvectors of the modal coordinates as,  
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 (29) 

 
Where ( )t  is the generalized modal coordinate 

vector with dimension of 1m  , R  is the reduced 
modal matrix with dimension of N m  composed 
of dominant m  right eigenvectors corresponding to 
any degrees of freedom  , and    is the vector 
of trial functions, with dimension of 1N  , 
corresponding to any degrees of freedom  . The 
test functions for any degrees of freedom are 
defined by the premultiplication of the vector of the 
trial functions  . The reduced modal matrix TL
is composed of dominant m  left eigenvectors 
corresponding to the translational and rotational 
degrees of freedom, as below, 
 

 
(30) 

 
Modal expansions of the degrees of freedom of the 
TWB (Eq. (29)) and the variations of the degrees of 
freedom (Eq. (30)) are substituted into the integral 
form of the governing equations of motion of Eq. 
(25). Applying the substitutions results in the 
following reduced order system of linear equations, 
 

( ) ( ) ( ) ( ) 0t t tM t C t K t Z t        (31) 

 
where , ,t t tM C K  are the reduced order mass, 
aerodynamic damping, and stiffness matrices of 
dimension m m , respectively, and Z  is the 
reduced order vectors of dimension 1m   which 
includes the aerodynamic lag states.  
In the resulting reduced order system of equations, 
if the modal matrices composed of the left ( )TL  and 
the right eigenvectors ( )R are factored out, reduced 
order mass, damping and stiffness matrices in Eq. 
(31) are defined as, 
 

 
(32) 

 
where sM and sK are the structural mass,  stiffness 

matrices, and aeM ,, aeK  and aeC are the 
aerodynamic mass, stiffness, and damping matrices 
of dimension 6 6N N , respectively. Considering 
virtual work done by unsteady lift and moment due 
to aerodynamic lag states, the final form of the 
aeroelastic system of equations of the CAS 

configuration composite wing modelled as TWB 
can be obtained in state space representation as 
given in Eq. (33). 
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(33) 

Eq. (33) is in the form, 

( ) ( ) 0Aq t Bq t   (34) 
 
Where q  is the state vector of dimension 4 1m   and 
A  and B  are 4 4m m  coefficient matrices defined in 
Eq. (33). In more compact form, Eq. (34) can be re-
written as, 
 

   q q   
  (35) 

 
The solution to Eq. (35) is written as, 
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tq(t) q e  (36) 

where   0q is an amplitude vector and   is the 
eigenvalue, both of which can be complex quantities. 
Substituting Eq. (36) into Eq. (35), one obtains the 
eigenvalue problem as given in Eq. (37), 

 0q     (37) 

Solution of Eq. (37) yields the eigenvalues   and 
the corresponding eigenvectors. Aeroelastic respose 
of the composite wing modeled as TWB is 
performed in time domain by the direct integration 
of Eq. (34) using the Runge-Kutta method for the 
prescribed initial conditions. 

5. Optimization Strategy 

The main objective of this research is to 
enhance the aeroelastic response of the flexible 
wing engine system by optimizing the wing 
structure fiber angle orientations and the spanwise 
locations of engines. This section presents 
optimization problem formulation including 
optimization variables, cost functions, and 
constraints. The optimization problem is actually a 
nonlinear constraint optimization which is solved 
applying the Sequential Quadratic Programming 
(SQP) algorithm. 

 

( , ) ( )
T

z t R t   

( )
T

z L   

( )

( )

T
t s ae

T
t ae

T
t s ae

L R

L R

L R

 



 

M M M

C C

K K K
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5.1.  Cost functions 

In the proposed optimization approach a novel 
energy based cost function is introduced and the 
optimization variables are optimized to have the 
minimum value of cost function. The energy 
expression is defined based on the aeroelastic 
response of the twin- engine wing system. In fact, 
lower values of the system total energy are an 
indication of more appropriate values of structure 
fiber angle orientations and the engine’s positions 
respecting the aeroelastic response of wing-engine 
system during flutter. 

The energy cost function is defined based on the 
total system energy, including the total system 
strain energy and kinetic energy which are written 
in matrix form as below; 

1
2

T
tU q K q  

(38) 

1
2

T
tT q M q    

(39) 

According to the above system energy terms, the 
cost function is defined as the integral summation of 
strain and kinetic energy as below; 
 

0

1 1
( )
2 2

t
T T

CF t tq K q q M q dt    

 
(40) 

 
Where tK  and 

tM  are the total structural and 
aerodynamic stiffness and mass of the twin-engine 
wing system. ICF is the optimization cost function. 
The above equation is the system total energy in a 
specific time interval (0,t). In our optimization 
procedure an interval of 3 seconds (t=3s) have been 
considered.  
 

5.2. Optimization variables and constraints 

The design variables considered in the 
optimization procedure in this research includes; the 
wing structure initial (T0) and final (T1) fiber angle 
orientation, spanwise location of the first engine 
(zE1) and the second engine (zE2) on the wing. 
Therefore, the four optimization variables can be 
expressed as, 

 

0 1 1 2[ , , , ]E EOptimVars T T z z  (41) 

 
All the design variable can continuously vary 

inside a specific range depending on logical and 
geometric constraints. Based on the wing span 
length, which is 14 m, the first and second engine 
location is considered to vary in the interval of (2,7) 

and (5,13) meters, respectively. The wing structure 
initial and final fiber angle orientation can vary 
continuously between zero and -90 degrees. 
Therefore, all the variables constraints which are the 
lower and upper bound of variables, can be 
expressed as below: 

 
0

1

1

2

0 90

0 90

2 7

5 13
E

E

T

T

z

z

  
  
 
 

 

 
(42) 

5.3. Optimization algorithm  

After defining and formulating the optimization 
variables, constraints, and cost function according 
to previous section, an optimization algorithm 
should be implemented to solve the problem. In this 
research, the optimal values of optimization 
variables have been derived applying Sequential 
Quadratic Programming (SQP) which is a 
numerical optimization algorithm. Sequential 
Quadratic Programming (SQP) is one of the most 
successful methods for the numerical solution of 
constrained nonlinear optimization problems. We 
consider the nonlinear, constrained optimization 
problem to minimize the objective function which 
is the total energy of the system, under 4 inequality 
constraints. In this research, the fmincon function 
with SQP based optimization algorithm of 
MATLAB version 2019b has been applied to solve 
the problem on a 16 cores computer of 3.4 GHz 
processor, and 32 GB memory.  

 
6. Numerical Results  

     In this section, the above formulation is applied 
and the numerical results are presented for the 
aeroelastic stability boundaries of the Asymmetric 
configuration for TWB composite wing.  

To investigate the effect of fiber path function on 
the aeroelastic characteristics of twin-engine wing 
system, the most desirable fiber path is calculated 
for different engine positions on the wing. The goal 
here is to find the desired fiber path angle to reach 
the minimum total energy and maximum flutter 
speed for arbitrary positions of engine.   

6.1. Validation of structural and aeroelastic 
model 
In order to validate the structural model of the 

engine wing system, natural frequencies are 
compared with those of presented in Ref [14]. 
Librescu [14] investigated TWB with unidirectional 
fiber path meaning the same initial and final path 
angles (T0 = T1). In his study, wing natural 
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frequencies under the effect of mass store were 
explored.  
Table 1 represents the natural frequencies of wing-
store configuration of Ref [14] and the results of the 
engine wing configuration (without thrust force) 
derived in the present paper for different fiber 

angles. According to Table 1, the results presented 
in this paper are satisfactorily close to those of Ref 
[14]. Less than 2 percentage of difference is 
observed in the first, second, and third natural 
frequencies in various fiber angles 

 

     Table 1 Natural frequencies with under wing store/engine 

1st Frequency 2nd Frequency 3rd Frequency 

θ Ref [14] Present θ Ref [14] Present θ Ref [14] Present 

90° 3.07 3.09 90° 3.65 3.7 90° 14.77 14.86 

75° 2 2.04 75° 5.5 5.57 75° 11.9 12.07 

     60° 1.4     1.44 60° 6.06 6.1 60° 8.87 9.1 

45° 1.02 1.05 45° 5.12 5.16 45° 6.25 6.34 

30° 0.9 0.92 30° 4.41 4.49 30° 4.94 5.1 
15° 0.88 0.9 15° 3.82 3.9 15° 4.87 5.02 

 

6.2. System energy 

This section represents the effect of external 
engine masses on the total energy of the composite 
TWB. Note that evaluating engine without the 
propulsion force can be considered as engine out as 
well as external stores. For each case of engine 
position, the minimum total energy is optimized for 
different fiber path angles. In the numerical results, 
the wing structure is simulated as a uniform 
rectangular cross-sectional composite beam, 
characterized in Table 2. Note that 

  01 45E
M M b L


     and 

 
 

 0 0

2
55 6645 45E

P P L a a
  

   in Table 2 are 

dimensionless parameters of engine mass and thrust 
force, respectively. 
The results of total energy for fiber angle � = -60º 
and zE2 =7 m  (both are fixed) for spanwise variation 
of the first engine position are investigated in Figure 
4 Accordingly, the optimum total energy which 
leads to maximum flutter speed for the second 
engine position of 7 m and fiber angles -60º is the 
first engine position of zE1 =3.1 m. 

 

 

 

 

 

 

 

 

 

Table 2 Wing material and wing-engine geometric properties 
 

Material properties Geometrical properties 

E1 206.8 (GPa) L,l,d,h 14, 0.757, 0.1, 0.03 (m) 

E2=E3 5.17 (GPa) b 0.8 (m) 

G12=G13 3.1 (GPa) M 0.27 

G23 
υ 
ρ 

2.55 (GPa) 
0.25 

1528 (kg/m3) 

P 
κθx , κθy , κΦ 

13.8 
0.3,0.6.0.6 
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Figure 4. variation of total energy for fiber 
angle -60º for various first engine positions 
 
In order to illustrate the effect of wing fiber angle 

on the cost function,  the total energy response of 
twin-engine wing system for straight fiber angles of 
� = -45º and -75º have been shown in 2.5 seconds 

in Figure 5. The total energy is calculated based on 
the formulation given in Equation (40). Figure 5 is 
plotted for near flutter speed of 85 m/s with the same 
position of engines.  

 
 

 
 
Figure 5. The effect of host structure fiber angle 
orientation with fixed position of engines of 
energy response at near flutter speed 85 m/s for 
angles a) -45º and b) -75º 

 

The analysis results of the optimization depicted 
in Figure 6 show that the minimum total energy of 
one-engine wing system with curvilinear fiber path 
is calculated for [T0 = -34.28º, T1 = -40.35º] and 
engine spanwise location of zE1 =2.1 m.  
 

 
 
Figure 6. Optimization result, optimal initial and 
final fiber angle orientation and optimal engine 
position 
 

By using the SQP algorithm, Figure 7 shows the 
variation of optimization variables and the number 
of iterations during the optimizing process for three 
optimization variables.  
 

 
 
Figure 7. Variation of optimization variables in 
the optimization iteration, numbers show the 
number of iterations (14 iterations) in 
optimization process 
 

As the number of design variables increased in the 
twin-engine wing system, the optimization can be 
completed in several minutes. The optimization 

a) 

b) 
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results in a minimizing of the total energy of the 
twin-engine wing system is shown in Figure 8. As a 
result of the optimization, the minimum total energy 
with 4 optimization variable is calculated for [T0 =-
41.1º, T1 =-45.8º] and engines spanwise location of 
zE1 =3.32 m and zE2 =7.48 m. 

 
 
Figure 8. Optimization result, optimal initial and 
final fiber angle orientation and optimal position 
of first and second engine 
 
By using the SQP algorithm, Figure 9 shows the 

second engine position variation and number of 
iterations during the optimizing process.  

 
 
Figure 9. Optimization variable (zE2) in the 
optimization iteration, numbers show the number 
of iterations (34 iterations) in optimization 
process 

In examining aeroelastic response in 
incompressible flight speeds, the effect of the 
straight and optimum curvilinear fiber layups on the 
modes response is investigated. Figure 10 shows the 
computed responses for the flapwise bending and 

torsion modes for three fiber orientations of  θ = 
−60◦, −75◦ and θ → [T0 =-41.1º, T1 =-45.8º]. The 
flight speed of the present model is considered for 
U = 85 m/s. The engine positions are considered to 
be located at optimum positions (Figure (8)) as zE1 
=3.32 m and zE2 =7.48 m along the spanwise. The 
longest time needed for the damping of the 
responses is seen for θ = −75◦. However, by 
changing the ply orientation path to optimum 
(Figure (8)) curvilinear fiber [T0 =-41.1º, T1 =-
45.8º] at the same speed, the response amplitude and 
the response damping time decrease due to the 
lowest total energy level. This reveals that the 
directionality property featured by the curvilinear 
fiber layups can be effectively used to postpone the 
onset of the flutter instability.  

7. Conclusion 

     In the present study, linear aeroelastic analysis of 
twin-engine wing system with curvilinear fiber path 
under the influence of engine is examined using 
Librescu thin walled beam (TWB) theory. The 
structural equations of motion are obtained for the 
asymmetric lay-up composite configuration 
considering the engine mass and thrust force. The 
Wagner’s unsteady incompressible indicial 
aerodynamics model is constructed in the time 
domain by incorporating two aerodynamic lag 
states. Aeroelastic system of equations for the twin-
engine wing system is solved using Ritz method. 
The novel aspects of this study are derivation of 
aeroelastic twin-engine wing system equations and 
application of curvilinear fiber path on aeroelastic 
performance improvement. Additionally, a novel 
optimization strategy based on the total energy of 
the aeroelastic system is introduced. The proposed 
integral of total energy, as a cost function, is 
minimized in terms of four optimization variables 
of two engine locations and wing structure 
curvilinear fiber angle with two parameters 
including the initial and final angle orientations. The 
introduced cost function is optimized with different 
curvilinear fiber path for various spanwise locations 
of engine on the wing. For the twin engine TWB 
wing system, applying curvilinear fiber is seen to be 
very advantageous on minimizing the cost function 
and therefore maximizing flutter performance of the 
wing compared to the unidirectional one. 
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Figure 10. Dynamic aeroelastic a) torsion and  
b) flapwise bending responses for variations of 
curvilinear and straight fiber angles 

Nomenclature 

a      =    Dimensionless coefficient in offset between 
mid-chord and box beam shear center 
, , , ,b l d h L  =   Half chord, width, height, thickness and 

length of TWB, respectively 
CAS =   Circumferentially Asymmetric Stiffness lay-up 
configuration 
C.G    =   Centre of Gravity 
, ,s n z  =   Local coordinate system located at the mid 

plane of the cross section of TWB 
, ,x y z  =   Cartesian fixed coordinate system located at the 

root of TWB 

ij
a  =   Stiffness matrix coefficients 

( ), ( )
w

F s na s  = Primary warping function, Secondary 

warping function 
,

ae ae
L T  = Unsteady aerodynamic lift and moment 

,
E

M M   =   Mass of the engine and its dimensionless 

counterpart 
,

E
P P    =    Thrust force of the engine and its 

dimensionless counterpart 

0 1
,T T  =      Initial and final fiber angles 

0 0 0
, ,u v w  = Translations of the shear center along x, y, z 

axes, respectively 
,

E E
x z  =    Engine chordwise and spanwise position, 
respectively 
        =      Fiber angle  
  = Complex values eigenvalue of the 
aeroelastic system 

( )t   =      Generalized modal coordinate 

, ,
x y
    = Rotations of the cross section about x, y, z 

axes, respectively 

D
       =       Dirac delta function 

  = Vector of trial functions 
U        =      Inflow speed  

W
  = Wagner’s function 

, ,
x y      = Radius of Gyration in x, y, z directions 
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