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Abstract

From elementary exponential functions which depend on several parameters, we construct
multi-parametric solutions to the Boussinesq equation. When we perform a passage to the
limit when one of these parameters goes to 0, we get rational solutions as a quotient of a
polynomial of degree N(N +1)−2 in x and t, by a polynomial of degree N(N +1) in x and
t for each positive integer N depending on 3N real parameters. We restrict ourself to give
the explicit expressions of these rational solutions for N = 1 until N = 3 to shortened the
paper.
We easily deduce the corresponding explicit rational solutions to the Kadomtsev Petviashvili
equation for the same orders from 1 to 3.

1. Introduction

The Boussinesq equation in the following normalization is considered

utt −uxx +(u2)xx +
1
3

uxxxx = 0. (1.1)

The subscripts x and t denote as usual partial derivatives.
This equation (1.1) is an equation solvable [3, 4] by inverse scattering. It was introduced for the first time by Boussinesq [1, 2] in 1871.
This equation appears in a wide range of physical problems dealing with propagation of nonlinear waves; for example, in one-dimensional
nonlinear lattice-waves [5], vibrations in a nonlinear string [6], ion sound waves in a plasma [7],...
The first solutions were constructed by Hirota [8] in 1977 with Bäcklund transformations. Non singular rational solutions were constructed by
Ablowitz and Satsuma by using the Hirota bilinear method [9] in 1978. Freemann and Nimmo [10] gave in 1983 wronskians representations
of the solutions. Other approaches were used; in particular, an algebro-geometrical method was given by Matveev et al. [11] in 1987;
Darboux transformations [12] was used by Matveev; the ∂ dressing method [13] was considered by Bogdanov.
Clarkson obtained solutions in terms of particular polynomials in a series of papers [14, 15] and recently, in 2017 gives new solutions [16] as
second derivatives of polynomials.

Solutions to the Boussinesq equation and the Kadomtsev Petviashvili equation are considered in this paper. We give solutions from
elementary exponential functions depending on several parameters. Then we construct rational solution in performing a passage to the limit
when one of these parameters goes to 0. We obtain rational solutions as a quotient of a polynomial of degree N(N +1)−2 in x and t by a
polynomial of degree N(N +1) in x and t, depending on 2N parameters. We give explicit solutions in the simplest cases where N = 1, 2, 3.
We deduce and give explicit expressions of rational solutions to the Kadomtsev-Petviashvili (KP) equation for the cases of orders from 1 to 3.
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2. Solutions to the Boussinesq equation

2.1. Solutions to the Boussinesq equation in terms of elementary exponentials

We consider the Boussinesq equation

utt −uxx +(u2)xx +
1
3

uxxxx = 0.

We define the following notations.
We consider e, a j, c j, d j, 1≤ j ≤ N, arbitrary real numbers, and α j , β j the numbers defined by

α j =
3
2

a je+
1
2

√
1−3a2

j e
2 (2.1)

and

β j =−
3
2

a je+
1
2

√
1−3a2

j e
2. (2.2)

We consider the following elementary functions

fi j(x, t) = α
i−1
j exp(α jx−α

2
j t + c je2N−1)−β

i−1
j exp(β jx−β

2
j t +d je2N−1), (2.3)

for 1≤ i≤ N .
Then, we have the following statement:

Theorem 2.1. The function v defined by

v(x, t) = 2∂
2
x ln(det( fi j)(i, j)∈[1,N]) (2.4)

is a solution to the Boussinesq equation (1.1) with e, a j, c j and d j, 1≤ j ≤ N arbitrarily real parameters.

Proof. The corresponding Lax pair to the Boussinesq equation (1.1) is{
φxxx +

3
2

uφx−
3
4

φx +uφ = λφ ,

φt =−φxx−uφ .
(2.5)

The compatibility condition of the preceding system can be written as [12]


wx =

3
4

uxx−
3
4

ut ,

wt =
1
4

uxxx +
3
4
(u2)x−

3
4

ux +
3
4

uxt .
(2.6)

The Boussinesq equation is obtained by excluding w from the above equations.
This system is covariant by the Darboux transformation. If φ1, . . . ,φN are solutions of the system (2.6), then φ [N] defined by φ [N] =
W (φ1, . . . ,φN ,φ)

W (φ1, . . . ,φN)
is another solution of this system (2.6) where u is replaced by u[N] = u+2(lnW (φ1, . . . ,φN)xx [12].

We choose u = 0. Then the functions φ j = f1 j verify the following system{
φxxx−

3
4

φx = λφ ,

φt =−φxx.
(2.7)

Then the solution of (1.1) can be written as v(x, t) = 2(lnW (φ1, . . . ,φN)xxwhich is nothing else that (2.4) v(x, t) = 2∂ 2
x ln(det( fi j)(i, j)∈[1,N]).

2.2. Rational solutions to the Boussinesq equation

To obtain rational solutions to the Boussinesq equation, we are going to perform a limit when the parameter e tends to 0.

2.2.1. Rational solutions as a limit case

We get the following result :

Theorem 2.2. The function v defined by

v(x, t) = lim
e→0

2∂
2
x ln(det( fi j)(i, j)∈[1,N]) (2.8)

is a rational solution to the Boussinesq equation (1.1) depending on 3N parameters a j , c j and d j , 1≤ j ≤ N; the numerator is a polynomial
of degree N(N +1)−2 in x and t, the denominator a polynomial of degree N(N +1) in x and t.

Proof. It is a consequence of the previous result.
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2.2.2. Degenerate rational solutions

A more precise result can be formulated in the following way.
We consider e, a j, c j, d j, 1≤ j ≤ N, arbitrary real numbers, and γ j, δ j the numbers defined by

γ j =
3
2

(
N

∑
k=1

ak( je)2k−1

)
+

1
2

√√√√1−3

(
N

∑
k=1

ak( je)2k−1

)2

,

δ j =−
3
2

(
N

∑
k=1

ak( je)2k−1

)
+

1
2

√√√√1−3

(
N

∑
k=1

ak( je)2k−1

)2

(2.9)

We consider the following elementary functions

gi j(x, t,e) = γ
i−1
j exp

(
γ jx− γ

2
j t +

N

∑
k=1

ck( je)2k−1

)
−δ

i−1
j exp

(
δ jx−δ

2
j t +

N

∑
k=1

dk( je)2k−1)

)
, (2.10)

ϕi j(x, t) =
∂ jgi1(x, t,0)

∂e j , for 1≤ i≤ N, 1≤ j ≤ N. (2.11)

Then get the following result :

Theorem 2.3. The function v defined by

v(x, t) = 2∂
2
x ln(det(ϕi j)(i, j)∈[1,N] (2.12)

is a rational solution to the Boussinesq equation (1.1) depending on 3N parameters a j , c j and d j , 1≤ j ≤ N; the numerator is a polynomial
of degree N(N +1)−2 in x and t, the denominator a polynomial of degree N(N +1) in x and t.

Proof. In the coefficients α j and β j defined in (2.1,2.2), we replace a j by ∑
N
k=1 ak( je)2k−1, and in the functions fi j defined in (2.3), c j by

∑
N
k=1 ck( je)2k−1 and d j by ∑

N
k=1 dk( je)2k−1; this gives functions gi j defined by (2.10). Then, it is sufficient to combine the columns of the

determinant obtained from this defined by (2.8) by replacing fi j by gi j and to take a passage to the limit when e tends to 0. So we get the
solution v given by (2.12).

So we obtain an infinite hierarchy of rational solutions to the Boussinesq equation depending on the integer N.
In the following we give some examples of rational solutions.
These results are consequences of the previous result (2.12).
But, it is also to possible to prove it directly in replacing the expressions of each of the solutions given in the corresponding equation and
check that the relation is verified.

2.3. First order rational solutions

We have the following result at order N = 1 :

Theorem 2.4. The function v defined by

v(x, t) =
−18a1

2

(−3a1x− c1 +3 ta1 +d1)2 , (2.13)

is a solution to the Boussinesq equation (1.1) with a1, c1, d1 arbitrarily real parameters.

Remark 2.5. If a1 = 0, then the solution is the trivial solution 0.

Remark 2.6. The solution (2.13) can be simplified and be rewritten as a solution depending on one parameter C1.

v(x, t) =
−18

(−3x+3t +C1)2 . (2.14)
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Figure 2.1: Solution of order 1 to (1.1), on the left a1 = 1013, c1 = 1, c1 = 0; on the right a1 = 1, c1 = 102, d1 = 0.

Remark 2.7. The case where a1 = 1, c1 = 0, d1 = 102 gives the same figure as the case a1 = 1, c1 = 102, d1 = 0.
The roles played by the parameters c and d being the same, we only give the figures with parameters d equal to 0.

2.4. Second order rational solutions

Theorem 2.8. The function v defined by

v(x, t) =−2
n(x, t)
d(x, t)2 , (2.15)

with
n(x, t) = 9a1a2(27a1

5a2 +243a2
5a1−162a2

3a1
3)x4 +9a1a2(−972a2

5ta1−324a2
5a1 +216a2

3a1
3 +648a2

3a1
3t−36a1

5a2−108a1
5ta2)x3

+9a1a2(972a2
5ta1−648a2

3a1
3t−108a2

3a1
3−972a2

3a1
3t2+162a1

5t2a2+162a2
5a1+18a1

5a2+108a1
5ta2+1458a2

5t2a1)x2+9a1a2(−108a1
5t3a2+

216a2
2c2a1+72d2a1

3−432a2
3a1

3t+648a2
3a1

3t3−24a1
2d1a2+648a2

3a1
3t2+648a2

5ta1−72a1
3c2+72d1a2

3+24a1
2c1a2−972a2

5a1t3−72a2
3c1−

972a2
5t2a1+72a1

5ta2−216a2
2d2a1−108a1

5t2a2)x+9a1a2(24a2
3c1+24a1

3c2+324a2
5a1t3+540a2

3a1
3t2+216a2

3a1
3t−216a2

3a1
3t3+8a1

2d1a2−
90a1

5t2a2−36a1
5ta2+36a1

5t3a2+243 t4a2
5a1−162 t4a2

3a1
3+27a1

5t4a2+72a2
2d2a1−810a2

5t2a1−324a2
5ta1−72 ta2

3d1−72a1
3td2+216 ta2

2d2a1+

24a1
2td1a2−216 ta2

2c2a1−24a1
2tc1a2−24d2a1

3−24d1a2
3−8a1

2c1a2 +72 ta2
3c1 +72a1

3tc2−72a2
2c2a1),

and

d(x, t) = (−9a1
3a2 + 27a1a2

3)x3 + (27 ta1
3a2 − 81 ta1a2

3 + 9a1
3a2 − 27a1a2

3)x2 + (−27 t2a1
3a2 + 81 t2a1a2

3 − 18 ta1
3a2 + 54 ta1a2

3)x + 9 t3a1
3a2 −

27 t3a1a2
3 +9 t2a1

3a2−27 t2a1a2
3 +18 ta1

3a2−54 ta1a2
3−12a1c2 +12a1d2 +4a2c1−4a2d1,

is a rational solution to the Boussinesq equation (1.1), quotient of two polynomials with numerator of order 4 in x and t, denominator of
degree 6 in x and t.

Figure 2.2: Solution of order 2 to (1.1); on the left, a1 = 107, a2 = 1, c1 = 1, c2 = 1, d1 = 0, d2 = 0; on the right, a1 = 1, a2 = 107, c1 = 1, c2 = 1, d1 = 0,
d2 = 0.



48 Universal Journal of Mathematics and Applications

Figure 2.3: Solution of order 2 to (1.1); on the left, a1 = 1, a2 = 1, c1 = 107, c2 = 0, d1 = 1, d2 = 1; on the right, a1 = 1, a2 = 1, c1 = 0, c2 = 107, d1 = 0,
d2 = 0.

2.5. Rational solutions of order three

We get the following rational solutions given by :

Theorem 2.9. The function v defined by

v(x, t) =−2
n(x, t)
d(x, t)2 , (2.16)

is a rational solution to the Boussinesq equation (1.1), quotient of two polynomials with numerator of order 10 in x and t, denominator of
degree 12 in x and t.

Because of the length of the solution, we give it only in the appendix.

Remark 2.10. If c1 = c2 = c3 = d1 = d2 = d3 = 0, then the determinant in the formula (2.12) can be simplified by (177147
80 a1a2a3

3(−80a4
2 +

360a2
3a2

2 +a4
1−30a2

3a2
1) and the solution to the Boussinseq equation depends no longer on any parameter.

If one of the parameters a1, a2 or a3 is equal to 0 then the solution of the Boussinesq equation is the trivial solution (equal to 0).

Figure 2.4: Solution of order 3 to (1.1); on the left, a1 = 1, a2 = 1, a3 = 1, c1 = 0, c2 = 0,c3 = 107, d1 = 0, d2 = 0, d3 = 0; in the center, a1 = 1, a2 = 1,
a3 = 1, c1 = 0, c2 = 107,c3 = 1, d1 = 0, d2 = 0, d3 = 0; on the right, a1 = 1, a2 = 1, a3 = 107, c1 = 1, c2 = 1,c3 = 1, d1 = 0, d2 = 0, d3 = 0.

Figure 2.5: Solution of order 3 to (1.1)on the left, a1 = 1, a2 = 107, a3 = 1, c1 = 1, c2 = 1,c3 = 107, d1 = 0, d2 = 0, d3 = 0; in the center, a1 = 107, a2 = 1,
a3 = 1, c1 = 1, c2 = 107,c3 = 1, d1 = 0, d2 = 0, d3 = 0; on the right, a1 = 1, a2 = 1, a3 = 107, c1 = 105, c2 = 1,c3 = 1, d1 = 0, d2 = 0, d3 = 0.
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3. Solutions to the Kadomtsev Petviashvili equation

We consider the Kadomtsev Petviashvili equation (KP) which can be written in the form

(4uT −6uuX +uXXX )X −3uYY = 0, (3.1)

where subscripts X , Y and T denote as usual partial derivatives.
From the previous study, we can deduce easily solutions to the KP equation. It is sufficient for this, to use the following transformations

x = ıX +
3ıT
4

, t = ıY from the solutions to the Boussinesq equation to obtain solutions to the KP equation.

3.1. Solutions to the KP equation

3.2. First order rational solutions

We have the following result at order N = 1 :

Theorem 3.1. The function v defined by

v(X .Y,T ) =
−288a1

2

(12 ia1X +9 ia1T +4c1−12 iYa1−4d1)2 , (3.2)

is a solution to the KP equation (3.1).

Remark 3.2. The solution (3.2) can be simplified and be rewritten as depending on one parameter v(X .Y,T )=
−288

(12 iX +9 iT +4C1−12 iY )2

Figure 3.1: Solution of order 1 to (3.1), on the left T = 10, a1 = 106, c1 = 1, d1 = 1; on the right T = 10, a1 = 1, c1 = 103, d1 = 1.

Remark 3.3. The case where T = 10, a1 = 1, c1 = 1, d1 = 103 gives the same figure as the case T = 10, a1 = 1, c1 = 103, d1 = 1.

3.3. Second order rational solutions

We obtain the following solutions :

Theorem 3.4. The function v defined by

v(X .Y,T ) =−2
n(X .Y,T )
d(X .Y,T )2 , (3.3)

with
n(X .Y,T ) = 144a1a2(−41472a2

3a1
3 +62208a2

5a1 +6912a1
5a2)X4 +144a1a2(−124416a2

3a1
3T −27648a1

5Ya2 +165888a2
3a1

3Y +9216 ia1
5a2

−55296 ia2
3a1

3 +186624a2
5a1T +82944 ia2

5a1 +20736a1
5a2T −248832a2

5Ya1)X3 +144a1a2(−248832a2
3a1

3Y 2−27648 ia1
5Ya2 +23328a1

5a2T 2 +

373248a2
3a1

3Y T +165888 ia2
3a1

3Y−124416 ia2
3a1

3T +41472a1
5Y 2a2−62208a1

5Ya2T−559872a2
5Ya1T−139968a2

3a1
3T 2−41472a2

5a1+27648a2
3a1

3+

209952a2
5a1T 2+186624 ia2

5a1T +373248a2
5Y 2a1−248832 ia2

5Ya1+20736 ia1
5a2T−4608a1

5a2)X2+144a1a2(−419904a2
5Ya1T 2+279936a2

3a1
3Y T 2−

46656a1
5Ya2T 2 +62208a1

5Y 2a2T +559872a2
5Y 2a1T −373248a2

3a1
3Y 2T −373248 ia2

5Ya1T +248832 ia2
3a1

3Y T −41472 ia1
5Ya2T −18432 ia2

3c1 +

41472a2
3a1

3T − 6912a1
5a2T − 62208a2

5a1T + 18432 id2a1
3 − 18432 ia1

3c2 + 18432 id1a2
3 + 139968 ia2

5a1T 2 − 93312 ia2
3a1

3T 2 + 15552 ia1
5a2T 2 +

27648 ia1
5Y 2a2+248832 ia2

5Y 2a1−165888 ia2
3a1

3Y 2−55296 ia2
2d2a1−6144 ia1

2d1a2+55296 ia2
2c2a1+6144 ia1

2c1a2−69984a2
3a1

3T 3+11664a1
5a2T 3+

104976a2
5a1T 3 − 248832a2

5a1Y 3 + 110592a2
3a1

3Y + 165888a2
3a1

3Y 3 − 18432a1
5Ya2 − 27648a1

5Y 3a2 − 165888a2
5Ya1)X + 144a1a2(6144a2

3c1 +

6144a1
3c2 +41472 ia2

2c2a1T +4608 ia1
2c1a2T −104976a2

5Ya1T 3 +69984a2
3a1

3Y T 3−11664a1
5Ya2T 3 +55296 iY a2

2d2a1 +6144 ia1
2Y d1a2

−55296 iY a2
2c2a1−6144 ia1

2Y c1a2−139968 ia2
5Ya1T 2+93312 ia2

3a1
3Y T 2−15552 ia1

5Ya2T 2+20736 ia1
5Y 2a2T +186624 ia2

5Y 2a1T−124416 ia2
3a1

3Y 2T−
41472 ia2

2d2a1T−4608 ia1
2d1a2T−13122a2

3a1
3T 4+19683a2

5a1T 4+2187a1
5a2T 4+13824 id2a1

3T−13824 ia1
3c2T +13824 id1a2

3T−23328 ia2
3a1

3T 3+

3888 ia1
5a2T 3−82944 ia2

5a1Y 3 +55296 ia2
3a1

3Y +55296 ia2
3a1

3Y 3−9216 ia1
5Ya2−9216 ia1

5Y 3a2−82944 ia2
5Ya1−18432 iY a2

3d1−18432 ia1
3Y d2 +

18432 iY a2
3c1+18432 ia1

3Y c2+34992 ia2
5a1T 3−13824 ia2

3c1T−124416a2
5Ya1T +82944a2

3a1
3Y T−186624a2

5a1Y 3T +124416a2
3a1

3Y 3T−13824a1
5Ya2T
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− 20736a1
5Y 3a2T + 209952a2

5Y 2a1T 2− 139968a2
3a1

3Y 2T 2 + 23328a1
5Y 2a2T 2 + 62208Y 4a2

5a1− 41472Y 4a2
3a1

3 + 6912a1
5Y 4a2 + 2048a1

2d1a2 +

18432a2
2d2a1 − 6144d2a1

3 − 6144d1a2
3 + 15552a2

3a1
3T 2 − 2592a1

5a2T 2 − 23328a2
5a1T 2 − 138240a2

3a1
3Y 2 + 207360a2

5Y 2a1 + 23040a1
5Y 2a2 −

2048a1
2c1a2−18432a2

2c2a1),
and
d(X .Y,T ) = −1728 ia1a2

3X3 + 576 ia1
3a2X3 + 1728a1a2

3X2− 576a1
3a2X2− 3888 ia1a2

3X2T + 5184 iYa1a2
3X2− 1728 iY a1

3a2X2 + 1296 ia1
3a2T X2 +

7776 iYa1a2
3T X+972 ia1

3a2T 2X−2916 ia1a2
3XT 2−5184 iY 2a1a2

3X+1728 iY 2a1
3a2X−2592 iY a1

3a2XT−864a1
3a2T X−3456Ya1a2

3X+2592a1a2
3T X+

1152Y a1
3a2X−768a1c2−256a2d1−3888 iY 2a1a2

3T +2916 iYa1a2
3T 2+1728 iY 3a1a2

3−576 iY 3a1
3a2−3456 iYa1a2

3+1152 iY a1
3a2−972 iY a1

3a2T 2−
729 ia1a2

3T 3+256a2c1+243 ia1
3a2T 3+768a1d2+1296 iY 2a1

3a2T +972a1a2
3T 2−2592Ya1a2

3T−324a1
3a2T 2+864Y a1

3a2T +1728Y 2a1a2
3−576Y 2a1

3a2,
is a rational solution to the KP equation (3.1), quotient of two polynomials with numerator of degree 4 in x, y and t and denominator of
degree 6 in x, y and t.

Figure 3.2: Solution of order 2 to (3.1); on the left T = 0,1, a1 = 1, a2 = 1, c1 = 0, c2 = 0, d1 = 0, d2 = 0; in the center T = 0,1, a1 = 1, a2 = 1, c1 = 0,
c2 = 108, d1 = 0, d2 = 0; on the right T = 0,1, a1 = 1, a1 = 109, c1 = 1, c2 = 1, d1 = 0, d2 = 0.

Figure 3.3: Solution of order 2 to (3.1); on the left T = 0,1, a1 = 106, a2 = 1, c1 = 1, c2 = 1, d1 = 0, d2 = 0; in the center T = 0,1, a1 = 1, a2 = 1, c1 = 106,
c2 = 0, d1 = 0, d2 = 0; on the right T = 10, a1 = 1, a2 = 1, c1 = 1, c2 = 107, d1 = 0, d2 = 0.

Figure 3.4: Solution of order 2 to (3.1); on the left T = 10, a1 = 1, a2 = 109, c1 = 1, c2 = 1, d1 = 0, d2 = 0; in the center T = 10, a1 = 1010, a2 = 1, c1 = 1,
c2 = 1, d1 = 0, d2 = 0; on the right T = 10, a1 = 1, a2 = 1, c1 = 1, c2 = 106, d1 = 0, d2 = 0.
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3.4. Rational solutions of order 3

We get the non singular rational solutions given by :

Theorem 3.5. The function v defined by

v(X .Y,T ) =−2
n(X .Y,T )
d(X .Y,T )2 , (3.4)

is a rational solution to the KP equation (3.1), quotient of two polynomials with numerator of degree 10 in X, Y , T and denominator of
degree 12 in X, Y and T .

Because of the length of the solution, we only give it in the appendix.

Figure 3.5: Solution of order 3 to (3.1); on the left T = 0,1, a1 = 1, a2 = 1, a3 = 1, c1 = 0, c2 = 0 c3 = 0, d1 = 0, d2 = 0, d3 = 0; in the center T = 0,1,
a1 = 1, a2 = 1, a3 = 1, c1 = 1, c2 = 0, c3 = 106, d1 = 0, d2 = 0, d3 = 0; on the right T = 0,1, a1 = 1, a2 = 1, a3 = 1, c1 = 0, c2 = 106, c3 = 1, d1 = 0,
d2 = 0, d3 = 0.

Figure 3.6: Solution of order 3 to (3.1); on the left T = 0,1, a1 = 1, a2 = 1, a3 = 1024, c1 = 1, c2 = 1 c3 = 1, d1 = 0, d2 = 0, d3 = 0; in the center T = 0,1,
a1 = 1, a2 = 104, a3 = 1, c1 = 1, c2 = 1, c3 = 1, d1 = 0, d2 = 0, d3 = 0; on the right T = 0,1, a1 = 10, a2 = 1, a3 = 1, c1 = 1, c2 = 10, c3 = 1, d1 = 0,
d2 = 0, d3 = 0.

Figure 3.7: Solution of order 3 to (3.1); on the left T = 0,1, a1 = 1, a2 = 1, a3 = 1, c1 = 106, c2 = 1 c3 = 1, d1 = 0, d2 = 0, d3 = 0; in the center T = 1,
a1 = 1, a2 = 1, a3 = 1, c1 = 0, c2 = 0, c3 = 0, d1 = 0, d2 = 0, d3 = 0; on the right T = 1, a1 = 106, a2 = 1, a3 = 1, c1 = 1, c2 = 1, c3 = 1, d1 = 0, d2 = 0,
d3 = 0.
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Figure 3.8: Solution of order 3 to (3.1); on the left T = 1, a1 = 1, a2 = 1, a3 = 1, c1 = 106, c2 = 1 c3 = 1, d1 = 0, d2 = 0, d3 = 0; in the center T = 10,
a1 = 106, a2 = 1, a3 = 1, c1 = 1, c2 = 1, c3 = 1, d1 = 0, d2 = 0, d3 = 0; on the right T = 10, a1 = 1, a2 = 1, a3 = 1, c1 = 1, c2 = 1, c3 = 107, d1 = 0, d2 = 0,
d3 = 0.

4. Conclusion

We have given three types of representations of solutions to the Boussinesq equation. First, solutions in terms of elementary exponential
functions have been constructed. In particular, performing a passage to the limit when one parameter goes to 0 we get rational solutions to
the Boussinesq equation. We give an other representation in terms of determinants without the presence of a limit. So we obtain an infinite
hierarchy of multiparametric families of rational solutions to the Boussinesq equation as a quotient of a polynomial of degree N(N +1)−2
in x, t by a polynomial of degree N(N +1) in x, t depending on 3N real parameters.
As a byproduct, we get easily similar rational solutions to the Kadomtsev Petviashvili equation as the quotient of determinants of polynomials,
where the numerator is a polynomial of degree N(N +1)−2 in X , Y , T and the denominator is a polynomial of degree N(N +1) in X , Y , T .
In particular, we construct explicit rational solutions to the Boussinesq equation of order 1, 2, 3.
Unlike other equations such as NLS, there are no specific structures that emerge as a function of the parameters.
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