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Abstract

The modified Lindstedt-Poincare method has been extended to obtain a faster convergent
solution of nonlinear oscillators. First of all a classical type Lindstedt-Poincare solution has
been determined and then a conversion formula has been used to find the desired solution.
The solution has been compared and justified by corresponding numerical solution.

1. Introduction

Poincare [19] developed different methods to solve differential equations. Poincare and Lindstedt developed Lindstedt-Poincare method [1,2].
The Lindstedt-Poincare method [1, 2] was originally developed for handling a weak nonlinear oscillator

ẍ+ω
2
0 x+ ε f (x, ẋ, ẍ) = 0, (1.1)

where ε is a small parameter, ω0 is a constant, over dots denote differentiation with respect to t and x(0) = a0, ẋ(0) = 0 are the given
initial conditions. Then Krylov-Bogoliubov’s [3] and multiple time scale [1] methods were presented to investigate Eq. (1.1). The classical
perturbation methods agree with numerical solutions (e. g. Runge-Kutta 4th order method [19], finite elements method [5], etc.) when ε is
very close to zero.
Several authors [4]- [6], [16] extended the Lindstedt-Poincare method to solve stronger nonlinear problems. Jones [4] presented an
approximate technique by introducing a new parameter, α(ε) rather than the small parameter, ε . Such approximate solution is valid even for
large value of ε . Burton [5] presented a modified version of the Lindstedt-Poincare method. Cheung et al. [6] further modified this method.
However, all the approximate solutions obtained by approaches of [4]- [6] are effective for Duffing oscillator with cubical nonlinearity.
The aim of this article is to present a new form of the modified Lindstedt-Poincare method of Cheung et al. [6] based on the conversion
formula presented by Alam et al. [14] by introducing a parameter k. The solutions obtained for various nonlinear oscillators nicely agree
with corresponding numerical solutions and provide better results than other existing solutions.
Besides the classical perturbation methods, many approximate techniques have been presented for solving the stronger nonlinear oscillators.
Among them the asymptotic expansions [15, 18], the homotopy perturbation [7], harmonic balance [8, 9], energy balance [10] and iteration
methods [11] are widely used. Singular differential equations are also solved using optimal successive complementary expansion method by
F. Say [17].

2. The Lindstedt-Poincare method

Introducing a new variable, τ = ωt, t can be replaced and Eq. (1.1) is written as

ω
2x′′+ω

2
0 x+ ε f (x,ωx′,ω2x′′) = 0. (2.1)
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Here ω is known as the frequency of the oscillator and the primes denote differentiation with respect to τ . According to Lindstedt-Poincare
method [1, 2], x and ω can be expanded in powers of ε as

x =
∞

∑
n=0

xnε
n, (2.2)

and

ω
2 = ω

2
0 +

∞

∑
n=1

ωnε
n. (2.3)

Earlier it was chosen that ω = ω0 + εω1 + ε2ω2 +O(ε3). But Veronis [12] and Burton [5] and Burton et al. [13] used series Eq. (2.3). In
this article we have used the series in Eq. 2.3 for faster convergent solution.
By substituting x and ω into Eq. (2.1) and equating the coefficients of like powers of ε , we obtain the following equations:

ω
2
0 x′′0 +ω

2
0 x0 = 0, (2.4)

ω
2
0 x′′1 +ω

2
0 x1 =−2ω0ω1x′′0 − f (x0,x′0,x

′′
0), (2.5)

ω
2
0 x′′2 +ω

2
0 x2 =−2

(
ω0ω1 +ω

2
1

)
x′′0 −2ω0ω1x′′1 − x1

∂ f (x0,x′0,x
′′
0)

∂x

−
(

ω0x′1 +
ω1x′0
2ω0

)
∂ f (x0,x′0,x

′′
0)

∂x′
−
(

ω
2
0 x′′1 +ω1x′′0

)
∂ f (x0,x′0,x

′′
0)

∂x′′
. (2.6)

The initial conditions are usually replaced by x0(0) = a0, x′0(0) = 0, x1(0) = x′1(0) = x2(0) = 0 · · · , and x0,x1 and ω1,x2 and ω2 etc. are
determined sequentially. In this article we only follow the initial conditions of x′0(0) = x′1(0) = · · ·= 0, and

a0 = x0(0)+ εx1(0)+ ε
2x2(0)+O(ε3). (2.7)

This assumption was introduced in [9] following [3].

3. Conversion formulae

Recently a conversion formula [14] has been presented to the modified Lindstedt-Poincare solution [6] from its classical version. This
conversion formula can be used to obtain a faster convergent solution (concern of this article). Cheung et al. [6] reconsidered Eq. (2.3) to the
following form

ω
2 =

(
ω

2
0 + εω1

)(
1+

ε2ω2

ω2
0 + εω1

+
ε3ω3

ω2
0 + εω1

+O(ε4)

)
. (3.1)

Then a new parameter α is chosen such as

α(ε) =
εω1

ω2
0 + εω1

. (3.2)

Thus Eq. (3.1) can be rewritten in a series of α ,

ω
2 =

ω2
0

(1−α)

(
1+

∞

∑
n=2

δnα
n

)
. (3.3)

Substituting the value of α from Eq. (3.2) into Eq. (3.3), we obtain a power series of ε ,

ω
2 = ω

2
0 + εω1 +

ε2ω2
1 δ2

ω2
0

+
ε3ω3

1 (−δ2 +δ3)

ω4
0

+
ε4ω4

1 (δ2−2δ3 +δ4)

ω6
0

+O(ε5). (3.4)

Now Eq. (2.3) and Eq. (3.4) are identical. Therefore, we obtain

ω2
1 δ2

ω2
0

= ω2,
ω3

1 (−δ2 +δ3)

ω4
0

= ω3,
ω4

1 (δ2−2δ3 +δ4)

ω6
0

= ω4, · · · , (3.5)
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or,

δ2 =
ω2ω2

0
ω2

1
, δ3 =

ω2
0 ω1ω2 +ω4

0 ω3

ω3
1

, δ4 =
ω2

0 ω2
1 ω2 +2ω4

0 ω1ω3 +ω6
0 ω4

ω4
1

, · · · . (3.6)

The above relations measures the unknown coefficients δ2,δ3, · · · etc., where ω0,ω1,ω2, · · · etc. are calculated by classical Lindstedt-
Poincare method [1, 2]. Thus we can convert the frequency obtained by classical Lindstedt-Poincare method [1, 2] to its modified form
presented by Cheung et al. [6]. On the other hand transformation Eq. (3.2) makes Eq. (2.2) to the form

x = x0 +α x̃1 +α
2x̃2 +O(α3). (3.7)

The unknown coefficients x̃1, x̃2, · · · etc. still to be determined. We can substitute the value of α from Eq. (3.2) into Eq. (3.7) and obtain a
series of ε ,

x = x0 +
εω1x̃1

ω2
0

+
ε2ω2

1 (−x̃1 + x̃2)

ω4
0

+
ε3ω3

1 (x̃1−2x̃2 + x̃3)

ω6
0

+O(ε4). (3.8)

Clearly that Eq. (2.2) is identical to Eq. (3.8). So, comparing equal powers of ε , we obtain the following algebraic equations:

ω1x̃1

ω2
0

= x1,
ω2

1 (−x̃1 + x̃2)

ω4
0

= x2,
ω3

1 (x̃1−2x̃2 + x̃3)

ω6
0

= x3, · · · , (3.9)

or,

x̃1 =
ω2

0 x1

ω1
, x̃2 =

ω2
0 ω1x1 +ω4

0 x2

ω2
1

, x̃3 =
ω2

0 ω2
1 x1 +2ω4

0 ω1x2 +ω6
0 x3

ω3
1

, · · · . (3.10)

When x1,x2, · · · together with ω0,ω1,ω2, · · · are known, x̃1, x̃2, · · · are found by Eq. (3.10).

4. Example

Let us consider Duffing oscillator (cubical) ẍ+x+εx3 = 0. For this problem, ω0 = 1 and f (x, ẋ, ẍ) = x3. Therefore, Eqs. (2.4)-(2.6) becomes

x′′0 + x0 = 0, (4.1)

x′′1 + x1 =−ω1x′′0 − x3
0, (4.2)

x′′2 + x2 =−3x2
0x1− x′′1ω1− x′′0ω2. (4.3)

The solution of Eq. (4.1) is

x0 = acosτ. (4.4)

Substituting this value of x0 in Eq. (4.2) and simplifying we obtain

x′′1 + x1 = ω1acosτ− 3
4

a3 (3cosτ + cos3τ) . (4.5)

It is noted that x1,x2, · · · do not contain the fundamental term to avoid secular terms. Therefore, the coefficient of cosτ of Eq. (4.5) vanishes.
Thus we obtain

ω1 =
3a2

4
. (4.6)

The particular solution of Eq. (4.5) is

x1 =
a3 cos3τ

32
. (4.7)

According to Lindstedt-Poincare method, x1(0) = x′1(0) = 0. Therefore, the solution of Eq. (4.5) becomes

x1 =
a3 (−cosτ + cos3τ)

32
. (4.8)

It has already been mentioned that we do strictly follow this rule. We may consider

x1 =
a3 (−k cosτ + cos3τ)

32
, (4.9)
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where k is a constant.
Alam et al. [9] was chosen a periodic solution of ẍ+ω2

0 x = ε f (x), x(0) = a0, ẋ(0) = 0, as

x = acosϕ +a3C3(a)cos3ϕ +a5C5(a)cos5ϕ +O(a7),

where a and ϕ̇ are constants. Alam et al. [9] considered above solution by choosing k = 0.
k = 1 is strictly followed by Cheung et al. [6] and various methods of perturbation for solving nonlinear oscillators. Thus the value of k can
be considered as parameter. This will give us additional variation to find more accurate solutions of nonlinear oscillators. Determination of
higher order solution will increase accuracy of the solution. But choosing k as a parameter we have found faster convergent solutions without
finding higher order approximations. By finding a proper value of k, solution can be made more accurate with first few approximations. We
have introduced k in the first approximate solution and consequently k appear in the second, third and fourth approximations.
Choosing a suitable value of k, we can find a series of ω which converge faster than that of obtained by Cheung et al. [6] and Alam et al. [14].
Carrying on a similar process, we have solved the higher order equations (e.g., Eq. (4.3),· · · ) and obtained the following results:

ω2 =−
3

128
a4 (−1+2k) , ω3 =

3a6 (−19+36k+7k2)
4096

, ω4 =−
3a8 (−335+556k+342k2 +30k3)

131072
, (4.10)

and

x2 =C2,1 cosτ +C2,3 cos3τ +C2,5 cos5τ,

x3 =C3,1 cosτ +C3,3 cos3τ +C3,5 cos5τ +C3,7 cos7τ,

x4 =C4,1 cosτ +C4,3 cos3τ +C4,5 cos5τ +C4,7 cos7τ +C4,9 cos9τ, (4.11)

where

C2,1 =
a5 (20k+3k2)

1024
, C2,3 =

−a5 (21+3k)
1024

, C2,5 =
a5

1024
, C3,1 =−

a7k
(
375+160k+12k2)

32768
,

C3,3 =
3a7 (139+55k+4k2)

32768
, C3,5 =−

a7 (43+5k)
32768

, C3,7 =
a7

32768
, C4,1 =

a9k
(
6521+5750k+1100k2 +55k3)

1048576
,

C4,3 =−
a9 (7797+6144k+1125k2 +55k3)

1048576
, C4,5 =

a9 (1340+401k+25k2)
1048576

, C4,7 =−
a9(65+7k)

1048576
, C4,9 =

a9

1048576
. (4.12)

Now utilizing the transformation formulae Eq. (3.6) and Eq. (3.10), we obtain respectively

δ2 =
1

24
(1−2k) ,δ3 =

1
576

(
5−12k+7k2

)
,δ4 =

−1+20k−6k2−30k3

13824
, (4.13)

and

x̃1 = C̃1,1 cosτ +C̃1,3 cos3τ,

x̃2 = C̃2,1 cosτ +C̃2,3 cos3τ +C̃2,5 cos5τ,

x̃3 = C̃3,1 cosτ +C̃3,3 cos3τ +C̃3,5 cos5τ +C̃3,7 cos7τ,

x̃4 = C̃4,1 cosτ +C̃4,3 cos3τ +C̃4,5 cos5τ +C̃4,7 cos7τ +C̃4,9 cos9τ, (4.14)

where

C̃1,1 =−
ak
24

, C̃1,3 =
a

24
, C̃2,1 =

ak (−4+3k)
576

, C̃2,3 =
a(1− k)

192
, C̃2,5 =

a
576

, C̃3,1 =−
ak
(
−9+16k+12k2)

13824
,

C̃3,3 =
a
(
−5+7k+4k2)

4608
, C̃3,5 =−

5a(−1+ k)
13824

, C̃3,7 =
a

13824
, C̃4,1 =

ak
(
257−586k+236k2 +55k3)

331776
,

C̃4,3 =−
a
(
237−552k+261k2 +55k3)

331776
, C̃4,5 =

a
(
−28+41k+25k2)

331776
, C̃4,7 =−

7a(−1+ k)
331776

, C̃4,9 =
a

331776
. (4.15)

For the initial conditions, we obtain
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x̃1(0) =
a(1− k)

24
, x̃2(0) =

a
(
4−7k+3k2)

576
, x̃3(0) =

a
(
−9+25k−4k2−12k3)

13824
,

x̃4(0) =
a
(
−257+843k−822k2 +181k3 +55k4)

331776
. (4.16)

It is clear that x̃1 (0) = x̃2(0) = x̃3(0) = x̃4(0) = 0 when k = 1 and x(0) = a0 = a. When k 6= 1, we obtain the following nonlinear algebraic
equation

a0 = a

(
1+

a(1− k)α

24
+

a
(
4−7k+3k2)α2

576
+

a
(
−9+25k−4k2−12k3)α3

13824
+

a
(
−257+843k−822k2 +181k3 +55k4)α4

331776

)
,

(4.17)

where α =
3a2

4

1+ 3a2
4

. In general a0 is given; so that a would be found solving Eq. (4.17) by an iteration method (numerical). It is noted that the

higher order terms of α are small whatever the values of a and ε if we chose a suitable value of k. Therefore it requires one or two iterations
to obtain a desired result.

5. Results and discussion

A faster convergent modified Lindstedt-Poincare solution has been determined. The solution is identical to that of Cheung et al. [6] and
Alam et al. [14] for k = 1. When k = 1, then from Eq. (4.13) we get,

δ2 =−
1

24
,δ3 = 0,δ4 =−

17
13824

.

The above results are same as obtained by Cheung et al. [6] and Alam et al. [14]. When k = 5
7 , we obtain

δ2 =−
1
56

,δ3 = 0,δ4 =−
9

175616
.

Figure 5.1: Variation of δ2,δ3,δ4 with k for duffing oscillator to determine small value of δ2,δ3,δ4.

It is clear that the α-series (Eq. (3.3)) converges faster when coefficients |δi|, i = 2,3, · · · etc. become small. We have plotted δ2,δ3,δ4
against k in the Fig. 5.1 for Duffing oscillator. We have found that δ2,δ3,δ4 all are small in the region 0.4 < k < 1. The series (Eq. (3.3)) of
frequency for the Duffing oscillator converges faster when k = 5

7 . For several values of a0, the frequency ω have been calculated for both
k = 1 (Alam et al. [14] and Cheung et al. [6]) and k = 5

7 , and presented in Table 1 together with numerical results obtained by Runge-Kutta
4th order method.
It is hard to say what would be the suitable value of k for other nonlinear oscillators. We have plotted δ2,δ3,δ4 against k in the Fig. 5.2 for
the quintic oscillator. We find from Fig. 5.2 that δ2,δ3,δ4 all are small in the region 0 < k < 1. For the cubic Duffing oscillator, we see that
δ3 vanishes for both k = 1 and k = 5

7 . But for the quintic oscillator (i.e., ẍ+ x+ εx5 = 0) δ3 never vanishes. For this oscillator, we have
obtained

δ2 =
1

120
(19−32k) , δ3 =

1
14400

(
1009−254k+1664k2

)
,

δ4 =
1

1728000

(
14441−65806k+140552k2−104448k3

)
.

We see from Fig. 5.2 that the values of these coefficients are opposite in sign when 19
32 < k. But all are positive when k ≤ 19

32 and δ2 vanishes
when k = 19

32 . Thus for k = 1 and k = 19
32 , we have obtained respectively
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a0 ω(k = 1) ω(k = 5
7 ) ωnu

Er(%) Er(%)

1 1.31778 1.31778 1.31778
0.00000 0.00000

10 8.53390 8.53351 8.53359
0.003633 0.000937

100 84.7309 84.7266 84.7275
0.004013 0.001062

1000 847.248 847.205 847.214
0.004013 0.001062

Table 1: Comparison of the approximate frequencies obtained by present method with the numerical and other existing frequencies (Alam et al. [14] and
Cheung et al. [6], k = 1) for the Duffing oscillator (where Er(%) denotes absolute percentage error).

Figure 5.2: Variation of δ2,δ3,δ4 with k for quintic oscillator to determine small value of δ2,δ3,δ4.

δ2 =−
13

120
, δ3 =

2
225

, δ4 =−
5087

576000
,

and

δ2 = 0, δ3 =
541

92160
, δ4 =

391129
221184000

.

Comparing these results, we easily expect that α-series (Eq. (3.3)) converges faster for k = 19
32 . To verify this matter, we have calculated

some results choosing k = 1 (Alam et al. [14] and Cheung et al. [6]) and k = 19
32 and presented in Table 2 together with corresponding

numerical results.

a0 ω(k = 1) ω(k = 19
32 ) ωnu

Er(%) Er(%)

1 1.26470 1.26471 1.26471
0.000791 0.000000

10 74.6618 74.6768 74.6909
0.038961 0.018878

100 7465.44 7466.93 7468.34
0.038831 0.018880

1000 746531.22 746701.04 746834.20
0.040569 0.0178304

Table 2: Comparison of the approximate frequencies obtained by present method with the numerical and other existing frequencies (Alam et al. [14] and
Cheung et al. [6], k = 1) for the quintic oscillator (where Er(%) denotes absolute percentage error).

For the nonlinear oscillator ẍ+ x+ ε ẋ2x = 0 we have obtained

δ2 =
1
8
(3+2k) , δ3 =

1
192

(
63+76k+21k2

)
,

δ4 =
1

1563

(
407+668k+426k2 +90k3

)
.

Thus for k = 1 and k = 2
5 , we have obtained respectively

δ2 =
5
8
, δ3 =

5
6
, δ4 =

1591
1536

,
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and

δ2 =
19
40

, δ3 =
2419
4800

, δ4 =
18703
38400

.

We have calculated some results choosing k = 1 (Alam et al. [14] and Cheung et al. [6]) and k = 2
5 and presented in Table 3 together with

corresponding numerical results. From Fig. 5.3 we see that δ2,δ3,δ4 are small near k = −3
2 but for k = 2

5 obtained results are better for
larger values of a0.

a0 ω(k = 1) ω(k = −3
2 ) ω(k = 2

5 ) ωnu
Er(%) Er(%) Er(%)

0.01 1.00001 1.00001 1.00001 1.00001
0.000000 0.000000 0.000000

0.1 1.00125 1.00125 1.00125 1.00125
0.000000 0.000000 0.000000

1 1.13651 1.13682 1.13666 1.13678
0.023713 0.0035187 0.0105561

10 9.12723 10.3405 9.95623 9.92913
8.07624 4.14306 0.272934

100 93.4396 104.866 101.947 99.9931
6.55395 4.87324 1.95403

Table 3: Comparison of the approximate frequencies obtained by present method with the numerical and other existing frequencies (Alam et al. [14] and
Cheung et al. [6], k = 1) for the oscillator ẍ+ x+ ε ẋ2x = 0 (where Er(%) denotes absolute percentage error).

Figure 5.3: Variation of δ2,δ3,δ4 with k for the oscillator ẍ+ x+ ε ẋ2x = 0 to determine small value of δ2,δ3,δ4.

For the nonlinear oscillator ẍ+ x+ ε ẍx2 = 0, we have obtained

δ2 =
1

72
(−11+6k) , δ3 =

1
1728

(
−17−36k+21k2

)
,

δ4 =
1

124416

(
−3359+2812k−1242k2 +270k3

)
.

Thus for k = 1, we have obtained

δ2 =
−5
72

, δ3 =
−1
54

, δ4 =
1519

124416
,

and which are same as obtained in Alam et al. [14].
For different values of the unknown constant k we have calculated some results and presented in Table 4 together with corresponding
numerical results and other existing frequencies (Alam et al. [14] and Cheung et al. [6], k = 1). From Table 4 it is clear that frequency of the
oscillator depends on the parameter k and comparing various results suitable value of k can be determined. From Fig 5.4 we see the variation
of δ2,δ3,δ4 with the unknown constant k, shows the region of convergence.

6. Conclusion

The modified Lindstedt-Poincare method of Cheung et al. [6] based on Alam et al. [14] has been presented in a new form introducing
an unknown constant, k. All the coefficients related to the solution depend on this constant. When k = 1, the solution is identical to that
of Cheung et al. [6] and Alam et al. [14]. But a better result would be found for a particular value of k. Comparing various results of
the unknown coefficients, |δi(k)|, i = 2,3, · · · , the suitable value of k can be determined. The method is applied to obtain the approximate
solution of Duffing oscillator, quintic oscillator and another two nonlinear equations whose nonlinear response is significant. All the solutions
show a good agreement with numerical solutions obtained by Runge-Kutta 4th order method and provide better results than other existing
solutions. The results may be useful to the researches in the field of nonlinear mechanics for investigating periodic solution of some higher
order nonlinear problems.
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a0 ω(k = 1) ω(k = 2) ω(k = 3) ω(k = 5) ωnu
Er(%) Er(%) Er(%) Er(%)

0.01 0.999963 0.999963 0.999963 0.999963 0.999963
0.000000 0.000000 0.000000 0.000000

0.1 0.996273 0.996273 0.996273 0.996273 0.996273
0.000000 0.000000 0.000000 0.000000

1 0.761518 0.761545 0.761568 0.761712 0.761579
0.00800967 0.00446441 0.00144438 0.0174637

10 0.120712 0.121174 0.121670 0.124195 0.123323
2.11720 1.74258 1.34038 0.707086

100 0.0121717 0.0122225 0.0122776 0.0125643 0.0125256
2.83240 2.42686 1.98699 0.30176

1000 0.00121728 0.00122235 0.00122788 0.00125658 0.00125328
2.87246 2.46792 2.02668 0.263309

10000 0.000121728 0.000122235 0.000122788 0.000125658 0.000125331
2.87479 2.47026 2.02903 0.260909

Table 4: Comparison of the approximate frequencies obtained by present method with the numerical and other existing frequencies (Alam et al. [14] and
Cheung et al. [6], k = 1) for the oscillator ẍ+ x+ ε ẍx2 = 0 (where Er(%) denotes absolute percentage error).

Figure 5.4: Variation of δ2,δ3,δ4 with k for the oscillator ẍ+ x+ ε ẍx2 = 0 to determine small value of δ2,δ3,δ4.
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